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Abstract: A multi-distribution lattice Boltzmann Bhatnagar–Gross–Krook (BGK) model with a
multiple-grid lattice Boltzmann (MGLB) model is proposed to efficiently simulate natural convection
over a wide range of Prandtl numbers. In this method, different grid sizes and time steps for heat
transfer and fluid flow equations are chosen. The model is validated against natural convection in
a square cavity, since extensive benchmark solutions are available for that problem. The proposed
method can resolve the computational difficulty in simulating problems with very different time
scales, in particular, when using extremely low or high Prandtl numbers. The technique can also
enhance computational speed and stability while keeping the simplicity of the BGK method. Com-
pared with the conventional lattice Boltzmann method, the simulation time can be reduced up to
one-tenth of the time while maintaining the accuracy in an acceptable range. The proposed model
can be extended to other lattice Boltzmann collision models and three-dimensional cases, making it a
great candidate for large-scale simulations.

Keywords: lattice Boltzmann; multiple grids; multiple time steps; natural convection

1. Introduction

The lattice Boltzmann (LB) method is considered a robust numerical method to solve
fluid flow [1]. Unlike conventional Computational Fluid Dynamics (CFD) methods that
solve the Navier–Stokes (NS) equations involving nonlinear terms, the LB method equation
is linear in phase space. A distribution function fα(x, t) describes the motion and properties
of the fluid, which represents the probability of finding a particle at lattice position x at
time t in direction α. The particle motion is restricted to specific discrete directions that
are necessary for modeling hydrodynamic behavior on the macroscopic scale [2]. At each
time step, the distribution functions of fluid particles propagate along with the discrete
directions from one lattice node to another in the streaming step. The particle distribution
function relaxes back towards the local equilibrium distribution function through the
collision step [3]. At each time step, the macroscopic fluid properties can be recovered
through the summation of the distribution function [4]. Different approaches have been
introduced to model the collision step. The simplest method is the single relaxation time
(SRT), also known as BGK (after Bhatnagar, Gross, and Krook), and has been widely used
by scholars due to its simplicity. However, the method becomes unstable at high Reynolds
numbers [5–7].

Several variations of the thermal LB method, including the multispeed model [8,9]
and the double population approach [10–12], have been developed in the past two decades
to extend the LB method’s capability to heat transfer modeling. In the multispeed model,
the fluid distribution function fα(x, t) is altered by introducing a new discrete velocity
to obtain the energy equation. However, the model was shown to suffer from severe
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numerical instability and its application is limited to domains where the temperature
variation is small, which restricts its application significantly [13]. In the double population
approach, in addition to the fluid distribution function, a separate distribution function
is introduced for solving the energy equation. The additional distribution function can
enhance numerical stability. Therefore, the double population method has been widely
employed to simulate various heat transfer problems [14–18]. However, using a single
relaxation time for the collision step for fluid flow and heat transfer equations restricts the
Prandtl number (Pr) to a relatively narrow range between 0.1 and 10. Outside this range,
numerical instability occurs in the simulations [19,20] unless a very fine mesh is used. This
restriction in the Pr number will be discussed in detail in Section 2.

Different methods have been developed to address this issue, such as the multi-
ple relaxation time (MRT) method [6,21–26], entropic LB method [27,28], cascaded LB
method [29,30], and simplified thermal LB method [31–34]. The main difference between
the MRT, entropic, and cascaded LB methods and the conventional SRT method lies in
how the collision operator is modeled even though the streaming step is the same for all
these methods [1]. For instance, in the MRT method, instead of using a single value for the
relaxation parameter, a matrix with multiple variables related to the relaxation parameter is
defined. In the simplified LB method, a predictor–corrector scheme is necessary to resolve
the macroscopic variables. This method also needs to calculate non-equilibrium distribu-
tion functions, which are calculated between two equilibrium distribution functions at
different time levels and locations.

Each of these methods deviates from the simplicity of the LB method by introducing
new terms or steps, making it more computationally expensive. Although these pro-
posed methods were successful in increasing the stability for modeling flows with high
Rayleigh numbers; the Prandtl number was still chosen to be near 1 in most of these
schemes [21,23–25,28–32,34], or the Rayleigh number was relatively low, in the order
of 104 [6].

Many researchers, especially for large-scale simulations, have resorted to using dif-
ferent grid sizes for each equation to reduce computational time [35–39]. Although these
attempts showed some success, most of the case studies were related to solidification
modeling, which requires solving different equations simultaneously, making it difficult
to verify the accuracy of the method. In addition, all the cases dealt with liquid metals,
which had low Prandtl numbers. Here we analyze and extend our previously developed
multiple-grid lattice Boltzmann (MGLB) [35,39] model in the context of natural convection
for a wide range (both high and low) of Prandtl numbers. We propose a general model
for selecting different grid sizes and time steps for the double population SRT method,
which can reduce the computational time and increase the stability while keeping accept-
able accuracy. The proposed model is tested with the well-known problem of natural
convection inside a side heated square cavity, which provides abundant experimental and
numerical benchmark solutions to validate the method’s accuracy. It is shown that the
proposed method can enhance the stability of the original BGK method over a wide range
of Prandtl numbers.

