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Abstract: The cross-flow over a surface-mounted elastic plate and its vibratory response are studied
as a fundamental two-dimensional configuration to gain physical insight into the interaction of
viscous flow with flexible structures. The governing equations are numerically solved on a deforming
mesh using an arbitrary Lagrangian-Eulerian finite-element method. The turbulent flow is resolved
using the unsteady Reynolds-averaged Navier–Stokes equations at a Reynolds number of 2.5 × 104

based on the plate height. The material properties of the plate are selected so that the structural
frequency is close to the frequency of vortex shedding from the free edge of a rigid plate, which is
studied initially as the reference case. The results show that the plate tip oscillates back and forth in
response to unsteady fluid loading at twice the frequency of vortex shedding, which is attributable
to the sequential formation of a primary vortex from the free edge and a secondary vortex near
the base of the plate. The effects of the plate elasticity and density on the structural response are
considered, and results are compiled in terms of the reduced velocity U∗ and the density ratio ρ∗. The
standard deviation of tip displacement increases with reduced velocity in the range 7.1 6 U∗ 6 18.4,
irrespective of whether the elasticity or the density of the plate is varied. However, the average
deflection of the plate in the streamwise direction displays different scaling with U∗ and ρ∗, but
scales almost linearly with the Cauchy number ∼U∗2/ρ∗. Interestingly, the synchronization between
plate motion and vortex shedding ceases at U∗ = 18.4, and the excitation mechanism in the latter
case resembles flutter instability, rather than vortex-induced vibration found at lower U∗.

Keywords: flow-structure interaction; flexible structures; flow separation; vortex shedding; vortex-
induced vibration; fluid-elastic instability; flutter; simulation; computational fluid dynamics

1. Introduction

Flow-structure interaction (FSI) is encountered in many natural phenomena, as well
as technological applications in both aquatic (liquid) and atmospheric (gas) environments.
Examples found in nature are the bending of leafs and twigs and the motion of crops
under the influence of winds, the heart valves that open and close in rhythm with the
pulsating blood flow, and the locomotion of birds, fishes, and micro-organisms, to name a
few [1–4]. Early interest in FSI arose from technological applications where it is important
to avoid unwanted—sometimes catastrophic—consequences of flow-induced vibration
of, e.g., heat-exchanger tubes, offshore risers, overhead cables, poles, chimneys, and
even buildings [5,6]. More recently, attention has turned to applications where FSI can
be exploited to improve the design of various devices and processes, e.g., find novel
forms of marine propulsion and maneuvering [7,8], design artificial heart valves [9,10],
construct effective vortex generators for heat transfer and mixing enhancement or passive
perturbations for flow control [11–15], optimize the efficiency of energy harvesting through
oscillations or piezoelectric elements [16–23], etc.

To gain insight into the underlying FSI mechanisms, researchers have often employed
simple configurations involving thin flexible plates or filaments. A number of studies
considered axial flow over a cantilevered plate pinned at one end, which is sometimes
referred to as the flag or the inverted flag [24–26]. It was shown recently that critical flow
velocities for large amplitude divergence and flapping of the inverted flag can be predicted
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fairly well by a two-dimensional (2D) theoretical model when the ratio of the plate width
to its length (i.e., the aspect ratio) is large [27]. Similarly, several studies considered flexible
plates in 2D cross-flow, which can be rendered more readily to modeling and theoretical
analysis [28–31]. However, related experiments usually involve small-aspect-ratio plates
such as flaps or tabs in cross-flow [32,33]. In the latter case, the flow separates from all
three free sides of the plate, and the wake flow becomes highly three-dimensional (3D).
These studies focused on the scaling of the average drag force with the cross-flow velocity,
which is different than the classical quadratic law for fixed plates because of the average
plate deformation (referred to as “reconfiguration”).

