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Abstract: We studied the laminar fully developed ferrofluid flow and heat transfer phenomena
of an otherwise magnetic fluid into a vertical annular duct of circular cross-section and uniform
temperatures on walls which were subjected to a transverse external magnetic field. A computational
algorithm was used, which coupled the continuity, momentum, energy, magnetization and Maxwell’s
equations, accompanied by the appropriate conditions, using the continuity–vorticity–pressure
(C.V.P.) method and a non-uniform grid. The results were obtained for different values of field
strength and particles’ volumetric concentration, wherein the effects of the magnetic field on the
ferrofluid flow and the temperature are revealed. It is shown that the axial velocity distribution is
highly affected by the field strength and the volumetric concentration, the axial pressure gradient
depends almost linearly on the field strength, while the heat transfer significantly increases due to
the generated secondary flow.

Keywords: ferrofluids; heat transfer; annular duct; magnetization equation; continuity–vorticity–
pressure (C.V.P.); numerical method

1. Introduction

The examination of the characteristics of ferrofluids has generated much interest in
past decades due to the many important technological applications [1–4]. The dispersion
of a magnetizable mineral, such as an iron oxide powder, in a liquid solution, creates a
fluid with unique properties such as magnetoviscosity [5–7] or negative viscosity [8], in
the presence of a magnetic field. These properties can be exploited to create specialized
engineering systems targeted for applications such as magnetic dampers [8] and shaft
seals [9].

The numerical works that deal with ferrofluids usually focus on simple geometries,
such as parallel plates and circular tubes, to facilitate the understanding of the complex
phenomena that arise in these flows. The different timescales of the various physical
mechanisms, i.e., the Brownian diffuse timescale, the hydrodynamic (convective) timescale
and the timescale associated with applied magnetic field, are responsible for the non-
equilibrium magnetization dynamics of the flow problem [10]. This variation in the
relaxation time creates a misalignment between the local magnetization and the local
magnetic field, leading to enhanced effective viscosity [11]. The interaction between the
magnetic forces and the pressure gradient, apart from affecting the flow properties, induces
changes in the flow pattern which may be utilized to control flow separation [12].

The numerical studies of ferrofluid flow focus also on geometries which are close to
the actual engineering applications. The properties that are examined in this context are
the pressure drop and heat transfer [13–15], while special attention is given to the velocity
distributions that arise due to the interaction of the pressure gradients and the magnetic
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forces [16]. The flow and heat transfer characteristics of magnetic nanofluids have been
compiled in a review paper [17] that discusses the properties of magnetic nano-fluids
and their effect on natural convection, forced convection, and boiling. Specifically for
thermal applications, annular pipes and double pipes are common configurations in heat
exchangers, and their study is always interesting either in the case of ferrofluid flow or in
neighboring scientific fields such as magnetohydrodynamics [18–20]. The utilization of
different pipe shapes (e.g., sinusoidal or wavy [21]) and the inclusion of porous zones [22]
in the flow passage can have a positive effect in heat transfer, although there is a penalty
in pressure drop. Square ducts have also been reported in the bibliography [23], where
flow takes place under the influence of transverse or axial magnetic fields. The different
types of magnetic fields also play an important role in the flow properties and some of the
configurations that have been examined are different types of magnets, such as quadrupole
magnets [24], or current-carrying wires and coils [14,25]. An experimental study [26]
showed that the use of ferrofluid flow in a circular pipe under the effect of a constant
magnetic field can increase the heat transfer by up to 7.19%. Alternating magnetic fields are
also important because they can enhance the heat transfer properties by up to 13.9% [13],
when the frequency is optimum. Finally, the type of ferrofluid is an important element in
the different configurations, with the most common being Fe3O4–water ferrofluids [27,28].
However, the range of applications is not restricted to engineering; there have been reports
on the use of blood as ferrofluid [29,30].

In this context, the present work examines the ferrofluid flow of a magnetite–water
solution in a vertical annular pipe. The magnetic field is constant and acts along the
horizontal direction. This type of flow is important for cooling units and heat exchangers,
and it can be employed in various engineering applications. The numerical model uses the
formulation derived by Hatzikonstantinou and Vafeas [7] and the solution procedure is
based on a validated in-house code. The main parameters that are studied are the magnetic
field strength and the concentration of magnetic particles, which play an important role
in the pressure drop, the velocity profiles and the heat transfer characteristics of the
flow. To the best of our knowledge, this is the first work that examines the effects of
these parameters in a forced convection problem with the inclusion of buoyancy effects.
The results highlight the interaction between the gravitational, viscous, and magnetic
forces, and provide useful information concerning the heat transfer augmentation that can
be achieved.