Extensive research has been done on natural convection inside a square cavity. In
fact, it is viewed as a benchmark problem to verify new numerical algorithms. Table 1
summarizes several related studies on natural convection inside a square cavity.
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Table 1. A summary of the research works on natural convection inside a square enclosure.

Natural Convection Inside a Heated Square Cavity

Ref. Physical Parameter Numerical Method/Remarks

Hortmann et al., 1990 [40] Pr = 0.71
104 ≤ Ra ≤ 106

Finite volume method with uniform and
non-uniform grid

Mohamad and Viskanta, 1991 [41] 0.001 ≤ Pr ≤ 0.01
2000 ≤ Ra ≤ 105

Control volume-based finite difference
method with non-uniform grid

Guo et al., 2007 [42] Pr = 0.71
104 ≤ Ra ≤ 106

LB double distribution function with a
uniform grid

Pesso and Piva, 2009 [43] 0.0071 ≤ Pr ≤ 7.1
103 ≤ Ra ≤ 105

Finite volume method with
non-uniform grid

Li et al., 2016 [6] 0.005 ≤ Pr ≤ 0.01
104 ≤ Ra ≤ 105

LB double distribution function with
MRT collision

Chen et al., 2017 [31] Pr = 0.71
103 ≤ Ra ≤ 108 Simplified thermal LB

Hajabdollahi and Premnath, 2018 [29] Pr = 0.71
103 ≤ Ra ≤ 108 Cascaded LB method

Xi et al., 2019 [26] Pr = 0.71
106 ≤ Ra ≤ 107

LB double distribution function with
MRT collision model

Rayleigh–Bernard Convection

Ahlers and Xu, 2001 [44] 0.71 ≤ Pr ≤ 70
5000 ≤ Ra ≤ 105 Experimental

Kao and Yang, 2007 [45] 0.71 ≤ Pr ≤ 70
5000 ≤ Ra ≤ 105

LB double distribution function with a
uniform grid

Silano et al., 2010 [46] 10−1 ≤ Pr ≤ 104

105 ≤ Ra ≤ 109
Second-order cylindrical coordinate

finite-difference scheme

Fei and Luo, 2018 [47] Pr = 0.71
2500 ≤ Ra ≤ 50, 000 Cascaded LB method

Pandey et al., 2018 [48] 0.005 ≤ Pr ≤ 70
105 ≤ Ra ≤ 107 Direct numerical simulations (DNSs)

The Prandtl and Rayleigh numbers determine the characteristics of the flow for natural
convection inside a side heated square cavity. Based on previous works, it is known that at
low Ra numbers the flow is governed by diffusion, while at high Ra numbers convection is
more important [20,49,50]. The assumption of laminar flow is valid up to Ra = 106, where
the convection is strong enough to distort the isotherms [51]. Other studies suggest that
the assumption of laminar flow might still hold up to Ra = 108 [23,24].

The paper is organized as follows. In Section 2, a brief overview of the lattice Boltz-
mann method is introduced. Then, the multiple-grid lattice Boltzmann (MGLB) method
is proposed, showing how it can enhance the stability of the standard LB method. In
Section 3, the results of the proposed method are validated with experimental data or
previous studies. Later in Section 3, the accuracy and computational time saving of the
proposed model are presented and compared with the standard SRT method, particularly
under low and high Prandtl numbers.

2. Numerical Method

The proposed method, MGLB, was evaluated through the study of a typical example
of natural convection in a heated square cavity. The computational domain is shown in
Figure 1. The top and the bottom walls are adiabatic while the walls at the left and right
are maintained at Tc and Th, respectively, where TH > Tc. The natural convection inside
the cavity can be characterized by the dimensionless numbers Ra = gβ(TH − Tc)H3/αν
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and Pr = ν/α, where β is the thermal expansion coefficient, ν is the kinematic viscosity
of the fluid, and α is the thermal diffusivity. The side length H is the characteristic length
of the system. The flow was assumed as Newtonian, laminar, and incompressible, while
Boussinesq approximation was applied to model the buoyancy force. The natural convec-
tion was simulated for different Pr ranging from 0.01 to 100 for Ra = 106. The governing
equations for fluid flow and heat transfer can be written as:
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Continuity equation:
∂ρ

∂t
+ ρ∇·u = 0 (1)

Momentum equation:

ρ

(
∂u
∂t

+ u·∇u
)

= −∇P +∇·(µ∇u) + ρgβ
(
T − T

)
(2)