The bending of a cantilevered flexible plate in a cross-flow has also been studied by
means of computational methods. Reference [34] considered the effect of the Reynolds
number on the average deformation and average drag exerted [34]. Their visualization
revealed unsteady 3D vortical structures, but no information was reported on the dy-
namic motion of the plate for Reynolds numbers in the range of 100–1600. Another study
considered the 2D problem of oscillatory cross-flow over a flexible beam with the aim
of assessing extended arbitrary Lagrangian-Eulerian (ALE) methods for the simulation
of fluid–structure interaction [35]. For the parameters of that investigation, no vortex
shedding occurred, and the beam vibrated in response to the oscillatory pressure loading
induced by the time-dependent inflow. More recently, the interaction of cross-flow with
short-aspect-ratio flexible flaps of different thicknesses was studied in glycerin for laminar
flow [36]. Complimentary simulations showed the transient stages until the flap reaches
a final deformed configuration. For Reynolds numbers ranging from three to 12, no flow
periodicity or flap vibration was observed. However, flexible tabs in high-blockage cross-
flow can develop visco-elastic instabilities that can lead to flow-induced vibration even at
low velocities [37].

Despite the theoretical and practical interest in related FSI problems, the cross-flow
over cantilevered flexible plates of a high aspect ratio has received little attention to date. On
the other hand, the nominally two-dimensional flow over a surface-mounted rigid obstacle
such as a thin vertical fence has received considerable attention in past decades with
reference to applications in the atmospheric boundary layer. Fences are often employed
as wind breakers that create a sheltering effect [38–40]. As a consequence, most of the
early experimental studies concentrated on the development of the mean flow, which is
characterized by a large recirculation region behind the fence. For this configuration, the
main governing parameter is the ratio of the thickness of the boundary layer to the fence
height. The resulting flow is also sensitive to the velocity profile, free-stream turbulence
level, and obstacle height to channel height. Another parameter that has received much
attention is the porosity of the fence with the aim of optimizing the design of wind breakers,
i.e., optimal protection at minimum cost [41,42]. Interestingly, the full-scale wind breaker
still poses challenging issues [43,44].

Although the flow over an upright fixed fence has received considerable attention,
there is rather scarce information on the instability of the shear layer separating from its
free edge, the formation of large-scale vortices, and eventual vortex shedding in the wake.
A number of studies have provided more complete information on both time-averaged
and instantaneous flow structures, which clearly show the unsteady nature of the flow
over surface-mounted obstacles [45–47]. Few studies have also considered active flow
control by periodic suction/blowing upstream to manipulate the length of the recirculation
bubble [48,49]. It was found that the length of the recirculation bubble can be considerably
reduced when the forcing frequency is close to the frequency of the shear-layer instability.
This inherent flow periodicity induces unsteady loading on a flexible structure and may
excite it into vibration if it is not stiff enough.

It follows from the above review of the literature that the cross-flow over a cantilevered
elastic plate of a large aspect ratio, and in particular, its induced dynamic motion, poses an
interesting FSI test case that has not received much attention. Strong interaction between
the flow and the plate might be anticipated when the frequency of some flow instability
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approaches the natural frequency of the structure. Therefore, we initiated a computational
2D study to investigate the dynamic response by trying to match the structural frequency to
that of the vortex shedding from a static (rigid) plate, which was studied first as a reference
case. In addition, we investigated the effect of the elasticity and density of the plate on its
dynamic response at conditions around the coincidence point with the objective to elucidate
the physics of flow-induced vibration in this fundamental configuration, which can be used
as a benchmark in 2D FSI. The results of the present study show that the plate vibrations can
be excited by different underlying mechanisms, i.e., either synchronization with the vortex
shedding or fluid-elastic (flutter-like) instability depending on the material properties.

In the next section, we present in detail the flow configuration and the set of dimen-
sionless parameters employed to describe the problem, as well as the governing equations
and the computational method and setup employed to solve them. In Section 3, we present
the results for rigid and elastic plates in cross-flow, and in Section 4, we discuss main
findings from the present study in a broad context.

