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Abstract: A short review of wavelet-based adaptive methods for modeling and simulation of incom-
pressible turbulent flows is presented. Wavelet-based computational modeling approaches of different
fidelities are recast into an integrated hierarchical adaptive eddy-capturing turbulence modeling frame-
work. The wavelet threshold filtering procedure and the associated wavelet-filtered Navier–Stokes
equations are briefly discussed, along with the adaptive wavelet collocation method that is used for
numerical computations. Depending on the level of wavelet thresholding, the simulation is possibly
supplemented with a localized closure model. The latest advancements in spatiotemporally varying
wavelet thresholding procedures along with the adaptive-anisotropic wavelet-collocation method
make the development of a fully adaptive approach feasible with potential applications for complex
turbulent flows.

Keywords: adaptive numerical methods; coherent vortex simulation; direct numerical simulation;
large-eddy simulation; wavelet collocation method; wavelet threshold filtering

1. Introduction

The detailed comparisons of computational fluid dynamics (CFD) results against
experimental findings have clearly shown the importance of capturing the dominant three-
dimensional flow structures when simulating fluid turbulence (e.g., [1]). For highly tur-
bulent flows, due to the prohibitive computational cost of resolving the whole range of
spatial and temporal scales through direct numerical simulation (DNS), the computation-
ally feasible alternative is represented by large-eddy simulation (LES), where only eddies
that dominate large-scale flow physics are resolved. However, when dealing with complex
turbulent flows, standard LES methodologies rely on, at best, a zonal grid adaptation
strategy to attempt to minimize the associated high computational costs. While an improve-
ment over using regular grids, these methodologies fail to resolve the high wavenumber
components of the spatially intermittent coherent eddies that typify fluid turbulence. At
the same time, the flow results in being over-resolved in regions between the intermittent
coherent eddies, with a waste of computational power. The role of coherent and incoherent
residual modes in LES modeling was demonstrated in Reference [2], where the coher-
ent/incoherent decomposition of the subgrid-scale (SGS) stresses based on the wavelet
de-noising procedure was introduced. A priori dynamical tests based on the perfect model-
ing approach [3,4] were performed for decaying homogeneous isotropic turbulence (HIT)
while evaluating the theoretical effects of SGS forces during the simulation. By examining
the relation between deterministic/stochastic SGS models and coherent/incoherent SGS
stresses, the main result was that, in LES, low-order statistics can be almost exactly repro-
duced when only the effect of coherent SGS modes is accounted for, while incoherent SGS
modes have a negligible effect upon large-scale dynamics and energy transfer between
resolved and unresolved flow structures.
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The development of wavelet-based adaptive LES (WA-LES) addresses shortcomings
of traditional LES approaches by using a dynamic grid adaptation strategy that resolves
energetic coherent eddies regardless of their size. The centerpiece of this approach is the
existence of energetic coherent structures that govern turbulent flow dynamics across the
full spectral range [5]. This novel methodology, which is based on the application of a
wavelet threshold filtering (WTF) procedure, demonstrated the ability to dynamically
resolve and track the most energetic part of the coherent turbulent eddies while exploiting
a field compression that allows for a significant reduction of the number of grid points
used in the numerical computations. Moreover, the principal idea behind WA-LES was
taken one step further by introducing the variable wavelet thresholding strategy to locally
and temporally maintain the desired level of turbulence resolution. This was achieved by
ensuring that only the a priori specified fraction of turbulent kinetic energy, SGS dissipation,
or other statistical quantities was resolved. With such a strategy, the transition between
wavelet-based adaptive DNS (WA-DNS), coherent vortex simulation (CVS), and WA-LES
regimes becomes natural. Therefore, the three different methods can be recast into a
wavelet-based hierarchical adaptive eddy-capturing approach for modeling and simulation
of turbulent flows, as discussed in this article.

The remainder of the manuscript is organized as follows. The WTF operation and the
dynamic grid adaptation procedure are reviewed in Section 2, where the wavelet-filtered
incompressible Navier–Stokes equations are introduced, along with the closure model.
The hierarchical adaptive eddy-capturing approach is presented in Section 3, where the
combined wavelet-collocation/volume-penalization method for simulating wall-bounded
turbulent flows is discussed. Finally, some concluding remarks are drawn in Section 4.