Energy equation:
∂T
∂t

+ u·∇T = α∇2T (3)

The Boussinesq approximation states that the fluid properties are constant except for
calculating the density in the buoyancy force as ρ = ρ

(
1− β

(
T − T

))
; ρ and T are the

average density and temperature, respectively.
In this study, two different distribution functions, fα(x, t) for fluid flow and gα(x, t)

for heat transfer, were employed. The transport coefficients were considered temperature-
independent, so the fluid flow and energy equation could be solved independently. The
system of equations was only coupled through the buoyancy force term in Equation (2).
Therefore, not only could the equations be solved with two different numerical techniques,
such as the LB method for fluid flow and finite difference for energy equation, but the
grid size dx and the time step dt could also be selected differently for fluid flow and
energy equations.

In this study, all results are reported in non-dimensional form using the following
variables: X = x/H, Y = y/H, uc =

√
gβ(Th − Th)H, U = ux/uc, V = uy/uc and

θ = T−TC
TH−TC

.
The Nusselt number, which is defined as the ratio of convection to conduction, is

written as:

Nu =
h

k/H

∣∣∣∣
x = H

=
∂θ

∂X

∣∣∣∣
X = H

(4)
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where k is thermal conductivity and h is the heat transfer coefficient. The average Nusselt
number can be defined as:

Nuave =
∫ 1

0

∂θ

∂X
dY (5)

In the LB method, the fluid flow is described by the distribution function fα, which
represents the probability of finding a fictive fluid particle at a given time and location.
The particle motion and collision are modeled by the evolution of the distribution function
fα in discrete directions. In this work, the D2Q9 lattice was used to discretize the velocity
space. In the D2Q9 lattice, each node at position x has a distribution function fα(x, t) in
any of the nine discrete directions eα, which is defined as:

e0 = 0 for α = 0
eα =

(
cos
[
(α−1)π

2

]
, sin

[
(α−1)π

2

])
c for α = 1, 2, 3, 4

eα =
√

2
(

cos
[
(α−5)π

2 + π
4

]
, sin

[
(α−5)π

2 + π
4

])
c for α = 5, 6, 7, 8

(6)

where c = ∆xLB
∆tLB

= 1 is the lattice speed, ∆xLB = 1 is the lattice spacing, and ∆tLB = 1
is the lattice time-step size. The multi-distribution lattice Boltzmann equations for fluid
flow and heat transfer in the most general form can be written as:

fα(x + eα∆t, t + ∆t)− fα(x, t) = Ω f + Fα(x, t) (7)

gα(x + eα∆t, t + ∆t)− gα(x, t) = Ωg (8)

where fα(x, t) and gα(x, t) are density distribution functions and temperature distribution
functions, respectively. Fα(x, t) is the buoyancy force at each grid node. Ω is related to
modeling the collision step. The simplest model is the linear Bhatnagar–Gross–Krook
(BGK) collision model, which is also called the single relaxation time (SRT) and defines the
collision terms as:

Ω f = − 1
τf

(
fα(x, t)− f eq

α (x, t)
)

(9)

Ωg = − 1
τg

(
gα(x, t)− geq

α (x, t)
)

(10)

where τf and τg are the relaxation times for the fluid flow and temperature field. The
relaxation time is related to the LB kinematic viscosity and thermal diffusivity. cs is the
lattice sound speed and for the D2Q9 lattice it is given by c2

s = 1/3 [10].

νLB, f = c2
s×(τ f − 0.5) (11)

αLB,g = c2
s×(τ g − 0.5) (12)

The relaxation time is required to be higher than 0.5 to ensure non-negative kinematic
viscosity and thermal diffusivity. The LB kinematic viscosity and thermal diffusivity are
related thorough Pr as:

Pr =
νLB, f

αLB,g
=

νph

αph
(13)

where subscripts LB and ph correspond to lattice Boltzmann and physical units, respectively.
From Equations (11) to (13), the relaxation time for fluid flow and temperature field are
related as:

τg =
τf − 0.5

Pr
+ 0.5 (14)

The fluid equilibrium density distribution function in the D2Q9 model is defined as:

f eq
α = ωαρ

[
1 +

3
c2

(
eα·uLB,f

)
+

9
2c4

(
eα·uLB,f

)2 − 2
3c2 uLB,f

2
]

(15)
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Whereas for temperature field it is defined as:

geq
α = ωαρ

[
1 +

3
c2

(
eα·uLB,g

)]
(16)

where uLB, f and uLB,g are velocity vectors in the lattice units for fluid flow and temperature
fields, respectively. If the grids used for fluid flow and temperature calculations are the
same, then uLB,f = uLB,g. Otherwise, velocity must be “converted” to account for the
different grids. This will be further discussed in Section 2.1. ωα is a weight coefficient
defined as:

ωα =


4
9 α = 0

1
9 α = 1, 2, 3, 4
1

36 α = 5, 6, 7, 8
(17)

The macroscopic density, velocity, and temperature at each node are recovered through:

ρLB, f (x, t) =
9

∑
α = 0

fα(x, t) (18)

ρLB, f (x, t)uLB,f(x, t) =
9

∑
α = 0

fα(x, t)eα (19)

θ(x, t) =
9

∑
α = 0

gα(x, t) (20)

With these settings and through the Chapman–Enskog expansion, Equations (1)–(3)
can be recovered [52,53].