2. Mathematical Model

We formulate our problem concerning the straight circular cylindrical annular duct,
depicted in Figure 1, given the inner Ri and the outer Ro radii of the coaxial cylinders,
wherein a conveniently adjusted Cartesian reference system (x, y, z) is sketched. The inner
and outer cylinders are maintained at uniform temperatures, assuming that the inner wall
temperature Ti is lower than the outer wall temperature T.

As for the developed buoyancy forces, the Boussinesq approximation is used, while
the effect of viscous dissipation is neglected. On the other hand, the non-conductive
ferrofluid is constituted by a stable suspension of solid spherical particles of radius rp and
density ρp with volumetric concentration φ = (4/3)πr3

pn, where n stands for the number
of particles per unit volume. They control the variation of the viscosity and the pressure of
the ferrofluid, provided that an external magnetic field Ha is applied, as demonstrated in
Figure 1. The best fitted circular cylindrical coordinate system (r, θ, z) with r ∈ (Ri, Ro),
θ ∈ [0, 2π) and z ∈ (−∞,+∞) is implied, which is connected to the Cartesian coordinates
via (x, y, z) = (r cos θ, r sin θ, z).
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Figure 1. The coaxial system of the straight circular cylindrical annular duct.

In terms of the gradient ∇ and Laplacian ∆ differential operators, the governing
equations that describe the physical phenomenon of the particular ferrohydrodynamic
flow within the annular duct with heat alterations, interconnect the velocity v, the an-
gular velocity Ω = ∇× v, the total pressure P that incorporates the gravitational force,
the magnetization M, the magnetic field H, which is the summation of the applied and
the induced field, the latter being neglected, the magnetic induction B and the temper-
ature T. Each implicated physical field is then a function of the current position vector
r = xx̂ + yŷ + zẑ, written in view of the Cartesian basis x̂, ŷ, ẑ and the time variable t, omit-
ting this dependence thereafter for notational clarity. Therein, supposing an incompressible
Newtonian magnetic fluid with constant mass density ρ and with constant dynamic viscos-
ity η, we introduce the following set of dimensional equations, which are comprised by the
continuity equation:

∇ · v = 0, (1)

the momentum equation:

ρ
Dv
Dt
≡ ρ

[
∂v
∂t

+ (v · ∇)v
]
= −∇P + η∆v + µ0(M · ∇)H +

µ0

2
∇× (M×H)− ρgβ(T − Ti)ẑ, (2)
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where µ0 is the magnetic permeability of vacuum, g is the gravitational acceleration and β
is the coefficient of thermal expansion, the energy equation:

DT
Dt
≡
[

∂T
∂t

+ (v · ∇)T
]
=

k
ρcp

∆T, (3)

where k is the thermal conductivity and cp is the specific heat, and the Maxwell’s equations:

∇ · B = 0 and ∇×H = 0, (4)

where for a linear, homogeneous and isotropic fluid, it holds that B = µ0(H + M). Those
are supplemented by the magnetization equation:

DM
Dt
≡ ∂M

∂t
+ (v · ∇)M =

1
2

Ω×M +
µ0τS

I
(M×H)×M− 1

τB

(
M−M0

H
H

)
(5)

where M0 denotes the equilibrium magnetization field, rendered by the Langevin function:

M0 = nmL(ξ) with L(ξ) = cothξ − 1
ξ

, where ξ =
µ0mH

KT
, (6)

wherein m is the magnetic moment of a single particle, whose magnetization Mp is related
to the saturation magnetization Ms via the relationship Ms = φMp = nm. Otherwise,
τS = r2

pρp/15η0 is the relaxation time of particle rotation (η0 corresponding to the rotational
viscosity), I = 8πr5

pρpn/15 is the sum of moments of inertia of the spherical particles
per unit volume and τB = 4πηr3

p/KT is the relaxation time of the Brownian rotation
(K being the Boltzmann’s constant). However, due to the approximate homogeneity of the
magnetic field and the very small magnetization inertia of the magnetic fluid, resulting in
the almost immediate orientation of the magnetization leads to DM/Dt ∼= 0, so that partial
differential Equation (5) becomes algebraic and is simplified to the analytical formula:

M =
M0

H

[
1 +

(
Ω τB

2 f (H, Ω)

)2
]−1{

H +
τB

2 f (H, Ω)
Ω×H +

(
τB

2 f (H, Ω)

)2

(H ·Ω)Ω

}
(7)

where H = |H| and Ω = |Ω|. Using the dimensionless function:

g(H) = 1 +
µ0τSτB

I
HM0, (8)

it is readily obtained:

f (H, Ω) =
g(H)

3

{
1 + R(H, Ω) +

1
R(H, Ω)

[
1− 3

(
Ω τB

2g(H)

)2
]}

(9)

with:

R(H, Ω) =

Qϕ(H, Ω) +

√√√√Q2
ϕ(H, Ω)−

[
1− 3

(
Ω τB

2g(H)

)2
]3


1/3

, (10)

in which, bearing in mind that ϕ is the angle between the magnetic field H and the vorticity
Ω, which is Ω ·H = ΩH cos ϕ, then:

Qϕ(H, Ω) = 1 +
(

3Ω τB
2g(H)

)2[
1− 3(g(H)− 1)

2g(H)
sin2 ϕ

]
, (11)

providing adequate information to compute Equation (7). In summary, we are obliged to
solve the continuity Equation (1), the momentum law (Equation (2)), the energy
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Equation (3), Maxwell’s relationships (Equation (4)) and, instead of Equation (5), the
analytical form for the magnetization of the ferrofluid given by Equation (7), taking into
account Equations (6) and (8)–(11). Those are accompanied by the non-slip boundary con-
ditions for the velocity field, i.e., v = 0 and the imposition of the standard temperatures Ti
and T on both the walls of the annular duct for r = Ri, Ro, as well as implying the excitation
through the magnetic field Ha. Additionally, the flow is considered fully developed in the
z-direction, while the magnetization on the boundaries can be recovered directly from the
compact Equation (7).

The numerical implementation of the aforementioned boundary value problem re-
quires the production of the corresponding dimensionless forms for all the involved
equations. Following that, we define the dimensionless variables:

~
r = r

Ro
, t̃ = Ut

Ro
, R̃ = Ri

Ro
, ∇̃ = Ro∇, ∆̃ = R2

o∆
ṽ = v

U , P̃ = P
ρU2 , T̃ = T−Ti

To−Ti
, Ω̃ = RoΩ

U

H̃ = H
Ha

, M̃ = M
Ms,max

, M̃0 = M0
Ms,max

= φL(ξ),
(12)

where U is the mean velocity of the ferrofluid, Ha = |Ha| and Ms,max are the saturation
magnetization for φ = 1 and H = Ha, i.e., Ms,max = 3m/4πr3

p, because Ms = nm, given
that φ = (4/3)πr3

pn. By virtue of Equation (12), direct substitution to Equations (1)–(5) (or
Equation (7) as the analytical counterpart of Equation (5) with Equations (8)–(11)) provides
us with the dimensionless relationships of the continuity equation:

∇̃ · ṽ = 0, (13)

the momentum equation:

∂ṽ
∂t̃

+
(

ṽ · ∇̃
)

ṽ = −∇̃P̃ +
1

Re
∆̃ṽ +

RM

Re2

[(
M̃ · ∇̃

)
H̃ +

1
2
∇̃ ×

(
M̃× H̃

)]
− Gr

Re2 T ẑ, (14)

the energy equation:
∂T̃
∂t̃

+
(

ṽ · ∇̃
)

T̃ =
1

RePr
∆T̃, (15)

the Maxwell’s equations:
∇̃ · B̃ = 0 and ∇̃ × H̃ = 0 (16)

and, additionally, either the differential form of the magnetization equation:

∂M̃
∂t̃

+
(

ṽ · ∇̃
)

M̃ =
1
2

(
Ω̃× M̃

)
+

RM

6φRe

(
M̃× H̃

)
× M̃− RH

Re

(
M̃− φ

H̃
H̃

L(ξ)

)
(17)

or its analytical expression:

M̃ = φL(ξ)
1

H̃
(

1 +
(

NΩ̃
)2
)[H̃ + N

(
Ω̃× H̃

)
+ N2

(
Ω̃ · H̃

)
Ω̃
]

(18)