2. Wavelet-Filtered Navier–Stokes Equations
2.1. Wavelet Threshold Filtering

The essential component of the present hierarchical adaptive eddy-capturing approach
is the multi-resolution wavelet representation of a general scalar field, say u(x), which
decomposes the n-dimensional variable in terms of scaling functions φ0

l (x) (l ∈ L0) at

the coarsest level of resolution, and wavelets ψ
µ,j
k (x) (k ∈ Kµ,j) of different families (µ =

1, . . . , 2n − 1) and levels of resolution (j = 1, . . . , J). Namely, this decomposition has the
following form:

u(x) = ∑
l∈L0

c0
l φ0

l (x) +
J

∑
j=1

2n−1

∑
µ=1

∑
k∈Kµ,j

dµ,j
k ψ

µ,j
k (x), (1)

where the bold subscripts l and k denote n-dimensional indices while L0 and Kµ,j stand
for the associated index sets, and J is the maximum level of resolution that is present
or allowed in the wavelet approximation. The scaling functions φ0

l and the wavelets

ψ
µ,j
k are constructed on a set of nested tensorial meshes with one-to-one correspondence

between grid points and functions. The coefficients c0
l and dµ,j

k represent, respectively,
the averaged values and the local variation details of the field u(x) at different scales.
Second generation wavelets, for which construction is based on the lifting scheme [6], are
employed in decomposition (1). These basis functions are suitable to deal with arbitrary
boundary conditions and irregular sampling intervals.

The WTF operation arises naturally from decomposition (1), where wavelets with
coefficients falling below a given prescribed limit are discarded. Formally, the correspond-
ing wavelet-filtered quantity, say u>ε(x), can be represented by the following conditional
wavelet projection:

u>ε(x) = ∑
l∈L0

c0
l φ0

l (x) +
J

∑
j=1

23−1

∑
µ=1

∑
k∈Kµ,j∣∣∣dµ,j

k

∣∣∣≥ε‖u‖WTF

dµ,j
k ψ

µ,j
k (x), (2)
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in which the terms are a subset of the original projection. Given the number J of resolution
levels, the filtered variable thus consists of the relatively more important wavelet modes,
according to the prescribed thresholding level. The latter is taken directly proportional to
some characteristic amplitude of the original unfiltered quantity, namely, ‖u‖WTF, with the
positive dimensionless parameter ε representing the constant of proportionality. In fact,
once the norm ‖·‖WTF is specified, the spatial filtering operator (2) is uniquely defined by the
threshold parameter. Following usual implementations, the L2–norm of the wavelet-filtered
solution is employed so that ε‖u>ε‖2 is assumed as the actual dimensional threshold. The
wavelet-based approach provides highly controlled a priori error estimation because the
reconstruction error of the filtered variable is shown to converge according to

‖u− u>ε‖2 ≤ Cε‖u‖2, (3)

where C is a constant of order unity [7].
Differently from Fourier cutoff filtering, which is based on functions that are localized

in wavenumber space, WTF basis functions are localized in both physical space (due to
compact support) and wavenumber space (due to fast decay and vanishing moments).
Therefore, WTF can be viewed as a local, spatially variable, smooth filter that removes
the high wavenumber components of the flow field. As demonstrated in [8,9], the filter
shape significantly affects LES in terms of spectral content and physical interpretation of
the solution. In particular, the residual stress tensor strongly depends on the assumed filter
shape, which causes closure models to be filter-dependent. The effect of the application
of the WTF procedure is illustrated in Figure 1, where the energy spectra associated with
filtered HIT velocity fields on a 1283 grid are shown [10]. As is expected, the filtering
weight increases with the thresholding level.
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Figure 1. Energy spectra for a wavelet-filtered instantaneous velocity field with different thresholding
levels along with the unfiltered solution.

However, relatively important small-scale flow structures are retained in the filtered
solutions, as is also demonstrated in Table 1, where captured energy and enstrophy are
examined. The multi-resolution nature of WTF allows small dissipative scales to be partially
resolved more effectively than for classical LES filters.
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Table 1. Fraction of active wavelets and captured energy/enstrophy for different thresholding levels.

Threshold ε Wavelets Energy Enstrophy

0.55 0.15% 95.08% 60.06%
0.40 0.46% 98.11% 77.08%
0.15 5.07% 99.88% 97.53%
0.05 12.50% 99.99% 99.98%

2.2. Filtered Governing Equations

The present article is focused on the hierarchical adaptive approach for modeling and
simulation of incompressible turbulent flows. The WA-LES methodology was recently
extended to compressible flows [11], as is discussed in the accompanying article in this
issue. The incompressible WA-LES-governing equations are formally obtained by applying
the WTF operator (2) to the Navier–Stokes equations, together with the divergence free
projection. For forced turbulent flows, the filtered equations are formally written as

∂u>ε
i

∂xi
= 0 , (4)