The characteristic velocity is an essential parameter to non-dimensionalize the equa-
tions. For natural convection problems, the characteristic velocity is usually defined as
uc =

√
gβ∆TH, where H is the number of grid cells in the x-direction and ∆T is the tem-

perature difference between the right and left walls. The value of uc in LB units should lie
within the limit of incompressible flow (Ma = uc/cs < 0.3); therefore, it should be less than
0.17 for the D2Q9 lattice since the speed of sound c2

s = 1/3. In this study, the characteristic
velocity was chosen to be less than 0.1 in all cases to stay far away from the incompressible
limit. The kinematic viscosity in lattice units can be calculated from the relation between
Ra and Pr numbers, Ra = u2

c H2
LB, f Pr/ν2

LB, f . Then, the thermal diffusivity is calculated
from Equation (13). Once the kinematic viscosity and thermal diffusivity in lattice units are
known, both the thermal and fluid relaxation times can be calculated from Equations (11)
and (12).

As previously mentioned, both the relaxation times for fluid flow and temperature
field should be greater than 0.5 for a physical fluid. Furthermore, it has been shown in the
BGK method that the solution is unstable when the relaxation time approaches 0.5. Al-
though there is no upper limit for relaxation time, when recovering the Navier–Stokes equa-
tion through the Chapman–Enskog expansion, it is assumed that the distribution function
fα is departed from equilibrium through a small perturbation as fα = f eq

α + ε f 1
α + O

(
ε2),

where ε ∝ τ. As a result, smaller truncation errors can be achieved when relaxation times
are less than 1.0. Therefore, in the BGK method, both relaxation times should be in the
range (0.5–1] to obtain maximum stability and accuracy [22,24,51,54–56]. According to
Equations (13) and (14), at very high or very low Pr numbers, the relaxation time for either
fluid flow or energy equation becomes τ ≈ 0.5 or τ � 1. The implicit relation between
Pr number and relaxation times, in combination with the incompressible flow constraint,
restricts the ability of the SRT model to simulate small or large Pr numbers.
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2.1. Multiple-Grid Lattice Boltzmann (MGLB)

The idea behind the proposed method relies on the fact that by choosing different
grid sizes and time steps for fluid flow and energy equations, the relaxation times in both
equations can be selected separately, resulting in the increase of stability.

The fluid flow equation needs the temperature at each node of the velocity grid to
calculate the buoyancy force, while the energy equation needs the velocity at each node
of the temperature grid to calculate the advection term in the equilibrium function. The
procedure to transfer variables between meshes is explained in this section. Figure 2 shows
the position of two arbitrary fine and coarse meshes relative to each other. The following
explanation assumes a fine mesh for velocity and a coarse mesh for temperature, and the
goal is to transfer temperature from the coarser grid to the finer grid.
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If the velocity and temperature grids coincide at a node, the temperature is directly
transferred from the temperature grid to the velocity grid. For a non-coincident node in
the velocity grid, the four nearest neighboring nodes in the temperature grid are found
(as shown in Figure 2). Then the temperature in the velocity node is determined from the
interpolation weights, wi, as follows.

θ f ine = w1θA + w2θB + w3θC + w4θD (21)

where θA to θD are known. The weight coefficients wi must satisfy the following conditions:

∑ wi = 1 (22)

w1d1 = w2d2 = w3d3 = w4d4 (23)

These conditions provide four equations (one in Equation (22) and three in Equation (23))
for the four unknowns wi. The solutions are:

w1 = 1
1+ d1

d2
+

d1
d3
+

d1
d4

w2 = d1
d2

w1

w3 = d1
d3

w1

w4 = d1
d4

w1

(24)
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Equations (22) and (24) provide the procedure to transfer the temperature values from
the coarse grid to the fine velocity grid. The same technique can be used to transfer the
velocity from the fine grid to the coarse temperature grid. It should be noted that the LB
method for both velocity and temperature is second-order accurate in space. However, the
mapping method for transferring variables between coarse and fine grids, as in Figure 2, is
linear, which makes the model first-order accurate. Higher-order interpolation schemes
can be used instead of linear interpolation with the drawback of higher computational time.
As an example, quadratic interpolation needs 9 neighboring nodes instead of 4 nodes in
the linear interpolation. The extra nodes will make the model computationally expensive.