Above are written in terms of the Reynolds, Grashof and Prandtl numbers:

Re =
ρURo

η
, Gr =

gβ(To − Ti)ρ
2R3

o
η2 and Pr =

cpη

k
, (19)

respectively, the dimensionless characteristic numbers:

RM =
µ0ρR2

o Ms,maxHa

η2 and RH =
ρR2

o
ητB

, (20)
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as well as the known quantity:

N =
Re

2RH

 q
3

1 + R +
1− 3

(
Ω̃p
)2

R



−1

with p =
Re

2RHg
and q = 1 +

RM

6RH
H̃L(ξ), (21)

where

R =

Q +

√
Q2 −

[
1− 3

(
Ω̃p
)2
]3
 1

3

with Q = 1 + 9
(

Ω̃p
)2

1− 3(q− 1)
2q


∣∣∣Ω̃× H̃

∣∣∣
Ω̃H̃

2, (22)

concluding our dimensionless analysis. The cylindrical geometry is implied and H̃ ∼= Ha as
for the physical assumption, although, because r̃ = r/Ro, the imposed boundary conditions
read ṽ = 0 for r̃ = R̃ and r̃ = 1, as well as T̃ = 0 for r̃ = R̃ and T̃ = 1 for r̃ = 1. On the other
hand, because z̃ = z/Ro, the fully developed flow in the z̃-direction is secured by the fact
that are all the components of the fields are independent of the axial coordinate z̃. Although
the pressure field P̃ is a linear function of z, all the axial derivatives are neglected, except
for the axial pressure gradient P̃c,z ≡ dP̃a(z̃)/dz̃, which is constant. Finally, M̃ on r̃ = R̃ and
r̃ = 1 is obtained via the analytical relationship in Equation (18), while the corresponding
differential Equation (17) for the magnetization will be used for validation. In conclusion,
a very important quantity is the stream function ψ (ψ̃ = ψ/URo as for its dimensionless
form), which is connected to the velocity components vr and vθ in cylindrical coordinates
through the relationships:

vr =
1
r

∂ψ

∂θ
and vθ = −∂ψ

∂r
or ṽr =

1
r̃

∂ψ̃

∂θ
and ṽθ = −∂ψ̃

∂r̃
, (23)

wherein trivial integration techniques give the stream function in terms of the
velocity field.

Heat transfer is studied with the Nusselt number. Local Nusselt numbers for the inner
and outer wall are given by the relationships:

Nui =
∂T̃
∂r

∣∣∣∣∣
r̃=R̃

and Nuo =
∂T̃
∂r

∣∣∣∣∣
r̃=1

, (24)

while the average Nusselt numbers for the inner and outer wall are given by:

Nui =
1

2π

2π∫
0

Nui(θ)dθ and Nuo =
1

2π

2π∫
0

Nuo(θ)dθ (25)

Equations (14)–(18) that govern the ferrofluid and thermal flow were solved using a
methodology involving the enhanced C.V.P. numerical variational method for the coupling
of the continuity, the energy, the Navier–Stokes equation and the magnetization equation.
In this method, the partial differential equations are discretized and solved numerically
using a pseudo-transient marching algorithm. Non-uniform stretched meshes are used
to accurately compute the thin boundary layers near the walls. The C.V.P. method’s
characteristics (extreme accuracy, robustness, easy convergence and easy implementation
to complex geometries) make it unique for magnetic fluid applications. The numerical
method is analytically presented and validated elsewhere [16]. The analytical solution of
the magnetization equation for a ferrofluid flow inside a straight circular duct has also
been validated previously [14].
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3. Results and Discussion

Computations were carried out for a wide range of physical parameters of the fer-
rofluid flow for R̃ = 0.5. The relative flow, heat transfer and magnetization parameters
varied in ranges, whereas 0 ≤ φ ≤ 0.1, 0 < ξ ≤ 1, 0 ≤ Gr ≤ 103, Pr = 6.8, Re = 100,
RM = 1.8× 10−4 and RH = 2.77× 10−6. The numerical results are presented to illustrate
the effect of the above parameters on the fluid flow and heat transfer to demonstrate the
effect of the magnetic field on the velocity and temperature distribution.