2. Methods
2.1. Problem Definition

A schematic of the geometry of the two-dimensional (2D) problem under consideration
is shown in Figure 1. It comprises fluid flow over a surface-mounted plate of thickness
0.1H where H is its height. The plate is assumed to be elastic with Young’s modulus E,
density ρs, and Poisson’s ratio ν. Given the dimensions and the mechanical properties
of the solid plate, its structural dynamics can be characterized by the eigenmodes and
eigenfrequencies, which can be estimated from theory for elastic plates. The structural
frequencies are given by [50]:

fi =
λ2

i
2πH2

√
Et2

12ρs(1 − ν2)
(1)

where t is the plate thickness and λi is a factor that depends on the end conditions. In
this study, we are primarily interested in the fundamental eigenmode of bending (i = 1),
whose natural frequency will be denoted fn. The fluid of density ρ f and dynamic viscosity
µ f flows parallel to the bottom floor and over the plate. The fluid dynamics can be
characterized by the Reynolds number, which is defined based on the plate height H and
the velocity of the approaching flow U0, i.e., Re = ρ f U0H/µ f . As the flow separates
from the free edge of the plate, the shear layer becomes unstable and rolls up, leading to
the formation of large-scale vortices, which are periodically shed downstream. The flow
periodicity can be characterized by the Strouhal number, S = fvsH/U0, where fvs is the
frequency of vortex shedding in the wake of the plate. Generally, the Strouhal number
is a function of the Reynolds number. For all simulations reported in the present paper,
the Reynolds number was kept constant at 2.5 × 104, to avoid complications due to this
relationship. To compile the data, we selected two non-dimensional parameters, namely
the density ratio, ρ∗ = ρs/ρ f , and the reduced velocity, U∗ = U0/ fn H [51].

The assumption of 2D flow is a reasonable approximation for cantilevered flexible
plates in cross-flow when the ratio of the plate width to its length (i.e., the aspect ratio) is
large. Nonetheless, it is possible that 3D flow instabilities may develop even for large-aspect-
ratio plates in cross-flow, particularly at high Reynolds numbers, which may influence
the development of the flow separating from the free edge. Although the 2D assumption
suppresses 3D instabilities and may alter the detailed physics, the cross-flow over large-
aspect-ratio plates is dominated by the spanwise component of the vorticity, which is larger
by approximately an order of magnitude than the other two components; as a result, the
direct effect of 3D flow structures on the main fluid force that drives the plate’s vibration
(in the present configuration, this is the streamwise component of the force) is expected to
be weak.
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Fig. 1 The computational domain and the boundary conditions employed in the CFD simulations 
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Figure 1. Schematic showing the flow domain and the boundary conditions employed in
the simulations.

2.2. Governing Equations

The fluid was modeled as incompressible and Newtonian, whose motion is governed
by the continuity and Navier–Stokes equations, respectively,

∇ · ufluid = 0 (2)

and:

ρ f
∂ufluid

∂t
+ ρ f (ufluid − unode)∇ · ufluid = ∇ · σfluid. (3)

Above, ufluid is the fluid velocity vector; unode is the local velocity of the node; and
σfluid is the fluid stress tensor:

σfluid = −pI + µ f

(
∇ufluid + (∇ufluid)

T
)

, (4)

where p is the fluid pressure and I is the unit tensor. The nabla symbol (∇) denotes the
vector differential operator, and the center dot symbol (·) denotes the inner product of
vectors along their common use in fluid mechanics. Due to the turbulent nature of the flow
being considered, the unsteady Reynolds-averaged Navier–Stokes (URANS) equations
with the standard k − ε turbulence model were employed to resolve the flow. For the
brevity of the presentation, we omit the details of the k − ε model, which can be found in
the literature [52]. In addition, wall functions were utilized to capture the development of
the boundary layer on the bottom floor.