∂u>ε
i

∂t
+ u>ε

j
∂u>ε

i
∂xj

= −1
ρ

∂p>ε

∂xi
+ ν

∂2u>ε
i

∂xj∂xj
−

∂τij

∂xj
+ f

>ε
i , (5)

where ρ and ν are the constant density and kinematic viscosity of the fluid, while fi stands
for the unfiltered forcing field. The residual SGS stresses

τij = uiu>ε
j − u>ε

i u>ε
j (6)

can be thought of as representing the effect of unresolved (less energetic, coherent/incoherent)
background flow on the dynamics of resolved (more energetic, coherent) turbulent eddies.
Usually, with the isotropic part of the SGS stress tensor being incorporated by a modified
pressure variable, only the deviatoric part, hereafter noted with a star, τ∗ij = τij − 1

3 τkkδij, is
modeled. Additionally, the variable p>ε does not represent the wavelet-filtered pressure, the
bar symbol being only used for consistency reasons. Instead, as is typical for incompressible
flows, the pressure term on the right-hand side of (5) has to be viewed in the role of a
Lagrange multiplier enforcing the divergence-free velocity condition.

The interpretation of WTF as a spatial low-pass filter highlights the similarity between
present WA-LES and classical nonadaptive LES approaches. However, very different from
the usual LES filters, WTF continuously changes in time following the resolved flow field.
The characteristic filter width, say ∆WTF, which is implicitly defined by the thresholding
procedure, results in being a time-dependent pointwise variable parameter. This parameter,
which has to be interpreted as the actual turbulence resolution length scale [12], is also
a measure of the local numerical resolution, with the minimum allowable characteristic
width corresponding to the highest level of resolution J in decomposition (2). The smaller
the value of the wavelet threshold ε, the smaller the length scale ∆WTF and the greater the
fraction of resolved kinetic energy.

2.3. Closure Modeling

For any other LES approach, the WA-LES governing equations need to be supple-
mented by a closure model. The latter is mainly required to provide the right amount of
energy dissipation that allows us to mimic the net effect of unresolved turbulent eddies.
The local SGS dissipation that is the rate at which energy is locally transferred from energy
containing resolved eddies to unresolved residual motions is defined by ΠSGS = −τ∗ijS

>ε
ij ,

with S>ε
ij = 1

2

(
∂u>ε

i
∂xj

+
∂u>ε

j
∂xi

)
being the resolved strain-rate tensor. For instance, when
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adopting the eddy-viscosity assumption, τ∗ij
∼= −2νtS

>ε
ij , this variable is approximated as

ΠSGS
∼= νt|S

>ε|2, where the turbulent eddy-viscosity νt has to be determined.
In order to take full advantage of the unique properties of the WA-LES method in

simulating complex flows, due to its ability to automatically adapt to the computational
mesh, the use of localized models is particularly appropriate. Local dynamic one-equation
SGS models based on both eddy-viscosity and non-eddy-viscosity assumptions were
developed in [13], where an additional field variable representing the kinetic energy
associated with the unresolved motions, kSGS = 1

2 τii, was introduced. Following this
approach, the wavelet-filtered incompressible Navier–Stokes equations are numerically
solved along with the additional evolution equation for kSGS, which can be written as [14]

∂kSGS

∂t
+ u>ε

j
∂kSGS

∂xj
= ν

∂2kSGS

∂xj∂xj
+ ΠSGS − εSGS , (7)

where the viscous dissipation rate of SGS kinetic energy εSGS is suitably modeled [13]. In
the framework of localized dynamic kinetic-energy model (LDKM), it is assumed that
νt = Cν ∆WTF k1/2

SGS, and the SGS model can be written as

τ∗ij
∼= −2Cν ∆WTF k1/2

SGS S>ε
ij , (8)

where the model coefficient Cν is determined through a dynamic procedure. This way,
the energy transfer between resolved and residual flow structures can be explicitly taken
into account by the closure model without the equilibrium assumption that is often made
in classical approaches. It is worth noting that the turbulent eddy-viscosity νt can locally
assume positive as well as negative values, thus allowing for the representation of both
direct and reverse energy transfer at the local level. Different from a stochastic formulation
of energy backscatter, such as that proposed in [15], the present WA-LES is based on the
dynamic procedure utilizing the deterministic eddy-viscosity model. Furthermore, a class
of Lagrangian models based on a modified Germano-like dynamic procedure, redefined in
terms of WTF procedures, was developed in [16]. These models extend the original path-
line formulation for classical LES [17] to either path-line diffusive or path-tube averaging
procedures for WA-LES.