In addition to the previous interpolation procedure to transfer variables between the
fine and coarse grids, the variables must also be “converted” to account for the different
grids. The conversion between the fine and coarse grids can be achieved by equating the
non-dimensional parameters such as Reynolds number (Re), Prandtl number (Pr), and/or
any combination of non-dimensional numbers between the fine and coarse grids and
physical scaling. The non-dimensional diffusion time scales are defined as t∗f = ∆tν

H2 for

fluid domain and t∗g = ∆tα
H2 for energy equation. H in the physical unit is defined as the

actual length of the domain and in the LB unit is defined as the number of grids along the
physical length. By equating the non-dimensional diffusion time scales in physical and LB
units, we have:

∆tph, f =
νLB, f

νph

(
Hph

HLB, f

)2

=
νLB, f

νph

(
∆xph, f

)2
(25)

∆tph,g =
αLB,g

αph

( Hph

HLB,g

)2

=
αLB,g

αph

(
∆xph,g

)2
(26)

By substituting the νLB, f and αLB,g from Equations (25) and (26) into Equations (11)
and (12), the relationship between relaxation time and physical properties such as grid size
and time step are obtained as:

τf =
3νph∆tph, f(

∆xph, f

)2 + 0.5 (27)

τg =
3αph∆tph,g(

∆xph,g

)2 + 0.5 (28)

By substituting the value of νph and αph into the definition of Pr, the relation between
relaxation time using MGLB can be obtained as:

τg =

(
∆xph, f

∆xph,g

)2
∆tph,g

∆tph, f

τf−0.5
Pr

+ 0.5 (29)

By comparing Equation (29) with Equation (14), it is noted that the value of τg is now
also a function of grid size and time-step ratios.

The velocities, uLB, f and uLB,g, required to calculate the equilibrium distribution
function in Equations (15) and (16), are not equal in the MGLB model. To find the relation,
the Courant number Cu = u∆t

∆x must be equal in both LB and physical units as:

∆tph, f uph

∆xph, f
=

∆tLB, f uLB, f

∆xLB, f
(30)

∆tph,guph

∆xph,g
=

∆tLB,guLB,g

∆xLB,g
(31)
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Since both ∆tLB and ∆xLB are equal to 1, by equating the physical velocity in both
equations, the relationship between uLB,g and uLB, f is obtained as:

uLB,g =
∆tph,g

∆tph, f

∆xph, f

∆xph,g
uLB, f (32)

Equations (29) and (32) are written in general form, meaning that it is not implied
whether the fine grid is chosen for the fluid flow or the energy equation. The selection
of whether the fluid flow or energy equation should have a finer grid depends on the
simulation’s goal. If the simulation’s purpose is to capture the small vortexes in the domain,
then the velocity field should have a finer grid. However, if the aim of the simulation
is to increase the overall stability or to reduce the total computational time, selecting
different grid and time steps based on the value of the Pr number can help to alleviate
the divergence problem as given by Equation (29). Here we only focus on stability and
reducing the computational time issues.

Therefore, for the case of Pr � 1, when a uniform grid and time step is used, according
to Equation (14), τg may become very large (τLB,g � 1). To reduce τg by the MGLB method,

according to Equation (29), the grid and time step are selected as
∆xph, f
∆xph,g

≤ 1 and
∆tph,g
∆tph, f

≤ 1.
The selection implies that a finer mesh is chosen for fluid flow, while the energy equation
has smaller time steps.

The grid ratio (GR) is defined as the ratio of the number of cells in the x-direction of
the fine grid to the cell number in the coarse grid. Therefore, for Pr � 1, it can be written

as GR =
∆xph,g
∆xph, f

=
HLB, f
HLB,g

. The time-step ratio (n) is defined as the ratio of the time step in

the finer grid (in this case fluid flow) to the time step in the coarse mesh: n =
∆tph, f
∆tph,g

. The
effect of selecting different values for GR and n on stability and computational time will be
discussed in the Section 3.

With the same analogy, when Pr � 1, τg could become very small when a uniform
grid and time step are used. To increase the τg according to Equation(29), the grid size and

time step are chosen so that
∆xph, f
∆xph,g

≥ 1 and
∆tph,g
∆tph, f

≥ 1, which means a finer mesh for the
energy equation, while having smaller time steps for the fluid-flow model. Here the grid

ratio and time-step ratio are defined as GR =
HLB,g
HLB, f

=
∆xph, f
∆xph,g

and n =
∆tph,g
∆tph, f

, respectively.

3. Results

The stability and computational time enhancements of the LB model were tested
by simulating natural convection in a side-heated square cavity, as described in Figure 1.
Results reveal that the Pr number has a significant effect on the formation of vortices and
flow patterns.

3.1. Natural Convection Inside a Heated Square Cavity: Benchmark Test

Initially, the natural convection inside a heated square cavity for Pr = 0.7 (air) was
studied. The results obtained with the conventional SRT-LB model were validated against
the results reported in references [40,42].

To obtain grid-independent results, several different grid sizes have been examined,
and a 400 × 400 grid was selected for both velocity and temperature fields. The streamlines
and isotherms obtained with the LB model are plotted in Figure 3, which is in qualitative
agreement with [40,42].
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The average Nusselt number along the right wall in addition to the maximum velocity
location and magnitude were compared with previous studies and listed in Table 2. A
conversion of the current study results to the way references [40,42] reported their results
was done for consistency.

Table 2. Quantitative comparison of Nusselt number and the maximum velocity location and
magnitude. The values in parentheses are locations of maximum velocity measured from the
cavity center.

Nuave Umax(y) Vmax(x)

Current study 8.85 65.03(0.845) 215.8(0.0391)
Ref. [42] 8.7746 64.91(0.8516) 218.90(0.0391)
Ref. [40] 8.8251 64.84(0.8505) 220.46(0.0390)

These results compare very well with the ones published in [40,42], showing a max-
imum error of 0.3% for both Nuave and velocity, which demonstrates that the SRT-LB
method is capable of generating correct results for natural convection for Ra = 106 for
Pr = 0.7.

The accuracy of the conventional LB (SRT method) for modeling various Pr numbers
was further validated with the results reported in [41,43]. The same 400 × 400 grid was
selected as before for both velocity and temperature fields. The results are summarized
in Table 3.

Table 3. Comparison of Nuave for different Pr numbers.

Nuave
Pr = 0.005

Ra = 15,000
Pr = 0.007
Ra = 105

Pr = 0.01
Ra = 105

Pr = 0.071
Ra = 105

Pr = 0.71
Ra = 105

Pr = 7.1
Ra = 105

Current 2.08 2.65 3.18 3.76 4.45 4.68
Ref. [41] 2.10 N/A 3.23 N/A N/A N/A
Ref. [43] N/A 2.58 N/A 3.80 4.48 4.72

For the case Pr = 0.01 and Ra = 105, we report the long-time average of the transient
Nuave due to the oscillation of temperature in the domain with time. The results of this
validation revealed that the conventional SRT-LB method was capable of generating correct
results for natural convection in a wide range of Pr, although at the expense of using a very
fine mesh.
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3.2. Natural Convection with SRT Method for Prandtl Numbers 0.01 and 100

In this section, numerical results for a fine grid with the SRT method at Pr = 0.01 and
100 for Ra = 106 are presented. These results are later used as a reference for calculating the
accuracy of the results obtained by the MGLB method.

A fine grid of 400 × 400 cells was used for the SRT-LB model to avoid solution
divergence and achieve grid-independent results for both Pr = 0.01 and Pr = 100. The
streamlines and isotherms are shown in Figure 4. They provide detailed information about
the nature of heat transfer. At low Prandtl numbers (Figure 4a,c), flow is dominated by
vortices near the center of the cavity. By increasing Pr (Figure 4b,d), the streamlines start
to become concentrated near the wall, and flow moves counterclockwise from the hot
wall upward. With the increase of Pr, fluid viscosity increases, which eventually causes
convection to dominate over conduction in transferring energy.
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Figure 4. Isotherms (a,b) and streamlines (c,d) for different Pr with Ra = 106. The results for
Pr = 0.01 are reported for Fourier number, Fo = 3.0.

Figure 5 shows the SRT-LB results of flow velocity and temperature profiles inside the
side-heated cavity in the midsection along the vertical and horizontal directions.
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Figure 5. Non-dimensional velocity in x-direction (a,d), in y-direction (b,e) and temperature profiles (c,f) along the
midsection of the cavity (X = 1/2 and Y = 1/2) for different Prandtl numbers and Ra = 106. All the results for Pr = 0.7 and
Pr = 100 are reported in steady-state conditions, while for Pr = 0.01, the results are reported for a long-time average of the
transient velocity profiles.

For the low Prandtl number (Pr = 0.01), the long-time average of the transient velocity
profiles was reported. As other researchers have reported, the solution is oscillatory in the
case of a low Prandtl number [6,57]. The results in that case never reach the steady-state.
A more detailed description of the unsteady nature of the low Prandtl number results is
discussed in Appendix A.

The temperature profile is comparable for all the cases in Figure 5. However, the
velocity profile shows that the stability of vortex pairs increases with increasing Pr num-
ber. In lower Pr numbers, the breakdown of vortex symmetry is observed, which leads
to instability.
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3.3. Natural Convection with MGLB Method

In this section, the MGLB model was employed to solve natural convection in the
side-heated square cavity with the two extreme values of Prandtl number: 0.01 and 100 for
Ra = 106. As will be discussed in this section, unless a very fine mesh is used, numerical
instability is observed in the SRT method. This restriction in the Pr number was discussed
in detail in Section 2. The effects of selecting different time steps and grid sizes (different
values of n and GR) on stability, accuracy, and computational time was investigated
extensively. The accuracy of the proposed MGLB method was compared to the fine-grid
SRT model presented in Section 3.3.

The low Prandtl number was studied first via twelve cases with input parameters
shown in Table 4. The characteristic velocity, uc, was selected as 0.05 in all cases to satisfy
the incompressible limit, as explained in Section 2.1. The average Nusselt number, Nuave,
obtained with MGLB was compared with the average Nu number from SRT-LB simulations
presented in Section 3.2, as the reference for error calculation. The error is defined as
error =

∣∣∣NuSRT_ f ine − Nuave

∣∣∣/NuSRT_ f ine × 100. The first two cases in Table 4 were
solved with the SRT method while the rest were solved with the MGLB method. The N/A
in the table for Case 1 indicates that the solution diverged due to the coarse grid. By using
a finer mesh, as in Case 2, the SRT method did eventually converge. The computational
time in each case was calculated and then normalized with respect to the computational
time of Case 2. The normalized time is a measure for comparing the computational time
between the MGLB and SRT methods. The Nuave for all cases was measured, and the error
was calculated.

Table 4. Input parameters and simulation results for Ra = 106, Pr = 0.01 for simulations with single relaxation time
(SRT) (Cases 1 and 2) and multiple-grid lattice Boltzmann (MGLB) (Cases 3 to 12). “N/A” indicates no convergence. The
characteristic velocity was selected as uc = 0.05 in all cases. The Time column is normalized by Case 2. The average Nu
number from SRT-LB simulations presented in Section 3.2 was 5.312.

Case No. Hf Hg n GR τf τg Nuave Time

1(SRT) 100 100 1 1 0.5015 0.6500 N/A N/A
2(SRT) 200 200 1 1 0.5030 0.8000 5.345 1.000

3(MGLB) 100 100 2 1 0.5015 0.5750 5.105 0.193
4(MGLB) 150 100 1 1.5 0.5023 0.6000 5.350 0.456
5(MGLB) 150 100 2 1.5 0.5023 0.5500 5.343 0.491
6(MGLB) 150 100 3 1.5 0.5023 0.5333 5.350 0.544
7(MGLB) 200 100 1 2 0.5030 0.5750 5.467 0.719
8(MGLB) 200 100 2 2 0.5030 0.5375 5.461 0.737
9(MGLB) 200 100 3 2 0.5030 0.5250 5.455 0.789
10(MGLB) 300 100 1 3 0.5045 0.5500 5.538 1.965
11(MGLB) 300 100 2 3 0.5045 0.5250 5.539 2.000
12(MGLB) 300 100 3 3 0.5045 0.5167 5.535 2.053

Figure 6 summarizes the results obtained by the SRT and MGLB methods regarding
the accuracy and computational time. The horizontal and vertical solid lines define a
threshold for error and computational time, respectively. The acceptable error was defined
as 10%, while a normalized time of 1 was selected as a threshold for time. These two
lines divide the plane into four quadrants, where the points of interest lie above the third
quartile. In the third quartile, the computational time and error are acceptable. In all MGLB
cases, the simulation converged, with the total number of grid cells being much less than
the counterpart SRT method.
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Case 1 diverged very quickly due to the coarseness of the mesh. Case 2 converged
with a finer mesh while the characteristic velocity uc remained the same. The simulation
time in Case 2 was used as the reference value for comparison with the MGLB method.

Case 3 demonstrates the ability of the MGLB method to increase stability and reduce
computational time. While keeping the grid size the same as Case 1, by increasing n (the
time-step ratio), the simulation converged with more than 80% reduction in computational
time compared to Case 2.

The best result regarding the error was obtained when GR = 1.5, in Cases 4, 5, and
6. When GR = 2, the simulation gets computationally more expensive and the error
increases. The increase in error can be explained by the coupling between fluid flow and
energy equations. In the SRT method, the grid size and time step are the same, which can
be considered a coupling between the two equations. The MGLB method weakens the
coupling due to the intermediate interpolation step. For GR = 3, the computational time
is higher than for Case 2 even though the total number of grid cells is less than Case 2.
Figure 6 also shows that increasing the time-step ratio (n) does not lead to more accurate
results. Instead, it improves the stability (compare Cases 1 and 3, for instance). When
the simulation diverges for a specific initial parameter and grid size, increasing n might
prevent the simulation from diverging. It was also observed that for GR = 1.5, 2, and 3,
increasing n only makes the simulation computationally more expensive.

The MGLB model was also applied for a high Prandtl number (Pr = 100), as shown in
Table 5. The first three cases were solved with the SRT method. The characteristic velocity
was again selected as uc = 0.05 in all cases. Contrary to the cases with low Prandtl
numbers, a much finer grid is required to prevent the solution from diverging, as seen in
Case 3. It was also checked that the results obtained in case 3 were grid-independent. In
Cases 4 and 5, the same grid as Case 1 was used while trying to increase the stability by
increasing the time-step ratio. It turns out that the solution still diverges in those cases.
Cases 6 through 8 show that increasing the time-step ratio for the same grid ratio GR = 1.5
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would help to solve the divergence problem that occurred in Case 6. The computational
time was normalized against Case 3.

Table 5. Input parameters and simulation results for Ra = 106, Pr = 100 for simulations with SRT (Cases 1 to 3) and
MGLB (Cases 4 to 14). “N/A” indicates that the solution diverged. The characteristic velocity was selected as uc = 0.05 in
all cases. The average Nu number from SRT-LB simulations presented in Section 3.2 was 9.240.

Case No. Hf Hg n GR τf τg Nuave Time

1(SRT) 100 100 1 1 0.6500 0.5015 N/A N/A
2(SRT) 300 300 1 1 0.950 0.5045 N/A N/A
3(SRT) 350 350 1 1 1.0250 0.5052 9.2980 1.000

4(MGLB) 100 100 2 1 0.6500 0.5030 N/A N/A
5(MGLB) 100 100 3 1 0.6500 0.5045 N/A N/A
6(MGLB) 100 150 1 1.5 0.6500 0.5034 N/A N/A
7(MGLB) 100 150 2 1.5 0.6500 0.5067 8.523 0.089
8(MGLB) 100 150 3 1.5 0.6500 0.5101 8.521 0.117
9(MGLB) 100 200 1 2 0.6500 0.5060 8.453 0.108
10(MGLB) 100 200 2 2 0.6500 0.5120 8.451 0.141
11(MGLB) 100 200 3 2 0.6500 0.5180 8.450 0.160
12(MGLB) 100 300 1 3 0.6500 0.5135 8.489 0.178
13(MGLB) 100 300 2 3 0.6500 0.5270 8.487 0.239
14(MGLB) 100 300 3 3 0.6500 0.5405 8.486 0.296

The error was about 7 to 9% in all cases, as shown in Figure 7. For a high Pr number,
the MGLB method successfully reduced the computational time to at least 1/3 of the SRT
method. Again, the same trend of increasing the time-step ratio on increasing computa-
tional time and error was observed here. For the same GR, increasing the time-step ratio
can improve stability, but has no effect on reducing the error.
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Compared to the conventional SRT method, the MGLB method offers better stability
and computational time with reasonable accuracy.
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Based on the MGLB method results for high and low Prandtl numbers, the following
procedure is proposed to obtain the least computational time and error.

For both low and high Prandtl numbers, GR = 1.5 yielded optimum results. The
time-step ratio in both high and low Prandtl numbers controls the stability. It should be
selected as n = 1 initially, and if the solution diverges, a higher value can be chosen.

Nonetheless, the proposed MGLB method reduces the computational time signifi-
cantly compared to the conventional SRT method. The MGLB method can also be employed
with other collision models such as MRT, entropic, or cascaded LB rather than the SRT
scheme. The main difference between these methods lies in how the collision operator is
modeled, which is not affected by the proposed method.

4. Conclusions

A multiple-grid lattice Boltzmann (MGLB) single relaxation time (SRT) model has been
proposed. The model implements a different grid and time step for fluid flow and energy
equations. The simulations showed that the model enhances the stability of the standard
SRT-LB method while maintaining its simplicity. Solving natural convection problems
for extreme values of Prandtl number is particularly challenging in terms of numerical
convergence and accuracy. This methodology took care of the problem by selecting an
optimal grid and time step for each equation, depending on the value of Pr number. The
method was validated against the classic example of natural convection in a side-heated
square cavity for Ra = 106 and Pr = 0.7. The results were in good agreement with simulations
performed with numerical results reported in the literature. By appropriate selections of the
grid and time step, computational savings up to ten-fold could be obtained when compared
with the conventional SRT method. Due to the increase in stability, the model was also
able to simulate cases for which the SRT method would not even converge. Considering
that these were relatively simple 2D simulations, the advantages of the proposed MGLB
method are expected to be significantly better when applied to complex 3D problems. Since
the MGLB is a general approach, independent of the way the collision is modeled, we
expect that it can be successfully implemented for other collision models as well.
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Appendix A

Figures A1 and A2 show the unsteady nature of the natural convection in a side-heated
square cavity with a low Prandtl number.
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Figure A2. Isotherms at different times (a–f) for natural convection in a side-heated square cavity. Pr = 0.01. The isotherms
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The isotherm and streamline plots show that a steady-state cannot be reached.
Figure A3 shows the oscillatory variation of the Nu number through time. Although a

steady-state value is not reached, the long-time average of the Nuave is 5.312.
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