The plate was modeled as a finite elastic beam, whose motion is governed by:

ρs
∂2ξsolid

∂t2 −∇ · σsolid = 0 (5)

where ξsolid is the nodal displacement and σsolid is the solid stress tensor (note that body
forces were assumed negligible). The plate is fixed at the solid bottom, so usolid = 0 there.
At the fluid-solid interfaces around the plate, the boundary conditions comply with the
kinematic balance:

∂ξsolid
∂t

= ufluid = unode, (6)

and the dynamic balance:

n · σsolid = n · σfluid, (7)

where n is the unit vector normal to the surface element.
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2.3. Solver, Mesh, and Parameters

The numerical simulations were carried out by solving the governing equations with
a finite-element method. The arbitrary Lagrangian-Eulerian (ALE) method was employed
to combine the fluid dynamics using a Eulerian frame of reference and the solid dynamics
using a Lagrangian description in a moving material frame. To accommodate the solid
motion, the mesh was deformed at the fluid-solid interface, and smoothing functions were
employed to transmit smoothly the deformation in the rest of the computational domain.
The solutions of the fluid and solid dynamics were fully coupled. At each time step, the
fluid velocity and pressure fields were computed initially by the solution of the fluid-flow
equations. Then, the computed fluid stresses were applied on the fluid-solid boundary
to get the solid deformation and appropriately deform the fluid-domain mesh. Finally,
the fluid velocities were imposed afresh on the fluid-solid interface based on the solid
velocities. The whole procedure was repeated until the solution in both domains converged
in each time step and then proceeded to the next time step.

The two-dimensional computational domain is 15H long by 8H tall with the plate
placed at 5H from the inlet boundary on the left-hand side (see Figure 1). The fluid
enters the control volume with uniform velocity U0 = 0.25 m/s parallel to the bottom
floor, and the inlet flow is assumed to be mildly turbulent with k − ε parameters set at
k0 = 0.005 m2/s2 and ε0 = 0.005 m2/s3. The ratio of the plate height to the vertical
length of the computational domain is 1/8, which is sufficient to avoid strong effects from
the upper boundary. The plate was placed at a small distance from the inlet so that the
thickness of the boundary layer, δ, that develops on the bottom floor at the location of the
plate is very small compared to the height of the plate. When δ is comparable to H, the
boundary layer development influences the flow over the plate, and the ratio δ/H becomes
a governing parameter [39,40]. By keeping δ/H very low, the number of non-dimensional
parameters governing the problem is reduced by one. This allowed us to focus on the
effects of the reduced velocity U∗ and the density ratio ρ∗. Table 1 lists the geometrical,
fluid, and solid properties employed in the present study for completeness.

Table 1. Geometrical, fluid, and solid properties employed in the present study.

Fluid
Density, ρ f 1000 kg/m3

Viscosity, µ f 0.001 Pa·s
Velocity, U0

0.25 m/s

Solid

Height, H 0.1 m
Thickness 0.01 m

Poisson’s ratio, ν 0.33
Density, ρs 3000–7000 kg/m3

Young’s modulus, E 0.2–1.0 GPa

The computational mesh employed in the simulations along with its details around
the plate and near the bottom wall are shown in Figure 2. The density of the grid is high
near the bottom wall and around the plate surface in order to capture accurately small
solid deformations (see Figure 2b,c). The core mesh consists of trihedral elements, except
near the bottom wall, where tetrahedral elements were used to resolve the hydrodynamic
boundary layer with better accuracy (see Figure 2c). A time step of 0.01 s was employed,
which yields an average Courant number of 0.16. The equations were integrated for a total
time of 100 s, which is sufficient to establish a steady quasi-periodic state and to analyze the
dynamic character of the fluid flow and solid deformation. A mesh independence study
was conducted for a dynamic case by approximately doubling the number of finite elements.
The grid refinement resulted in differences of less than 3% in the root-mean-squared (r.m.s.)
amplitude of the tip displacement.
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Figure 2. The computational mesh (a), detail of the mesh around the plate (b), and detail of the mesh
near the bottom solid boundary (c).

3. Results
3.1. Rigid Plate

Initially, the flow over a rigid plate was simulated as a reference case for obtaining
the frequency of flow instabilities given the scarcity of related information in the literature.
Figure 3 shows snapshots of the vorticity distribution at different instants over approx-
imately a flow cycle. It can be clearly seen that the shear layer separating from the free
edge rolls up, leading to the formation of large-scale vortices behind the plate. While a
“primary” large-scale negative (clockwise) vortex is formed and its circulation increases as
it is fed from the shear layer, another smaller positive (anticlockwise) vortex forms at the
base of the plate. This “ground” vortex gradually increases in size, until it cuts the supply
of vorticity to the primary vortex, which separates from the plate (see the left snapshot
in the bottom row of Figure 3). As the primary vortex is convected along the main flow
direction, it entrains the ground vortex, which lifts off the bottom and engulfs the primary
vortex further downstream. During this lifting process, the ground vortex disintegrates
into smaller vortices that become diffused so that the primary vortices generated over
subsequent cycles dominate the flow pattern.

Figure 4 shows the time series of the streamwise velocity fluctuations and the corre-
sponding spectra at four different locations (x/H, y/H) = (1.0, 1.5), (1.0, 0.5), (3.0, 1.5),
and (0.30, 0.50) with respect to the base of the plate (x/H, y/H) = (0, 0). The monitoring
points correspond to locations just above and below the shear layer separating from the
free edge of the plate. The time series span the last 40 time units of the simulation. There is
a clear periodicity in all time series, but the oscillation waveform is quite different at each
monitoring point. It can be observed that there are several superharmonics of the main
frequency in the spectra that might be attributed to the strongly non-harmonic waveform of
the velocity fluctuations induced by the complex process of vortex formation and shedding
behind the plate. The dominant peak occurs at fv0 = 0.225 Hz, which yields a Strouhal
number of St = 0.090. It should be noted that all spectra reported in this paper were
obtained by the fast Fourier transform for the last 40 time units of the simulations to avoid
transient effects from the initial condition.
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  Figure 3. Snapshots of the vorticity distribution around a rigid plate at different instants going from left to right, then below,
which show the flow development over approximately a cycle of vortex shedding.

As already noted in the Introduction, there are not enough related studies in the
published literature to compare the Strouhal number. Fang et al. [45] conducted a 2D
numerical study of the flow around a thin plate and found St = 0.063 at Re = 4 × 103.
However, in their study, the ratio of the boundary-layer thickness to the plate height was
δ/H = 7, whereas in the present study, it is estimated to be δ/H ≈ 0.07 at the plate’s
location using the Blasius solution. They also found—albeit at a much higher Reynolds
number of 105—that the Strouhal number decreases with δ/H, which is consistent with
the higher Strouhal number found in the present study. More recently, the nominally
two-dimensional flow from a rigid upright fence was investigated by 3D large-eddy
simulations [53]. For Re = 2 × 104, it was found that the passage of large-scale eddy
structures corresponded to a Strouhal number of 0.08, which is close to the value found in
the present study.
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Figure 4. Time series of the streamwise velocity (left plot) and corresponding spectra (right plot) at different locations for a
rigid plate. The insert shows the monitoring locations of the velocity.

Figure 5 shows time series of the reaction forces exerted by the plate on the fluid
in the drag and lift directions from the beginning of the simulation (left plot) and the
corresponding spectra computed for the final 40 time units of the simulation (right plot).
It can be seen that there is an initial transient period of approximately 50 s until a quasi-
periodic state is attained. Both force components exhibit some oscillations induced by the
unsteady flow. The drag force exhibits rich spectral content with several peaks. The highest
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peak in the drag spectrum occurs at twice the frequency of vortex shedding. This might
be attributable to the two-step process of vortex formation, i.e., the periodic generation of
positive vorticity from the edge and negative vorticity near the base both contribute to the
drag force acting on the plate. This resembles the well-known feature that a bluff body that
periodically sheds vortices in its wake experiences a drag that has twice the frequency of
the lift. On the other hand, the lift force is very small relative to the drag force, and the
spectrum of the lift force exhibits a main peak at the frequency of vortex shedding.

 

F
o

rc
e

  

Figure 5. Time series of the reaction drag and lift forces acting on the plate (left plot) and corresponding spectra (right plot)
for a rigid plate.

3.2. Elastic Plate with fn ