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Abstract: This article considers the principle of constructing mathematical models of function-
ally complex multidimensional multiloop continuous–discrete UAV stabilization systems. This is
based on the proposal for constructing a mathematical model based on the class of the considered
complexity of the stabilization system-multidimensionality, multi-rating, and elasticity. Multiloop
(multidimensional) UAV stabilization systems are often characterized by the control of several in-
terconnected state elements and the existence of several channels for the propagation of signals
and mutual connections between individual objects. This is due to the need not only to take into
account the numerous disturbing factors (for example, wind) acting on the control object as well as
the need to use several points of application of control actions. Additionally, an important point is the
possible separation of the mutual influence of the roll and yaw channels of the UAV on its synthesis
and analysis. For this purpose, a mathematical model has been constructed using a description in
the form of transfer functions, and therefore, in the form of structural diagrams. The principle of
obtaining transfer functions is shown to demonstrate additional dynamic constraints introduced
by elastic deformations into the stabilization loop through gyroscopic devices and accelerometers.
This will make it possible to formulate a methodology for analyzing the influence of aeroelastic con-
straints on the stabilization loop, which will allow developing approaches to formulate requirements
for the effective placement of gyroscopes and accelerometers on the UAV. The proposed approach
allows creating a complete system of analysis and synthesis tools for complex multidimensional
continuous–discrete UAV stabilization systems.

Keywords: multi-rate system; multiloop system; UAV stabilization system; continuous–discrete
control system; elastic links

1. Introduction

The stabilization system of an unmanned aerial vehicle (UAV) is a set of devices and
algorithms implemented in onboard computers that ensure the stable movement of the
UAV’s center of mass. The complexity of the synthesis of the UAV stabilization system
requires an adequate mathematical model for its description.

Usually, the stabilization system of a UAV is a multiloop (multidimensional) system
with many controllable parameters and input actions of more than one [1]. Multiloop
UAV stabilization systems are characterized by the control of several interconnected state
elements. The existence of several channels for the propagation of signals and mutual
connections between individual objects is common [2,3].

This is due to the need not only to take into account the numerous disturbing factors
acting on the control object, like the wind, but also the need to use several points of
application of control actions [4].

A multiloop UAV stabilization system has a vector nature character of control actions,
disturbing actions, control system parameters, and outputs [3,5].
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Multiloop UAV stabilization systems are complex dynamic systems. Analytical meth-
ods for calculating their dynamic characteristics are very difficult. Therefore, structural
solutions for these systems are of great importance. To obtain the structural solutions,
special mathematical models that allow solving the assigned problems of analysis and
synthesis must be built [1,6].

Currently, in the practice of analysis and synthesis of multiloop UAV stabilization
systems, two approaches to the problem of obtaining mathematical models of such systems
have been developed.

First approach: Taking into account the vector nature of the connections between the
functional elements of the stabilization system, the vector–matrix representation of the
equations describing the UAV stabilization system is used for constructing the mathematical
models [7,8].

Second approach: A multiloop UAV stabilization system is considered a multi-
connected set of dynamic links and is presented in the form of a structural diagram
or an oriented graph [7,9].

In the first approach, there is a division of mathematical models into two groups [10–12]:

• Mathematical models in the time domain: These models are based on the vector–
matrix form of representation of systems of differential equations and systems of
finite-difference equations, the wide use of concepts, and methods of the state-space
theory.

• Mathematical models based on the use of the Laplace transform and z-transform [13].

The obvious state of the modern stage of technical development is the transition
from continuous automatic control systems to discrete systems. This is due to the use of
microprocessors in control systems, including the circuits of UAV stabilization systems.

There are two main directions of using computers in stabilization systems: the devel-
opment of a control program, where the results of calculations on computers are used as
setting influences; and the use of computers directly in a closed loop to stabilize the control
system and generate control signals.

The use of onboard computers to control UAV leads to the need to develop multiloop
systems that contain the impulse elements with different quantization in sampling periods.
The sampling period depends on the sampling rate of the signal sensors through the polling
link, which depends on the way the data are read. In this case, the interrogation of sensors
for measuring physical quantities (measuring points) is carried out separately when the
state of the controlled process requires it. The selection of the polling cycle and response
time depends on the dynamics of the process and the functions performed by the onboard
computer. The shorter the cycle time is, the more accurate and complete the obtained
information is. However, if this time is chosen to be too short, then the computer load
increases significantly. With a long readout time, some information is lost, so the process
may become unstable. When choosing a sampling period, a compromise must be found
between both possibilities.

The complexity of control processes caused by the effects of quantization, and the
presence of continuous and discrete elements leads to qualitatively new phenomena in
the behavior of systems. Currently, two approaches are used to describe the continuous–
discrete systems: continuous and discrete. In the first case, analysis and synthesis are
carried out in the continuous domain and the obtained synthesis results are discretized.
With the emerging approximation of continuous systems, the potential control capabilities
are narrowed. In the second approach, the system is considered in a discrete domain,
which leads to qualitative changes.

Each of these approaches leads to methodological errors since they are associated
with the replacement of a continuous–discrete system with either a continuous or discrete
model, each of which differs from the original one. The apparatus of the formal description
of the process becomes much more complicated when trying to expand the class of systems
under study. It is not possible to synthesize a high-precision stabilization system for such a
complex control object as a UAV since it performs a flight task using conventional methods
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for a long time due to the computational complexity of the algorithms that implement
these methods and the lack of adequate models for describing it.

As noted, the use of onboard computers or separate digital devices in the measure-
ment channels along with the devices of a continuous principle of operation leads to the
combination of continuous and discrete processes in time [14].

In the given system, the formation of the digital vector of measurements is carried
out using digital sensors. The digital vector of measurements is defined at a discrete set of
the time Θ = { tk| tk = t0 + kT; T > 0; k = 0, 1, 2, . . .} and consists of n independent
variables. Each component of the measurement vector is measured with its sampling
period Ti, which is a multiple of the sampling period of the entire control system T,
Ti = miT, i = 1, 2, . . ..

For many measurement vector variables, the sampling periods can be the same.
Measurements are made at times that belong to the specified discrete set Θ, and at time
intervals t ∈ [tk, tk + Ti), these measurements are taken to be equal to a constant value.

For the mathematical description of such stabilization systems, it is impossible to
apply purely continuous or purely discrete models. For these systems, the transition to
a homogeneous description in the form of finite-difference equations is also impossible,
especially for sufficiently large sampling periods in the discrete subsystems.

A complete description of UAV stabilization systems with a continuous–discrete
nature of the processes is based on the use of mixed continuous–discrete models, which
are a system of interrelated heterogeneous mathematical means of description: differential
equations, finite-difference equations, differential equations with jumps, etc. [15].

One of the effective means of ensuring the stability of UAV stabilization systems is
the rational placement and orientation of the sensitive elements of the control system,
including gyroscopes and accelerometers. When using special meters, it is necessary to
determine their location in the UAV body. The housings of modern aircraft-type UAVs, as
a rule, are thin-walled elongated cylindrical structures, the tones of elasticity of which are
commensurate with the eigenfrequencies of the UAV as a rigid body. The suppression of
elastic vibrations, which are often the cause of system instability, is one of the most difficult
problems in UAV design. The elasticity of the UAV body structure adversely affects the
stability and accuracy of the stabilization system. Therefore, when synthesizing a UAV
stabilization system, it is necessary to substantiate the effective arrangement of measuring
devices on the UAV body.

Constructive methods for stabilizing the elastic vibrations of the UAV body lead to a
complication of the UAV design or an expansion of the instrumental composition. All this,
in turn, leads to an increase in the dry weight of the UAV. Therefore, in practice, algorithmic
methods are widespread, which makes it possible to change the frequency characteristics
of the stabilization loop. The considered problems are solved by approximate methods,
with significant assumptions, since building accurate models is currently a laborious
process. Thus, an important and urgent task is the development of adequate problem-
oriented mathematical models, which are the basis for the synthesis and analysis of the
UAV stabilization system, taking into account the maximum number of influencing factors.

In this article, we will consider various approaches to the construction of mathematical
models of the stabilization system, considering the influence of various factors to form
the methods for the synthesis of these systems in the full combination of all elements of
complexity according to the principle “from simple to complex”.

2. Methods
2.1. Classes of Mathematical Models of Continuous–Discrete Systems

If discrete subsystems operate on the same time sequence, then such a continuous–
discrete automatic control system is called single-rate [16]. In [17–20], such a linear auto-
matic control system is described by a set of differential equations describing the control
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system on intervals of continuity tk ≤ t < tk+1, and difference equations describing state
jumps at discrete times tk:

dx(t)
dt = A1(t)x(t) + B1(t)u1(t), tk ≤ t < tk+1,

x(tk) = A2(tk)x(tk − 0) + B2(tk)u2(tk), tk ∈ Θ, x(t0) = x0

}
, (1)

where A1(t), B1(t) are the matrices of the coefficients of the continuous part of the system,
u1(t) is the continuous control vector, A2(tk), B2(tk) are the matrices of the coefficients of the
discrete part of the system, u2(tk) is the vector of the discrete control, x(t) is the n-dimensional
vector of the state of the stabilization system, the elements of which are continuous functions
on finite time intervals [tk, tk+1] with discontinuities of the first kind at times tk ∈ Θ,
x(tk − 0)—the value of the state vector at the moment of action of the pulse quantizer:

Θ =

{
tk, k = 1, 2, . . . ,

∣∣∣∣inf
k
(tk+1 − tk) > 0

∣∣∣∣}, (2)

—the set of times tk at which the state vector x(t) undergoes discontinuities.
The solution to systems of Equation (1) is piecewise continuous functions that satisfy the

differential equations of the system at finite time intervals [tk, tk+1], and at times from the set
Θ undergo discontinuities of the first kind following the given finite difference equations.

In many problems, discrete subsystems of continuous–discrete UAV stabilization
systems operate on different time sequences. This is due to both the functional features of
discrete subsystems and the need to achieve their maximum efficiency. Therefore, for exam-
ple, in an onboard computer of an aircraft-type UAV, signals from angular velocity sensors
are processed much more often than signals about the position of the center of mass.

It is shown in [16] that the general model described by the system (1) allows one to
describe the dynamics of multitasking automatic control systems since the time sequence in
it is arbitrary. To explicitly highlight the subsystems and take into account the peculiarities
of the dynamics of the UAV stabilization system, it is advisable to introduce a mathematical
model of multi-rate continuous–discrete control systems.

The general model of a multi-rate continuous–discrete stabilization system in the time
domain can be represented as

dxC(t)
dt = ACC(t)xC(t) +

N
∑

i=1
ACDi (t)xDi ([t])i + BCC(t)uC(t), t /∈ Θ,

xDi ([t])i = ACDi ([t]i)xC([t]i) +
N
∑

j=1
ADDij([t]i)xDj([t− 0]j)+

+BDDi ([t]i)uDDi ([t]i), t ∈ Θ, i = 1 . . . N;

xC(t0) = xC0; xDi (t0) = xDi0 , i = 1 . . . N.


, (3)

In system (3), the following designations are accepted: xH(t)—the state vector of the
continuous part of the control system; xDi (t)—the state vectors of the discrete subsystems of
the stabilization system; ACC(t), BCC(t)—the matrices of the coefficients of the continuous
part of the control system; ADDi (t), BDDi (t)—the matrices of the coefficients of the discrete
subsystems of the automatic control system; ACDi (t)—the matrix of the coefficients of the
discrete part of the system affecting the continuous; uCC(t), . . . , uDD([t]i)—the current
time functions:

ki(t) = max
{

k| ti
k ∈ Θi, ti

k ≤ t
}

,
[t]i = tki(t), {t}i = t− [t]i.

}
, (4)

Θi =
{

ti
1, ti

2, ti
3, . . .| ti

k+1 − ti
k ≥ Ti > 0

}
, i = 1, . . . , N, (5)

—a set of moments in time that determine the functioning of discrete subsystems of UAV
stabilization systems, where:

ti
k = kTi, Ti = const, (6)
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and Ti is the sampling period of the i-th discrete subsystem of the UAV stabilization system.
The simplest case is when the sampling periods of discrete subsystems (6) are mutually

rational numbers, which is most often encountered in practice. For example, if the discrete
subsystems of the stabilization system are implemented in the form of programs of one
control computer, then their discreteness cycles contain an integer number of sampling
periods of the computer’s clock generator, and therefore, are mutually rationally simple.

A great development in the issue of constructing mathematical models of multiloop
but not multidimensional control systems with different sampling periods specified using
transfer functions (based on the z-transform and discrete Laplace transform), despite the
great complexity of the proposed approaches and serious restrictions on their application,
was achieved thanks to works [13,21,22]. This approach is very relevant due to the ability
to work with models in the form of structural diagrams.

In [23,24], a mathematical model of a multiloop multidimensional system is obtained
in the operator vector–matrix form, which takes into account the influence of all quantizers
of the system. This approach is fully applicable to the description of the UAV stabilization
system, which, as mentioned earlier, is a multiloop multidimensional continuous–discrete
system. For completeness, we present the construction of these mathematical models [23,24].

Let u(s) be the vector of control actions on the object of m× 1 dimension, and y(s)—the
vector of outputs of the object of p × 1 dimension. Let x(s) = [x1(s), x2(s), . . . , xr(s)]

T

be a vector of variables quantized on an analog-to-digital converter with sampling periods
T1, T2, . . . , Tr, respectively (among which there may be equal ones). We will consider com-
mensurate sampling periods T1, T2, . . . , Tr that are multiples of a certain sampling period T,
i.e., T1 = n1T, T2 = n2T, . . . , Tr = nrT, where n1, n2, . . . , nr are natural numbers.

The equations of a continuous object and analog circuits of the stabilization system
from the object to the quantization keys have the form:

y(s) = W0(s)u(s),
x(s) = E(s)y(s) + B(s)u(s),

(7)

where W0(s), E(s), B(s) are the matrices of transfer functions of the corresponding
dimensions. Thus:

x(s) = U(s)u(s) = [E(s)W0(s) + B(s)]u(s). (8)

Let x∗1T1
(s), x∗2T2

(s), . . . , x∗rTr
(s)—discrete Laplace transforms quantized concerning

the sampling periods T1, T2, . . . , Tr of the variables x1(t), x2(t), . . . , xr(t), respectively.
Each of the quantized signals xi(kiTi), ki = 0, 1, . . . , i ∈

____
1, r is converted by a

corresponding digital circuit and summed with other similar signals, as a result of which a
control action is formed. In addition to digital circuits, analog circuits (from the outputs of
the object) can also be used in the formation of control actions. Let us write the equation
for the “k-th” component of the vector of control actions:

uk(s) = −
r

∑
i=1

dki(s)x∗iTi
(s)−

p

∑
i

fki(s)yi(s) + ukz(s). (9)

where dki(s), fki(s) are the transfer functions of parallel digital and analog circuits, and
ukz(s) is the reference action generated by the digital circuit.

With the digital summation of converted digital signals (with sampling period T and
corresponding signal repetition) and subsequent digital-to-analog conversion, it can be
assumed that:

dki(s) =
1− e−Ts

s
W∗kiTi

(s). (10)

where W∗kiTi
(s) is the periodic (with a period 2π j

Ti
) transfer function of the digital (impulse)

conversion, and:

ukz(s) =
1− e−Ts

s
u∗kzT(s), (11)
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where u∗kzT(s) is the Laplace transform of the quantized reference action–periodic (with a
period 2π j

T ) function.
In a more general case of combined digital and analog (using other signals) summa-

tion, it is also possible to accept relation (10) to describe digital feedback circuits with a
corresponding complication of the periodic part of the transfer function, for example, by
writing:

dki(s) =
1− e−Tis

s
W∗kiTi

(s) =
1− e−Ts

s
· 1− e−Tis

1− e−Ts W∗kiTi
(s) = a(s)W̃∗kiTi

(s),

where a(s) = 1−e−Ts

s , W̃∗kiTi
(s)—periodic part of the transfer function dki(s).

Let us introduce a matrix W∗(s) with elements W∗kiTi
(s) and vectors x∗(s), v∗(s)

with elements x∗iTi
(s) and u∗kzT(s). The symbol “*” at the bottom marks the property of

periodicity of the matrix W∗(s) and the vector x∗(s) for the corresponding periods. At the
same time, all these elements satisfy relations of the form x(s + 2π j/T) = x(s).

Taking into account relations (10) and (11) as rather general and writing down the
equations for control actions in vector–matrix form:

u(s) = −a(s)W∗(s)x∗(s)− F(s)y(s) + a(s)v∗(s),

in which F(s) is a m × p matrix with elements fki, we obtain, taking into account relations
(7) and (8):

u(s) = −G(s)W∗(s)x∗(s) + G(s)v∗(s), (12)

x(s) = −C(s)W∗(s)x∗(s) + C(s)v∗(s), (13)

y(s) = −L(s)W∗(s)x∗(s) + L(s)v∗(s), (14)

where G(s) = a(s)(I + F(s)W0(s))
−1, C(s) = U(s)G(s), L(s) = W0(s)G(s).

Relations (12), (13), (14) together with the vector x∗(s) =
[

x∗1T1
(s) x∗2T2

(s) . . . x∗rTr
(s)

]T

represent a model of the closed multiloop, multidimensional multi-rate continuous–discrete
UAV stabilization system, which takes into account both the influence of all quantizers of
the system and its multiloop, including the cross-connections of control channels. Note, as
indicated above, that the use of mathematical models of automatic control systems in the
form of transfer functions allows using models in the form of structural diagrams.

2.2. Full Continuous–Discrete Multi-Rate Model of the UAV Stabilization System

The structural diagram of the elastic UAV lateral motion stabilization system is shown
in Figure 1. An analog of the considered system is given in [25]. In this figure, ψ—yaw
angle; γ—roll angle; δN and δE—angles of deflection of rudders and ailerons, respectively;
εN and εE—stabilization errors. Stabilization dynamics are determined by transfer func-
tions ΦST(s)—steering track; WKL(s)—kinematic link; WGT(s)—gyrotachometer; We(s)—
extrapolator; and transfer functions of the control object (excluding and taking into account
elastic connection).

All the indicated transfer functions are rational except for Wy
δN ψ(s), Wy

δN z(s)—meromorphic
functions with purely imaginary simple poles, which describe elastic constraints.

The transfer functions of the control object (a rigid vehicle in rotational motion around
the center of mass) can be determined by transforming, according to Laplace, the system of
first-order differential equations describing the rotational motion of the aircraft around the
center of mass in the horizontal plane:
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

.
β = b11β + b12ωx + b13ωy + b16δN + b14γ
.

ωx = b21β + b22ωx + b23ωy + b26δN + b27δE.
ωy = b31β + b32ωx + b33ωy + b36δN + b37δE.
γ = ωx + b43ωy.
ψ = ωy

(15)

In these equations: β—the slip angle; ωx, ωy—the projection of the angular velocity
vector on the axis x and y; bij—aerodynamic coefficients [25].

2.3. Influence of Deformations of the UAV Body on Its Dynamics

The transfer functions of elastic links Wy
δN ψ(s), Wy

δN z(s) characterize the effect of the
dynamics of stabilization of elastic vibrations of a moving UAV. This effect can be quite
noticeable.

All mechanical rod structures, including the UAV body, are not rigid structures that
vibrate [26,27]. The main reason that causes bending and flexural vibrations of the body is
the control torque generated by the steering elements. This becomes especially important
for pumped aircraft because such objects tend to be lighter in weight. To increase the UAV’s
flight range, the most acceptable solution is to increase its length, which in turn increases
the flexibility of the body. The elasticity of the UAV body structure harms the stability and
quality of the control system.

A large number of studies have been devoted to the study of flying vehicles as elastic
bodies, for example [28].

In [29], it is shown how oscillations affect the motion of an aircraft. For example, under
the influence of a disturbing moment Mz, the aircraft is deflected by a certain yaw angle +ψ.
Then, the stabilization machine, turning the steering elements (+δ1), will create a control
torque Mδ, which should compensate the harmful effect of the disturbance (see Figure 2).



Fluids 2021, 6, 172 8 of 19

However, the body of the aircraft, as already mentioned above, is not an absolutely rigid
structure, and it will bend under the action of the torque Mδ, as a result, the yaw angle
sensor, placed on the gyro platform, will register the angle not the angle ψ, but ψ + ∆ψ f l
(see Figure 3).
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For the analysis of oscillations, the transfer function of the UAV is obtained as an object
of regulation, taking into account the oscillators, which is not always convenient, since they
are usually satisfied with approximate models of the phenomenon in the form of several
vibrational links corresponding to the fundamental tones of elastic vibrations. The question
of the accuracy of such approximations of the model is solved mainly by experimental
means in each specific case. In this regard, there is a problem with constructing an accurate
dynamic model of an elastic link under certain assumptions. This will make it possible
to compare the exact and approximate characteristics of the elastic link and, therefore,
reasonably introduce the corresponding simplifications.

The elastic properties of a UAV can be significantly manifested in its movement
dynamics. Transient processes in the stabilization loop, occurring under the action of
aerodynamic forces, are accompanied by the elastic deformations of the UAV body, which
affect the signals of the measuring devices. For example, the bending angles of the body
add an additional component to the signals of gyroscopes, and the accelerations of elastic
vibrations are manifested in the signals of accelerometers. Due to this, additional feedbacks–
elastic links appear in the stabilization loop, which should be taken into account when
analyzing the properties of the loop. The mathematical description of these links, as well
as the subsequent analysis, taking into account the stabilization loop, is a very difficult task.
Usually, they are satisfied with approximate models of the phenomenon in the form of
one or more vibrational links corresponding to the fundamental tones of elastic vibrations.
Below, there is a description of the principle of constructing a mathematical model that
describes an elastic link in the form of transfer functions.

Methods for constructing transfer functions are given in [30–32]. Furthermore, when
describing the construction of a mathematical model of the UAV stabilization system,
taking into account elastic vibrations, we will briefly give a method for constructing
transfer functions describing an elastic link.

A model of the stabilization system, the block diagram of which is shown in Figure 1
will be called “the complete model”. Sampling periods are assumed to be commensurate,
i.e., multiples of a certain number T—the greatest common divisor of sampling periods.
Otherwise, the problem of analyzing the model becomes rather complicated, and as been
mentioned earlier, practically insoluble. However, usually, due to the operation of one
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control computer onboard the UAV, the condition of the frequency of sampling periods
is satisfied. “The complete model” is the basic model for obtaining a family of simplified
models of the UAV stabilization system.

2.4. Hierarchical Models of the UAV Stabilization System

It is natural to develop methods for the synthesis of multiloop multi-rate continuous–
discrete UAV stabilization systems according to the principle “from simple to complex.”
The degree of complexity is determined by the degree of complexity of the model. There-
fore, it is natural to introduce into consideration a certain hierarchy of models with varying
degrees of simplification obtained from the complete model under various kinds of as-
sumptions. Assumptions apply to those aspects of the overall model that determine the
complexity of the synthesis and analysis problem.

The meromorphism of the transfer functions Wy
δHψ(s), Wy

δHz(s) greatly complicates the
task of synthesizing and analyzing the system. If elastic links are described approximately
in the class of rational functions, a simplified model follows from the complete model,
which we will call “model 1”.

Disregarding the effect of quantization in digital feedback loops of the full model
results in “model 2”. By separating the angular motion stabilization system from it,
we obtain a block diagram, which is shown in Figure 4. “Model 2” is a continuous
two-dimensional stabilization system taking into account the elastic links of the object.
If in “model 2” we neglect the mutual influence of the heading and roll channels, we
obtain a continuous one-dimensional model of the stabilization system. We will call it
“model 3”. The block diagram of “model 3” is shown in Figure 5. Finally, neglecting the
elastic constraints in “model 2”, we obtained “model 4”. Its structural diagram is identical
to the structural diagram shown in Figure 4, at Wy

δHψ(s) = 0. Synthesis and analysis of
complex multiloop UAV stabilization systems with specific signs of complexity are carried
out following the given hierarchy of models.

Let us consider the application of the proposed approach, for example, for analyzing
the stability of the UAV stabilization loop. By “model 3”, the stabilization circuit of a “rigid”
unmanned aerial vehicle can be considered in the form shown in Figure 6. In this figure,
ψ—the yaw angle of the vehicle; δ—the rudder deflection angle; ψz—the specified yaw
course angle; and ε—the stabilization error.

The dynamics of stabilization are determined by the transfer functions of W0(s)—the
control object (UAV in rotational motion around the center of mass); and Woc(s)—the
feedback loop of the stabilization system. When small elastic deformations occur that do
not change the aerodynamic forces of the UAV occur, the transfer function Woc(s) of the
object remains the same, but the stabilization contour changes as new connections appear.
If the sensitive element of the feedback circuit is a gyroscopic device that responds to the
yaw angle, which characterizes the position of the vehicle body relative to the constant
direction, then the modified contour will have the form shown in Figure 7.

In this figure, Wy(s) is the transfer function of the elastic connection of the object,
determined by the equality µ(s) = Wy(s)δ(s), δ(t)—rudder angle.

To determine the transfer function, we note that, according to the equations of motion
of a rigid apparatus, it is possible to establish the relationship in the images between the
angle of sliding of the apparatus and the angle of deflection of the steering wheel:

β(s) = C(s)δ(s), (16)

where C(s) is the corresponding transfer function of the “rigid” UAV.
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In this case, we take into account that in the presence of a free gyroscope, an addi-
tional signal of this sensitive element arises, since it will register the bending angle of the
apparatus body. For small vibrations, this angle can be defined as

µ(x, s) =
∂

∂x
Z(x, s)

∣∣∣∣
x=xG

, (17)

where xG is the abscissa of the gyroscope attachment point.
Differentiating by x the expression for the deflection, we find:

µ(x, s) = Vβ(x, s)β(s) + Vδ(x, s)δ(s), (18)

where Vβ(x, s) = ∂
∂x Uβ(x, s), Vδ(x, s) = ∂

∂x Uδ(x, s), β(t)—sliding angle and:

Z(x, s) = Uβ(x, s)β(s) + Uδ(x, s)δ(s),

represents the transfer function of the UAV as an elastic link.
Then, the ratio for the bending angle of the UAV body can be given the form:

µ(x, s) = [Vβ(x, s)C(s) + Vδ(x, s)] δ(s). (19)

Fixing in this expression the value at the given position of the gyroscopic device in the
UAV (x = xG), and taking:

Wy(s) = Vβ(xG, s)C(s) + Vδ(xG, s) (20)

we obtain the relation for µ(s), where µ(s) = µ(xG, s).

A more complex situation arises when the UAV stabilization system contains two
gyroscopic devices located in different places—a free gyroscope and a gyrotachometer. In
this case, each device reacts to the UAV bending angle in its place. The block diagram takes
the form shown in Figure 8.
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Here, each of the transfer functions W1
y (s), W2

y (s) is determined by an expression of
the form (20) with the values of the abscissa x1

G, x2
G, respectively. If x1

G, x2
G coincide, the

elastic links are combined, and:

Woc(s) = [W1
oc(s) + sW2

oc(s)]W
3
oc(s).

Similarly, we can consider the structural diagrams of the stabilization system when
used in the system of accelerometers.

3. Results
3.1. Analysis of the Multi-Rate Multiloop UAV Lateral Stabilization System

We used the constructed models to analyze the UAV stabilization system. Let us
compare the transient processes (response to wind) of the UAV stabilization systems for the
different types of models mentioned above. We will consider the decoupled model without
taking into account the influence of the roll. Figure 9 shows a Simulink—a diagram of
a UAV course stabilization system described by a continuous system and a UAV course
stabilization system described by a multiloop continuous–discrete system with the same
parameters of transfer functions (Figure 3) and sampling periods T1, T2, T3 of digital
feedback circuits of control signals, which are multiples of a certain number T—the greatest
common divisor of sampling periods.

The dynamics of stabilization is determined by the transfer functions: ΦST(s)—of the
steering tract (in Figure 9—Frt1):

ΦST(s) =
WPT(s)

1 + WPT(s)
, (21)

WPT(s) = kPTWPM(s)Wµy(s), WPM(s) =
e−τPMs

s(TPMs + 1)
, Wµy(s) =

1
Tµys + 1

(22)

WKL(s)—of the kinematic link (in Figure 9—Wkz1):

WKL(s) = a41
− b16s2

µ2
+ b16b33s

µ2
+ 1

s( b36s
µ2

+ 1)
, (23)

WGT(s)—of the gyrotachometer (in Figure 9—Wgt1):

WGT(s) =
s

(T2
GTs2 + 2ζGTTGTs + 1)(τGTs + 1)

, (24)
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In the above ratios, bij—aerodynamic coefficients [25]; T and τ with the corresponding
indices—time constants.

The transfer functions of the control object (rigid apparatus in rotational motion
around the center of mass):

WδN ψ(s) =
ψ(s)
δN(s)

, (25)

can be determined by transforming, using the Laplace transform, a system of first-order
differential equations describing the rotational motion of the aircraft around the center of
mass in the horizontal plane (15) (in Figure 9—Wdn_psi1).

Additionally, the model takes into account the transfer function Wy
ψδH

(s), which
characterizes the effect on the dynamics of stabilization of elastic vibrations of a moving
UAV (in Figure 9—Wpsgi_dn1).

The results of the deviation of the stabilization system from the zero value of the
yaw angle are shown in Figure 10. The red (dashed) line indicates the transient process of
the UAV heading stabilization system described by the continuous system, and the blue
(solid) line—the transient process of the UAV heading stabilization system described by the
multi-rate continuous–discrete system. We see that the first system has a higher overshoot.
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course stabilization.

A similar situation was observed in the analysis of the UAV course stabilization system
described by a single-rate continuous–discrete system and a UAV course stabilization
system described by a multi-rate continuous–discrete system with the same parameters
of transfer functions (see Figure 11). In Figure 11 red (dashed) line shows the transient
process of a single-rate discrete UAV stabilization system with the sampling period T1, and
the blue (solid) line shows the transient process of the multi-rate continuous–discrete UAV
stabilization system.
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Analyzing the behavior of systems, the Simulink models of which are shown in
Figure 9, it can be concluded that the transient processes of systems built according to the
approximate models (in our case, continuous and discrete), although they are similar, do
not coincide with the transient processes of the full model. The more parameters are taken
into account in the model, the more accurate the transition process becomes. This can be
analyzed by analyzing the behavior of the quadratic integral error. We can conclude that
the quadratic integral error for a model of a stabilization system in the form of a continuous
system grows faster than for a model in the form of a multi-rate continuous–discrete system
and the quadratic integral error for a model of a stabilization system in the form of a single-
rate system grows faster than for a model in the form of a multi-rate continuous–discrete
system, but at the same time, slower than for a UAV heading stabilization system described
by a continuous system. It should also be noted that with an increase in the sampling
period in the considered single-rate system, the stabilization system becomes unstable.

3.2. Analysis of the Elastic UAV Lateral Stabilization System

Now, let us consider the UAV stabilization system in the presence of the influence of
elastic deformation. The Simulink model of the specified system is shown in Figure 12.
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Figure 12. Simulink model of the system with the influence of elastic deformation on the object in Figure 9.

In this Simulink scheme (see Figure 12), the “Wy” block simulates the elastic deforma-
tion effect using the relationships given in Section 3.

Let us present the transient processes for the transfer function of the elastic link
for UAVs with different masses and lengths, obtained using the scheme (see Figure 13).
Figures 14 and 15 show the transient processes for a UAV with a length of 10 m, a mass of
500 kg and 1000 kg, respectively. It can be seen from the figures that the mass of the UAV
significantly affects the type of the transition process. In this case, even a small deviation in
the steady-state occurs. A similar situation of the influence of oscillations occurs when the
length of the UAV changes.
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Using the obtained models, we can experimentally solve the problem of finding the
first n terms sufficient for an adequate representation of the elasticity model when working
with transfer functions Vβ(s, x) and Vδ(s, x)—transfer functions of the UAV as an elastic
link [32].

4. Discussion

As noted earlier, despite the existing publications in this area [13–24,33–35], the topic
of constructing mathematical models of complex systems remains very actual.

The article discusses stabilization systems for an aeroelastic UAV with digital feedbacks
with quantization periods of digital feedback circuits of control signals that are multiples of
a certain number—the greatest common divisor of the sampling periods. Following this,
we considered the mathematical models of stabilization systems for aeroelastic UAVs.

Of the two existing alternatives—the construction of mathematical models in the time
domain and the construction of mathematical models in the field of the Laplace transform—
it is proposed to focus on models in the form of Laplace transform. This is because, as
indicated in the article, the considered class of systems in the time domain will have a
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mathematical model consisting of differential equations and finite difference equations of
the type (3). Partial differential equations for the deflection Z(x, t) are also added to them:

∂4Z(x, t)
∂x4 + k4 ∂2Z(x, t)

∂t2 = R(x, t) (26)

where k4–elastic—mechanical constant; R(x, t) is the distribution function of aerodynamic
forces.

Finding the solution to this system is a difficult task. The development of methods for
analyzing the dynamics and synthesis of the considered class of systems is an extremely
difficult task. Thus, an attempt to pass to a description in the field of the Laplace transform
is obvious.

In the accepted type of models of the aeroelasticity effect, the use of the Laplace
transforms made it possible to obtain a description of the transfer functions of aeroelastic
dynamic constraints in a general analytical form—in the class of meromorphic functions.
This result is the basis for analyzing the possibilities of approximate representations of
aeroelastic dynamic links associated with replacing their transfer functions with the sim-
plest fractional rational ones (expansion in terms of tones of elastic vibrations).

In the general analysis of multidimensional systems, this result allows us to restrict
the consideration of complex UAV stabilization systems to a class of systems with rational
transfer functions. On this basis, systems with digital feedback loops operating with
different quantization periods are further considered. It was assumed that the quantization
periods are commensurable (multiplicity to a certain number). This assumption opens
up opportunities for equivalent transformations of the model of a multi-rate continuous–
discrete system into a model of an impulsive (discrete) single-rate system. The technique of
such transformations is rather complicated and can be carried out in an ambiguous form.
The article presents the basic model of the considered class of systems in the form of the
Laplace transform and indicates the works [23,24] in which the matrix forms of equivalent
impulse single-rate systems, convenient for the development of methods for analyzing
dynamics and synthesis, are constructed.

In all cases, the impulse representations of the outputs of the equivalent models have
the form of rational functions of the indicated variables:

y∗T(s) = f (ψ(esT), ψ1(esT1), . . . , ψr(esTr )), y∗NT(s) = F(Ψ(esT), Ψ1(esT1), . . . , Ψr(esTr )).

Passing to z—transform, we will have the relations:

y∗T(z) = y∗T(s)|esT=z = f (ψ(z), ψ1(zn1), . . . , ψr(znr )), (27)

y∗NT(z) = y∗NT(s)|esT=z = F(Ψ(z), Ψ1(zn1), . . . , Ψr(znr )), (28)

which define the z transformations of outputs as rational functions z. They correspond to
the originals:

y(kT) =
1

2πj

∮
f (z)zk−1dz, (29)

y(kNT) =
1

2πj

∮
F(z)zkN−1dz. (30)

The problem of the synthesis and analysis of the dynamics of processes in the con-
sidered multidimensional multi-cycle continuous–discrete UAV stabilization systems is
reduced to the problem of the analysis and synthesis of rational functions f (z) and F(z).

Additionally, the obtained representations of the processes make it possible to enter the
frequency characteristics of multi-rate closed systems in a convenient form. Additionally,
by introducing certain simplifications, it is possible to build hierarchical mathematical
models for solving a particular class of problems.
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5. Conclusions

This paper presents the results of search studies of complex systems of spatial stabiliza-
tion of an unmanned aerial vehicle aimed at developing adequate mathematical models for
organizing their synthesis and analysis. The complexity of the systems under consideration
is characterized by its multiloop, the presence of digital feedback circuits in control loops
operating with different sampling periods, and the influence of the elastic properties of an
aerodynamic object on the dynamics of control processes. Naturally, the search for ways to
form methods of synthesis and the analysis of these systems in the full combination of all
elements of complexity appears to be carried out according to the principle “from simple
to complex.” For this purpose, the corresponding hierarchy of models was defined in the
work. It highlights the: 1. Model of a simply connected (one-dimensional) continuous sta-
bilization system with aeroelastic dynamic links; 2. Model of multidimensional continuous
systems with ordinary stationary dynamic links (with rational transfer functions); 3. Model
of multidimensional continuous–discrete systems with digital parallel feedback circuits,
the sampling periods of which are different, but commensurate.

In the class of multi-rate continuous–discrete systems, a model of systems with an
arbitrary number of parallel digital feedbacks operating with different sampling periods
is proposed. The allocation of a subsystem for quantized variables makes it possible to
structure the transformations of a multi-rate system to equivalent models of a single-rate
one very efficiently.

By applying the Laplace transform to the analysis of elastic vibrations of the UAV
body, the transfer functions of additional dynamic links introduced by elastic deformations
into the stabilization loop through gyroscopic devices and accelerometers are obtained.
This will make it possible to formulate a methodology for analyzing the influence of
aeroelastic constraints on the stabilization loop, which will allow developing approaches
to formulate requirements for the effective placement of gyroscopes and accelerometers on
the UAV body.

The results obtained in this work provide a basis for creating a fairly complete system
of means for theoretical and numerical analysis and the synthesis of complex multidimen-
sional continuous–discrete systems for the stabilization of unmanned aerial vehicles of the
considered class.
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