2.4. Adaptive Wavelet Collocation Method

From the mathematical point of view, once a model for the SGS stresses is given and
suitable initial and boundary conditions are provided, the WA-LES governing equations
could be solved using any numerical method. In practice, the filtered momentum in
Equation (5) is solved using the adaptive wavelet collocation (AWC) method, where the
same WTF procedure is exploited to automatically adapt the computational grid to the
numerical solution in both location and scale [18]. The AWC method is an adaptive high-
order numerical method for solving problems with localized structures that is based on
second-generation wavelets, which allow the order of the wavelets to be varied easily [19].

The dynamic grid adaptation is tightly coupled to the WTF definition (2), owing to the
one-to-one correspondence between wavelets in computational space and grid nodes in
physical space. As wavelet modes are discarded in the wavelet projection, their respective
collocation points are omitted from the computational grid because the associated value
of u>ε

i can be reconstructed (interpolated) using the retained wavelets only. It is worth
noting that the WTF operation and, therefore, the wavelet-based interpolation, are not
positivity preserving. The AWC method is based on the adaptive wavelet transform that
is thoroughly discussed in [18,19]. A reconstruction check procedure is also included
to ensure that all the ancestry grid points, necessary to perform the forward wavelet
transform, are present and that the filtered field is exactly reconstructed from the values
on the sparse grid. The spatial mesh results in being locally refined in the regions of
strong flow structures while appearing coarser in the regions of low variation because the
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retained wavelet modes capture energetic coherent eddies. Additionally, since WTF only
acts by removing points, the time-dependent mesh adaptation is obtained by predicting
AWC points that may become significant during the next time step. The sparse grid that
supports u>ε

i is thus enlarged by adding the adjacent zone, namely, the nearest neighbors
to each significant collocation point on the current, next lower, and next higher levels of
resolution. This strategy practically corresponds to adopting a Courant–Friedrich–Lewy
(CFL) condition [20], where a time step limitation for the finite-rate transfer of information
is imposed in both the physical and wavenumber spaces. More precisely, the overall grid
adaptation process for the numerical solution of the wavelet-filtered equations consists of
the following four steps:

(i) given a known solution u>ε
i at the current computational grid, say G t

>, the associated
wavelet coefficients are computed through forward wavelet transform;

(ii) the maskM consisting of the AWC points associated with the retained wavelets (with
coefficients for which the moduli are above the prescribed threshold) is created;

(iii) the extended mask M′ is generated by adding the AWC points corresponding to
adjacent wavelets (for which the coefficients can potentially become significant during
the next time step); and

(iv) the recursive reconstruction check procedure is performed on the extended mask
M′, ensuring that all the ancestry points, necessary to perform the forward wavelet
transform on the updated computational grid G t+∆t

> , are present.

The successive application of wavelet filtering and grid adaptation across time effec-
tively tracks and resolves the evolution of important flow structures on a near-optimal
adaptive computational grid [19]. The local resolution length scale ∆WTF can be extracted
from the actual global mask during the simulation. For fluid flow problems involving dif-
ferent variables of interest, given the relative level of thresholding, each variable is filtered
with its own absolute threshold. In this case, the union of the different AWC grids associ-
ated with each variable is used in the role of the actual computational grid. For instance,
when employing the LDKM procedure, the adaptation process also takes into account
the evolution of the SGS energy variable. Moreover, the possibility of employing control
and proxy variables for grid adaptation can be exploited to ensure that all the desired
aspects of the solution for associated analyses are maintained during the simulation given
the prescribed fidelity. Regarding the time-integration procedure, a multi-step pressure
correction method is employed for the integration of (5) with the continuity constraint (4),
with the resulting Poisson equation being solved using the AWC elliptic solver developed
in [21].

According to the present implicit filtering formulation, derivation of the WA-LES
governing equations directly depends on the WTF definition because the built-in filtering
effect of the AWC method is exploited. As an alternative, an additional explicit WTF
operation could be superimposed during the solution process [22]. This way, the resolved
turbulent field is still represented by the filtered variables at the prescribed level of turbu-
lence resolution while the explicit filtering procedure is simply a tool that enables us to use
a lower thresholding level for the numerical grid adaptation. However, the use of such an
approach results in using additional computational modes beyond the ones that are strictly
necessary to achieve the desired goal. For purely implicit filtering, as is done in the present
work, the threshold parameter controls both the spatial filter resolution and the numerical
accuracy of the solution. In fact, the adaptive mesh in physical space, which corresponds
to the retained modes in wavelet space, is employed to distinguish between the relative
energy content of the resolved flow structures as well as to determine their scale.

Different from wavelet Galerkin methods that solve problems in wavelet space
(e.g., [23]), the AWC method solves the governing equations in physical space. For the
results reported in this work, derivative approximations are provided by multi-level central
fourth-order finite difference (FD) schemes at the local adaptive resolution level. When
the finite differencing stencil requires points that are not explicitly present on the actual
collocation grid, the corresponding values are interpolated from the underlying wavelet
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basis functions. The linearized Crank–Nicolson split-step time-integration method with
adaptive time stepping and the parallel version of the AWC solver are employed [24].

It should be mentioned that, as in classical LES with nonuniform filter width, there
is a commutation error between the WTF and derivative operators, the effect of which
is not explicitly considered. However, this error is significantly reduced by using the
adjacent zone for grid adaptation. Moreover, the recent development of the anisotropic
AWC method [25] allows us to overcome the geometric restriction associated with the use
of second-generation wavelets that require a topologically regular, rectilinear grid. This
way, curvilinear mesh geometries can be used, when appropriate, in order to optimize the
computational cost of the simulations. Note that the anisotropic extension of the AWC
method, however, preserves the characteristic error control of wavelet-based approaches.

2.5. Homogeneous Turbulence Simulation

In this section, to demonstrate the capabilities of the method, the simulation of linearly
forced HIT at Reλ

∼= 60 (based on the Taylor micro-scale λ) is briefly discussed [26]. The
initial velocity field for the numerical simulations was obtained by wavelet filtering a fully
de-aliased pseudo-spectral 1923 DNS solution [2]. Due to the polynomial nature of the
AWC solver, the maximum resolution was increased with respect to DNS in order not
to alter the initial energy content, namely, WA-LES was performed using a maximum
resolution with 2563 AWC points. However, only a very low fraction of these points was
used by WA-LES, which was conducted at ε = 0.43, as suggested by the results of past
simulations carried out at comparable Reynolds numbers [27].

It was shown that the results of WA-LES with two different SGS models closely
match the reference DNS data, using only about 1% of the corresponding nonadaptive
computational nodes. In contrast to classical nonadaptive LES, where the energetic small
scales are poorly simulated, WA-LES is able to resolve coherent energetic eddies of any
size, so that the dynamically important small-scale turbulence is represented. The reference
643 LES solution was obtained by employing the same FD code without grid adaptation,
supplied with the global dynamic Smagorinsky eddy-viscosity model. The reference
wavelet-filtered DNS solution was obtained by applying the WTF procedure with the same
level of thresholding to the DNS data. As was reported in [26], a good agreement was
achieved for low-order statistics, such as spectral distributions of energy and enstrophy, all
the way down to the dissipative scales.

This is illustrated in Figure 2, where the time-averaged energy and enstrophy spectra
for WA-LES with a maximum resolution of 1283 are reported. By making a comparison
with wavelet-filtered DNS, which stands for the ideal solution, one can conclude that
WA-LES is able to represent highest wavenumber modes much better than nonadaptive
LES. Instantaneous description of the wavelet-filtered velocity field given in Section 2.1 is
thus confirmed for the time-dependent WA-LES solution. Moreover, the good agreement
between the no-model WA-LES and wavelet-filtered DNS is not surprising. Indeed, thanks
to the adaptive nature of the WA-LES approach, in the absence of modeled dissipation,
the energy is transferred to smaller scales all the way down to the Kolmogorov scale,
where it is eventually dissipated by viscous stresses. The number of active wavelets for
the no-model solution is higher with respect to the modeled cases, and the simulation
automatically tends towards a more computationally expensive regime, as is discussed in
the following section.
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Figure 2. Forced homogeneous isotropic turbulence (HIT): time-averaged energy (left) and enstrophy (right) spectra for
wavelet-based adaptive large-eddy simulation (WA-LES) with localized dynamic kinetic-energy model (LDKM) and global
dynamic model (GDM), compared to pseudo-spectral direct numerical simulation (DNS), wavelet-filtered DNS (FDNS),
no-model WA-LES (NOM), and nonadaptive dynamic LES.

3. Hierarchical Adaptive Eddy-Capturing Approach

The nature and importance of the residual stresses (6) in the wavelet-filtered Navier–
Stokes equations depends on the WTF weight, which is determined by the prescribed level
of thresholding. For very small thresholds, filtered and unfiltered solutions practically
coincide and the SGS stresses are completely negligible. The AWC method is still used
for dynamical grid adaptation, and the approach can be referred to as wavelet-based
adaptive direct numerical simulation (WA-DNS). The advantage of WA-DNS with respect
to traditional DNS, in terms of computational savings, comes from the high compression
property of wavelet-based computational modeling.

As demonstrated in a number of different applications, the additional cost associated
with the AWC method, with respect to corresponding nonadaptive methods, is more
than compensated for by the very high number of discarded AWC grid points during the
simulation (e.g., [27]). In fact, when making a fair comparison, the increased per-point
computational cost of the AWC solution, which is about four times higher, must be taken
into account. However, based on the grid compression observed in both WA-DNS and WA-
LES for a variety of flow configurations, the cost of corresponding nonadaptive calculations
would undoubtedly be considerably higher. In addition, the wavelet-based approach
becomes more and more effective with the increase in the Reynolds number [28].

For slightly larger thresholds, the CVS approach is obtained [29], where the residual
field was shown to be close to Gaussian white noise, so that the SGS dissipation is practically
negligible and no closure model is needed [30]. It is important to note that there is still
significant energy transfer between the resolved and unresolved modes in CVS, but the
net energy transfer is practically zero. This approach, which practically corresponds
to thresholds chosen according to the de-nosing criteria of Donoho and Johnstone [31],
has been shown to recover low-order and some high-order flow statistics [32]. If other
high-order statistics are required, then a purely stochastic SGS model may be used. For
instance, the HIT energy decay for CVS was demonstrated to be nearly identical to DNS
by retaining less than 2% of the wavelet modes [27]. Moreover, the skewness of the first
velocity derivative was maintained to within 10% of the DNS value, reflecting the fact that
CVS resolves most of the energy dissipation, thus confirming that the total SGS dissipation
is substantially negligible. Additionally, the CVS energy spectrum was proven to match
the DNS one over the full range of wavenumbers.
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Finally, for even larger thresholds, the SGS field is no longer completely incoherent
and the effect of coherent residual modes must be modeled through deterministic SGS
modeling, which corresponds to the WA-LES approach. The range of the thresholding
parameter that works well for the different fidelity methods depends on the flow problem
under consideration. For instance, WA-DNS of HIT at Reλ

∼= 60 can be conducted for
ε . 10−2, CVS corresponds to the range of 10−2 . ε . 10−1, and higher threshold values
are used for WA-LES.

Even though the thresholding level is usually assumed as a constant parameter that is
prescribed a priori, the use of a global thresholding criterion can represent a limitation of the
wavelet-based methods, especially for unsteady, inhomogeneous, and wall-bounded flows.
Indeed, in order to maintain the desired level of turbulence resolution, the threshold at
which decomposition (2) is truncated should be consistent with the actual flow conditions,
where the energy content of the dominant flow structures can significantly vary. Based
on this argument, a more sophisticated variable threshold strategy was developed. An
example of a fully adaptive eddy-capturing approach based on WTF with time-varying
thresholding is described in Reference [10]. With variable thresholding, the instantaneous
threshold is automatically adjusted to maintain the turbulence resolution at the a priori
prescribed level, which is achieved by solving a simple feedback control equation. In
this context, the turbulence resolution parameter that is defined as the ratio between the
modeled and the total dissipations serves as an objective measure to classify and compare
different LES solutions [33]. The smaller the value of ε(t), the smaller the fraction of energy
dissipation that is modeled and the smaller this ratio. The time varying threshold method
was successfully tested for both linearly forced and freely decaying HIT.

The spatiotemporally adaptive turbulence simulation framework that was further
developed in [34] is based on a variable-fidelity representation that tightly integrates
numerics with turbulence modeling and aims to capture the flow physics on a near-optimal
adaptive mesh. The integration is achieved by combining wavelet-based computational
modeling with spatially and temporally varying wavelet thresholding. This strategy
provides an automatic smooth transition from directly resolving all flow physics (WA-DNS)
to capturing the whole coherent part of the turbulence (CVS), and to resolving only energetic
coherent structures (WA-LES). Therefore, a hierarchical adaptive approach is attained,
where the switch between different fidelity solutions is achieved by employing a two-way
feedback mechanism between the modeled dissipation and the local grid resolution, owing
to the spatiotemporal variation of the WTF strength. This way, the proposed methodology
systematically accounts for and exploits the characteristic spatiotemporal intermittency of
turbulent flows. The procedure consists of tracking the wavelet threshold variable ε(x, t)
within a Lagrangian frame by exploiting a path-line diffusive averaging approach [16]. The
method is based on the solution of the following evolution equation for the threshold field:

∂ε

∂t
+ u>ε

i
∂ε

∂xi
= νε

∂2ε

∂xi∂xi
−Fε . (9)

To guarantee the smoothness of the spatially varying threshold while maintaining the
prescribed level of turbulence resolution, through a suitably constructed forcing term Fε, a
Smagorinsky-like diffusion parameter is assumed, namely, νε = Cνε ∆2

WTF|S
>ε
ij |, with Cνε

being a dimensionless coefficient of order unity. For computational efficiency, instead of
directly solving Equation (9), the threshold evolution can be also simulated by exploiting
the linear interpolation along characteristics, similarly to what proposed in [17]. This
procedure was empirically proven to be less expensive in [34].

Note that the same spatiotemporally variable thresholding strategy to resolve and
capture energy-containing/dynamically important eddies can be used across the differ-
ent WA-DNS, CVS, and WA-LES regimes. To highlight this commonality, the developed
variable-fidelity framework is referred to as a hierarchical adaptive eddy-capturing ap-
proach. The developed methodology was tested for linearly forced HIT at different
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Reynolds numbers and was demonstrated to effectively control turbulence resolution
at the desired time-varying level [34].

Combined Wavelet-Collocation/Volume-Penalization Method

To expand the applicability of the hierarchical adaptive eddy-capturing approach to
flows of engineering interest, it was combined with the Brinkman volume penalization
method in order to impose wall boundary conditions on solid obstacles [35]. A distinctive
advantage of combining wavelet-based dynamic grid adaptation and volume penaliza-
tion resides in the capability to enforce boundary conditions with a specified accuracy
without a significant computational overhead. In fact, the combined approach allows for
a significant cost reduction in time associated with grid generation as well as in other
computational costs.

By applying the combined approach, the simulation of the turbulent flow past a solid
obstacle was considered in [36,37]. The application of the WTF operator (2) to the penalized
momentum equations results in the following penalized equation for the wavelet-filtered
perturbation velocity:

∂u>ε
i

∂t
+
(

u>ε
j + Uj

)∂u>ε
i

∂xj
= −1

ρ

∂p>ε

∂xi
+ ν

∂2u>ε
i

∂xj∂xj
−

∂τij

∂xj
− χs

η
(u>ε

i + Ui) , (10)

where Ui represents the freestream velocity, which is given and known. The last term on
the right-hand side of this equation mimics the presence of a stationary obstacle, where χs
stands for the mask function associated with the penalized region, say Ωs,

χs(x, t) =

{
1, if x ∈ Ωs, ∀ t > 0,
0, otherwise.

(11)

The original equations in the fluid region are solved together with the penalized
equations in the solid region. The crucial parameter for the volume-penalization technique
is represented by the positive constant η, which has the dimension of time and reflects
the fictitious porosity of the obstacle. For vanishing η, the solution of the penalized
Equation (10), supplied with the divergence-free velocity condition (4), converges to the
solution of the original equations (without the penalized term), with the global penalty
error theoretically scaling with the square root of this parameter [38]. Additionally, since
the penalization constant can be prescribed independently of the numerical discretization,
the wall boundary condition can be enforced to any desired level of accuracy.

In the following, application of the combined wavelet-collocation/volume-penalization
approach to the flow around an isolated stationary prism with square cross-section is discussed.
The variable thresholding strategy was successfully tested in Reference [37], whereas the com-
bined approach with constant thresholding was applied to the same geometry in Reference [36].
Depending on the Reynolds number of the flow, either WA-DNS or WA-LES with LDKM
was performed. At low supercritical Reynolds number, the wake developed fundamental
three-dimensional flow structures for the adaptive method to effectively be able to identify and
follow. For example, let us illustrate the WA-LES solution at ReH = 2000 (based on the square
side length H). The flow structure in the near wake (2 < X/H < 8) is visualized in Figure 3,
wherein the instantaneous contours of the spanwise vorticity are reported at three different
planes along the spanwise homogeneous direction. Note that the X-axis corresponds to the
inlet flow direction while the Z-axis coincides with the symmetry axis of the cylinder.

The capability of the present method to dynamically adapt to the fluid flow evolution
is clearly demonstrated by looking at the corresponding computational mesh, which is
reported on the right side of the same figure. In fact, the active grid points are only present
in the regions of large gradients or small-scale flow features, and their instantaneous spatial
distribution closely resembles the main vortical structures. That is consistent with the
spatiotemporal evolution of the wavelet threshold that adapts to the local flow conditions,
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with the solution tending towards the desired resolution goal. The three-dimensional
structure of the threshold field is visualized in Figure 4, where the instantaneous iso-
surfaces of ε = 0.12 are shown.
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Figure 3. WA-LES of square-cylinder flow: spanwise vorticity contours (left) and computational mesh (right) in the planes
Z/H = −1.2, 0, and 1.2 at a given time instant in the near wake.

Figure 4. WA-LES of square-cylinder flow: iso-surfaces of ε = 0.12 in the near wake.

The general agreement of the WA-DNS and WA-LES results with the experimental
findings and reference numerical nonadaptive solutions, as discussed in References [36,37],
demonstrates the feasibility, accuracy, and efficiency of the combined wavelet-collocation/
volume-penalization methodology for modeling bluff body flows. For the sake of brevity,
only some very important integral results are discussed in this review. In Table 2, the mean
drag coefficient CD and the Strouhal number St, associated with the vortex shedding
process behind the cylinder, are presented. The results provided by WA-DNS at ReH = 200
and WA-LES at ReH = 2000 were compared with reference numerical data [39,40] as well
as experimental findings [41,42]. For each study, the spanwise extent b/H and the solid
blockage of the confined flow β are also shown.
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Table 2. Square-cylinder flow: comparison of WA-DNS and WA-LES results against reference numerical
and experimental data.

Study b/H β(%) ReH CD St

WA-DNS [36] 4 6.25 200 1.57 0.158
DNS [39] 6 5.56 200 1.39 0.157

Experimental [41] − − 200 − 0.159
WA-LES [37] 4 6.25 2000 2.07 0.131

LES [40] 4 7.69 2000 2.6 0.132
Experimental [42] 9.75 7 21, 400 2.1 0.132

The effect of varying the thresholding level was examined for WA-DNS at ReH = 200
and is presented in Table 3, where the root-mean-square values of the aerodynamic coef-
ficients are also reported. In this case, the WTF level practically stands for a numerical
resolution parameter directly affecting the accuracy of the solution. Note that the use
of smaller values of the wavelet threshold results in more accurate simulations, with a
possible decrease in the minimum mesh spacing δmin at the expense of increasing the
number of retained AWC points.

Table 3. WA-DNS of square cylinder flow: integral results for different wavelet thresholds.

ε δmin CD C′
D C′

L St

5× 10−3 2−6 1.57 0.034 0.366 0.158
1× 10−3 2−6 1.60 0.030 0.368 0.159
5× 10−4 2−7 1.61 0.033 0.364 0.159

4. Concluding Remarks

The development of wavelet methods in computational fluid mechanics combined with
the distinctive capability of wavelet multi-resolution analysis to identify and isolate coherent
eddies allows for the integration of numerics- and physics-based turbulence modeling, where
energetic flow structures are dynamically tracked on adaptive computational meshes.

This manuscript, while providing a short review of different wavelet-based meth-
ods for incompressible turbulence, discusses a novel integrated hierarchical adaptive
eddy-capturing approach capable of performing variable fidelity numerical simulations of
turbulent flows, including complex geometry applications. However, some further devel-
opments are needed before the methodology can be used as a practical tool for simulating
turbulent flows of industrial relevance. In particular, higher-Reynold-number flows must
be considered, where the adaptive wavelet-based methods are expected to become even
more efficient.

The present hierarchical approach is based on utilization of the AWC method for solv-
ing the wavelet-filtered governing equations. However, the same wavelet-based method
can be also limited to the efficient solution of differently modeled equations. For instance,
lower-fidelity approaches such as wavelet-based adaptive unsteady Reynolds-averaged
Navier–Stokes (WA-URANS) [43–45] and wavelet-based adaptive delayed detached eddy
simulation (WA-DDES) [46] were recently developed and incorporated into the more
general hierarchical adaptive eddy-resolving framework for wall-bounded compressible
turbulent flows, which also includes WA-DNS, CVS, and WA-LES. Differently from the
hierarchical adaptive eddy-capturing approach described in this article, the hierarchical
adaptive eddy-resolving framework discussed in the accompanying article in this issue
also includes model-form adaptation while incorporating both wavelet-filtered and RANS
equations, together with the associated model closure equations. Note that both formula-
tions exploit the positive characteristics of wavelet-based numerical methods and achieve
significant computational savings from wavelet-based grid compression.



Fluids 2021, 6, 83 13 of 15

Author Contributions: Data curation, G.D.S. and O.V.V.; investigation, G.D.S. and O.V.V.; methodol-
ogy, G.D.S. and O.V.V.; resources, G.D.S. and O.V.V.; supervision, G.D.S.; validation, G.D.S. and O.V.V.;
visualization, G.D.S.; writing—original draft preparation, G.D.S.; writing—review and editing, G.D.S.
and O.V.V. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
LES Large-Eddy Simulation
SGS Sub-Grid Scale
HIT Homogeneous Isotropic Turbulence
WA-LES Wavelet-based Adaptive Large-Eddy Simulation
WTF Wavelet Threshold Filtering
WA-DNS Wavelet-based Adaptive Direct Numerical Simulation
CVS Coherent Vortex Simulation
LDKM Localized Dynamic Kinetic-energy Model
AWC Adaptive Wavelet Collocation
CFL Courant–Friedrich–Lewy
FD Finite Difference
GDM Global Dynamic Model
WA-URANS Wavelet-based Adaptive Unsteady Reynolds-Averaged Navier–Stokes
WA-DDES Wavelet-based Adaptive Delayed Detached Eddy Simulation
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