The distributions of the axial velocity ṽζ in the cross-sectional area of the annular duct
are presented in the contour plots of Figure 2 for various values of ξ and Gr for concentra-
tion φ = 0.1. For field strength ξ = 0, the distribution of the axial velocity is uniform, while
as the Grashof number increases, the axial velocity peak is shifted to the inner wall, due
to the effect of the buoyancy forces. For Gr = 0, as the field strength ξ increases, the axial
velocity is suppressed near the specific angles θ = 0◦, 90◦, 180◦, 270◦ and its maximum
value is redistributed in four symmetric poles near angles θ = 45◦, 135◦, 225◦, 315◦.
For Gr = 103, due to the effect of the buoyancy forces, we have the formulation of an-
other two poles at angles θ = 0◦, 180◦, of which the values are decreased as the field
strength increases.

Figure 2. Contour plots of the axial velocity ṽζ for various values of ξ and Gr for φ = 0.1.

The contour plots of the streamlines of the transverse components of the velocity for
various values of ξ and Gr and for concentration φ = 0.1 are shown in Figure 3 Due to
the effect of the field strength, the transverse components of the velocity form two pairs
of vortices (one clockwise and one anticlockwise) on each region of the duct near angles
θ = 45◦, 135◦, 225◦, 315◦. As the field strength increases, the value of the stream function
ψ also increases. Grashof number increase has a minor effect on the streamline values. Only
for ξ = 0.1 is the absolute value of the stream function ψ slightly increased. For ξ ≥ 0.5,
the Grashof number has zero effect on the streamlines. This is due to the vertical alignment
of the duct, because buoyancy forces are formulated in the axial direction.
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Figure 3. Contour plots of the streamlines ψ of transverse velocities ṽr, ṽθ for various values of ξ and
Gr for φ = 0.1.

The contour plots of the temperature for various values of ξ and Gr for concentration
φ = 0.1 are shown in Figure 4. For field strength ξ = 0, the distribution of the temperature
is uniform. As the value of the stream function ψ increases due to the increase in the
field strength, the temperature is redistributed. Temperature profiles are the same for
both values of the Grashof number, because the secondary flow is not affected by the
buoyancy forces.

Figure 4. Contour plots of the temperature T̃ for various values of ξ and Gr for φ = 0.1.

Increasing the field strength ξ and concentration φ significantly improves the heat
transfer at the walls, as expressed by the Nusselt number, due to the induction of the
secondary flow. On the contrary, the increase in the Grashof number has a negligible effect
on the heat transfer mechanism. As is presented in Figure 5, for φ = 0.01, the heat transfer
increases around 168% on the inner wall and 145% on the outer wall, for field strength
ξ = 2.0 in comparison to ξ = 0. This effect is much higher for φ = 0.1, where the heat
transfer increases around 469% on the inner wall and 407% on the outer wall, for field
strength ξ = 2.0 in comparison to ξ = 0.
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Figure 5. Effect of φ and ξ values on the average Nusselt number of the inner and outer cylinder
for Gr = 103.

The required pump force for the ferrofluid flow is increased as the field strength
and/or concentration increases, as is presented in Figure 6. For φ = 0.01, the variation of
the axial pressure gradient, as the field strength increases, is negligible, while for φ = 0.1,
field strength affects the axial pressure gradient. For ξ = 2.0, required pump force increases
around 17% in comparison to ξ = 0. The effect of the Grashof number on the axial pressure
gradient is much more significant. For Gr = 103, the axial pressure gradient is 107–120%
higher in comparison to Gr = 0.

Figure 6. Effect of Gr, φ and ξ values on the axial pressure gradient P̃c,ζ .
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4. Conclusions

The effect of the magnetic field on the ferrofluid flow and the heat transfer in a vertical
annular cylindrical duct has been studied in the present work. The numerical solution of
the constitutive equations is based on the C.V.P. method, which is applied to a conveniently
fixed cylindrical coordinate system. From the results, it is observed that the velocity
distribution, heat transfer and pressure drop of the ferrofluid flow are highly affected by
the external magnetic field and the concentration of magnetic particles. The axial flow is
redistributed in four symmetric poles, where its maximum value is observed. A secondary
flow is generated, due to the effect of the magnetic field, which significantly improves the
heat transfer between the walls and the fluid. The axial pressure gradient, which is required
to maintain the same mass flow, also increases as the field strength and concentration of
magnetic particles increases, but with a lower rate in comparison to the increase in the
heat transfer.
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tigation, P.K.P.; writing—original draft preparation, P.A.B.; writing—review and editing, P.V. All
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