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Abstract: Transient fluid flows through tubes are critical in such topics as water hammer, ram pumps
and pipeline dynamics. While analytical solutions exist in the literature for simple geometries such
as tapered and non-tapered tube diameters, one area that is lacking is the case where the wave
speed changes along the length. An example of this is a flexible pipe with a tapered wall thickness.
In order to calculate the transient pressure response of such a system, this previously required a
computationally expensive gridded method of characteristics (MOC) solution. This paper describes
an analytical solution to the dynamic laminar flow of liquid in a tube where the wave speed varies
along its length. This frequency-domain solution includes frequency-dependent friction effects. A
comparison to a method of characteristics (MOC) solution is used to verify the solution. The paper
also discusses some numerical issues and provides an approximate method that can be used for
high-frequency calculations where limited numerical precision can cause errors. Finally, a preliminary
comparison of the computational performance is presented, in which the new method is an order of
magnitude faster to calculate than an MOC solution.

Keywords: transient flow; wave propagation; laminar flow

1. Introduction

This paper describes an analytical solution for pressure and flow dynamics for laminar
liquid flow within a circular tube with constant inner diameter and varying wave propa-
gation speed along its length, as shown in Figure 1. Fluid wave speed inside a non-rigid
tube is dependent on the mechanical properties and the geometry of the tube as well as
the fluid properties. Considering the pressure wave propagation along a tube, mechanical
defects such as erosion, corrosion, and leakage have significant effects on the dynamic
response of the pressure and flow. The motivation for this research is the use of such
dynamic effects to allow for estimation of the remaining wall thickness in an eroded pipe
at a lower cost than existing inspection techniques such as ultrasonic inspection, fiber-optic
monitoring or “smart pigs” [1–3]. Other applications of this model would include research
into water hammer [4], ram pumps [5–7], switched inertance hydraulic converters [8–11]
and transient flow measurement [12].

The frequency-domain solution method presented here is computationally faster
than existing gridded methods (such as the method of characteristics [13]), as it only
calculates pressure and/or flow at the end-points of the tube. It can also be expected
to be more accurate than time-domain solutions, such as the transmission line method
(TLM), that require an approximation for the frequency-dependent friction terms [13–15].
While frequency-domain analytical solutions exist for tubes with tapered and non-tapered
geometries [16–18], the authors are not aware of any such solution for the case where the
wave speed varies.
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Figure 1. Flow through a circular tube with varying wall thickness and, consequently, varying wave propagation velocity. 
(Wall thickness and diameter are exaggerated.) 

This paper is organized with the preceding introduction, a development of the fre-
quency-domain model and some sample results comparing the model to a conventional 
method, followed by conclusions. 

2. Materials and Methods 
Consider the laminar flow of a liquid through a tube, as shown in Figure 1. If the tube 

walls are not perfectly rigid, the wave speed is affected by the compliance of both the fluid 
and the containing tube walls. For example, if the tube is axially constrained, with expan-
sion joints throughout, the elastic wave speed is given by 
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where ܭ is the fluid bulk modulus (usually the adiabatic tangent bulk modulus), ߩ is the 
fluid density, ݎ is the inner radius of the tube, ݁ is the wall thickness and ܧ is the wall 
material’s elastic modulus [4]. (Similar relationships are given in [4] for other anchoring 
conditions.) If the wall thickness changes along the length of the tube, then so too will the 
wave speed. 

Zielke [19] gives the equations of continuity and motion for 1D laminar flow through 
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Following Johnston [20], if the fluid velocity is much less than the sonic velocity, then 
the ௤஺ terms can be neglected. Taking the Fourier transform then gives ݆߱ܳ + ߩ ܣ ݔ߲߲ܲ + ଶݎߥ  ܹ(݆߱)ܳ = 0  (4)

݆߱ܲ + ܣଶܿߩ ݔ߲߲ܳ = 0  (5)

where ܹ(݆߱) is a friction function [20]. A common friction function [20,21] is  
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This paper is organized with the preceding introduction, a development of the
frequency-domain model and some sample results comparing the model to a conven-
tional method, followed by conclusions.

2. Materials and Methods

Consider the laminar flow of a liquid through a tube, as shown in Figure 1. If the
tube walls are not perfectly rigid, the wave speed is affected by the compliance of both the
fluid and the containing tube walls. For example, if the tube is axially constrained, with
expansion joints throughout, the elastic wave speed is given by

c =

√√√√ (
K
ρ

)
1 + 2Kr

Ee
(1)

where K is the fluid bulk modulus (usually the adiabatic tangent bulk modulus), ρ is the
fluid density, r is the inner radius of the tube, e is the wall thickness and E is the wall
material’s elastic modulus [4]. (Similar relationships are given in [4] for other anchoring
conditions.) If the wall thickness changes along the length of the tube, then so too will the
wave speed.

Zielke [19] gives the equations of continuity and motion for 1D laminar flow through
a tube as follows (as restated using nomenclature from [20])

∂q
∂t

+
q
A

∂q
∂x

+
A
ρ

∂p
∂x

+ h(q) = 0 (2)

∂p
∂t

+
q
A

∂p
∂x

+
ρc2

A
∂q
∂x

= 0 (3)

where x is the position in the streamwise direction along the pipe, p(t, x) is the pressure,
q(x, t) is the average volumetric flow rate, A is the cross-sectional area and h(q) is a
friction function.

Following Johnston [20], if the fluid velocity is much less than the sonic velocity, then
the q

A terms can be neglected. Taking the Fourier transform then gives

jωQ +
A
ρ

∂P
∂x

+
ν

r2 W(jω)Q = 0 (4)

jωP +
ρc2

A
∂Q
∂x

= 0 (5)
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where W(jω) is a friction function [20]. A common friction function [20,21] is

W(jω) =
jα

zJ0(z)
2J1(z)

− 1
(6)

α =
ωr2

ν
(7)

z = j
√

jα (8)

where J is the Bessel function of the first kind. This function takes into account unsteady
frequency-dependent friction, but not thermal effects.

We now diverge from Johnston [20] to assume that A is constant and that K (and
therefore c) is a function of x. The fluid density, ρ, is still assumed to be constant. Solving
Equation (5) for P and differentiating gives

∂P
∂x

= − ρ

jωA

[
c2 ∂2Q

∂x2 +
∂Q
∂x

∂c2

∂x

]
(9)

which can be substituted into Equation (4) to give the second order ODE

∂2Q
∂x2 +

1
c2

∂c2

∂x
∂Q
∂x
− jω

[ ν

r2 W(jω) + jω
]Q

c2 = 0 (10)

We now assume that the wave speed’s variation along the tube takes the form

c2 = c2
AeBx (11)

where

B =
1
L

ln

(
c2

B
c2

A

)
(12)

and where cA and cB are the wave speeds at the inlet (x = 0) and outlet (x = L), respectively.
As demonstrated in Figure 2, this nonlinear taper approximates a linear taper as long as
the differences in c are small relative to its absolute value. If this assumption is broken, the
tube can be divided into a number of shorter segments.

For the nonlinear taper given above, the average velocity (as derived in Appendix A) is

c = cA

 ln
(

cB
cA

)
1− cA

cB

. (13)

This taper has the nice property of
1
c2

∂c2

∂x
= B (14)

which allows Equations (11) and (14) to be substituted into Equation (10) to give

∂2Q
∂x2 + B

∂Q
∂x
− jω

[ ν

r2 W(jω) + jω
] Q

c2
AeBx = 0 . (15)

If we define
C =

jω
c2

A

[ ν

r2 W(jω) + jω
]

(16)

then the ODE takes the form of

∂2Q
∂x2 + B

∂Q
∂x
− C

Q
eBx = 0 (17)
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which has an analytical solution:

Q(jω, x) = e−(
Bx
2 )[C2Y1(γ) + C1 J1(γ)] (18)

γ(x) = − 2
B

√
−Ce−

Bx
2 (19)

where J and Y are the Bessel functions of the first and second kind, and C1 and C2 are
constants of integration.

This can be substituted into Equation (5) to obtain the pressure solution

P(ω, x) = −
c2

Aρ

Ajω

√
−C[C2Y0(γ) + C1 J0(γ)] (20)
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Figure 2. The wave speed profile assumed in Equation (11) results in a wave speed that approximates
both the case where the wave speed varies linearly and the case where the tube’s wall thickness
varies linearly, as long as the variation in wave speed is small relative to its absolute value. (This
example was calculated for E = 200 GPa and K = 1 GPa).

We can then apply open or closed boundary conditions to obtain the transmission
matrix in the form[

PA(jω)
QA(jω)ZcA

]
=

[
t11(jω) t12(jω)
t21(jω) t22(jω)

][
PB(jω)

QB(jω)ZcB

]
(21)

where PA and PB are the pressures at the inlet and outlet, QA and QB are the corresponding
flow rates, and ZcA and ZcB are the characteristic impedances at the inlet and outlet:

ZcA =
ρcA
πr2 (22)

ZcB =
ρcB

πr2 . (23)

The transmission matrix terms are

t11 =
J0(θ1)Y1(θ2)− J1(θ2)Y0(θ1)

D
(24)
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t12 =

(
cA
√
−C

jω

)
J0(θ1)Y0(θ2)− J0(θ2)Y0(θ1)

D
(25)

t21 = −
(

jω
cA
√
−C

)
J1(θ1)Y1(θ2)− J1(θ2)Y1(θ1)

D
(26)

t22 = − J1(θ1)Y0(θ2)− J0(θ2)Y1(θ1)

D
(27)

where
θ1 = − 2

B

√
−C (28)

θ2 =
cA
cB

θ1. (29)

By applying the Wronskian, the denominator can be simplified to

D = J0(θ2)Y1(θ2)− J1(θ2)Y0(θ2) = −
2

πθ2
. (30)

The above equations are undefined at ω = 0, but steady state physical requirements
can be used to find the values. For continuity in flow between inlet and outlet, and zero
pressure drop for zero flow:

t11(ω = 0) = 1 (31)

t21(ω = 0) = 0 (32)

t22(ω = 0) =
cA
cB

(33)

For the proper steady state pressure drop

R =
8νρL
πr4 (34)

t12(ω = 0) =
R

ZcB
=

8νL
r2cB

(35)

where R is the Hagen–Poiseuille laminar resistance [22]. Note the relationship between
t12 and the dissipation number β = R

8Zc
where Zc is the lumped characteristic impedance,

defined for a lossless line by

Zc =

√
L
C (36)

where L is the lumped inductance and C is the lumped capacitance [14,23]. For the
tapered-wall tube defined in this paper, the dissipation number is

β =
νL
cAr

√√√√√√√ 1−
(

cA
cB

)2

ln
([

cB
cA

]2
) . (37)

Numerical issues exist for combinations of high frequency and small tapers. This is
due to the transmission matrix numerators being a small difference of large numbers. This
problem can be mitigated by using quadruple precision floating point representations. An
alternative is to use high-frequency approximations of the Bessel functions [24]. In the limit
as θ → ∞

Jv(θ) ≈
√

2
πθ

cos
(

θ − 1
2vπ
− 1

4

)
(38)

Yv(θ) ≈
√

2
πθ

sin
(

θ − 1
2vπ
− 1

4

)
(39)
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This allows for the following simplifications of the transmission matrix

t11(ω → ∞) =

√
cA
cB

cos
(

θ2

[
cB
cA
− 1
])

(40)

t12(ω → ∞) =

(
cA
√
−C

jω

)√
cA
cB

sin
(

θ2

[
cB
cA
− 1
])

(41)

t21(ω → ∞) = −
(

jω
cA
√
−C

)√
cA
cB

sin
(

θ2

[
cB
cA
− 1
])

(42)

t22(ω → ∞) =

√
cA
cB

cos
(

θ2

[
cB
cA
− 1
])

(43)

We found that the approximation error of these equations is exceeded by the precision
error of the original equations (for double precision floating point numbers) when the
imaginary part of θ2 is greater than about 15.

3. Results

In order to verify the equations, we compared the calculated responses to a method of
characteristics (MOC) solution. The MOC solution divides the tube into N = 100 segments,
each with a constant wave velocity, and uses an approximate frequency-dependent friction
model from [13]. Since the analytical solution presented in our paper does not include
these approximations, one should not view the MOC solution as the “true” solution as
much as a sanity check to ensure that no blunders were committed in our development.

Frequency-domain solutions were calculated using the transmission matrix terms for
frequencies scaled so that 100 time points would be calculated in the time required for
the wave to transit the length of the tube, and the solution would span 8000 such cycles.
These 800,000 frequency points are not strictly required, but the calculation is fast and it
was desirable to ensure the entire response was captured for low dissipation numbers.
Considerably fewer frequency points would be required for more damped responses.
The inverse Fourier transform was used to calculate the time-domain response from the
frequency-domain response.

Figures 3–10 show solutions for four boundary condition situations, involving all
four of the transmission matrix terms. Figures 3–6 show the effect of varying the outlet
wave speed while holding other parameters constant (which would result in β = 0.0127
for cA = cB). The solutions agree well, within the expected accuracy of the MOC solution.
Figures 7–10 show the same boundary conditions, but now holding cB

cA
= 0.5 constant

and varying the viscosity to show a range of dissipation numbers (refer to Equation (37)).
Again, the solutions agree well across the range of responses. At this point, we have not
identified bounds for the applicability of our solution method, but we expect it should be
suitable for all practical situations where the assumptions are satisfied.
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Figure 10. Outlet flow response to a unit step in inlet flow for an open exit, showing the effect of
dissipation number (for cB

cA
= 0.5).

In order to provide a sense of the relative computational cost for the new frequency
domain method, responses were calculated for the case of β = 10−3 and cA

cB
= 1 while

varying the number of frequency points in the solution. The method of characteristics
solution was then calculated, with the grid selected to give results at the same time
resolution. The computation time was recorded for each calculation, as implemented
in MATLAB 2019b and run on a desktop computer with a i7-8700 processor with 32 GB
RAM. In each case, the solution was calculated to an end time of four times the response’s
settling time (defined as the point where transients reduce to 1% of the maximum value).
The relative root mean squared error between the calculated response, p(t), and the highest
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resolution frequency-domain method response calculated, p̂(t), normalized by the standard
deviation, was calculated as

E =

√
(p− p̂)2√(
p̂− p̂

)2
(44)

where an overbar designates the mean [25].
Figures 11 and 12 shows the resultant calculation time and error as more terms are

used in the solution. As expected, as the resolution is increased, the computation time and
accuracy increase for both methods. However, for a given resolution, the new method is
both faster (by around an order of magnitude) and more accurate. While the presented
results are for a specific problem, we observed similar results across a wide range of
dissipation numbers and taper ratios. It should be noted that neither the MOC solution nor
the new frequency domain solution code was extensively optimized for speed, so these
results should be viewed as a preliminary indication of relative computational speed.

One downside of the new method is that sufficient frequency points must be selected
so that the transients have died out by the end of the corresponding time-domain response.
Otherwise, the periodic nature of the Fourier transform will cause the response beyond the
calculated end time to be added to the start of the response. If only the very beginning of
a long response is of interest, the MOC method can be faster, as the computation can be
halted early, while the new frequency-domain method must be fully calculated.
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4. Summary and Conclusions

This paper presents an analytical solution for pressure and flow dynamics for laminar
liquid flow within a tube, where the wave speed varies along the tube length in response
to a change in compliance. This describes the situation of a tube with a flexible pipe wall
where the wall thickness varies along the tube length but may also be applicable in other
situations where the wave speed varies.

We have identified a numerical issue with standard double-precision floating point
calculations and recommend two methods of mitigating these effects.

This paper also presents a comparison of the new method to a method of characteristics
solution which agree well over a range of taper ratios and dissipation numbers, leading to
confidence in the solution. A preliminary comparison of the calculation time and accuracy
as the number of terms in the solution are varied is presented, which indicates that the new
method is at least as accurate and much faster than the MOC solution.

Future work includes a more rigorous evaluation of the range of applicability of this
new solution method, in terms of dissipation number and taper ratio, as well as an analysis
of the number of frequency terms required for acceptable accuracy.
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Appendix A

This appendix derives the average velocity for a wave whose velocity is defined by

c(x) = cAeBx/2 (A1)

from x = 0 to L where

B =
1
L

ln

(
c2

B
c2

A

)
. (A2)

The position of a wave front that starts at x = 0 at t = 0 is given by the ODE

dx
dt

= cAeBx/2 (A3)

whose solution is

x(t) = − 2
B

ln
(

1− BcA
2

t
)

. (A4)

Therefore, the wave front arrives at x = L at time

tL =
2

BcA

(
1− e−

BL
2

)
(A5)

and, after some algebraic manipulation, the average velocity is

c =
L
tL

= cA

 ln
(

cB
cA

)
1− cA

cB

. (A6)
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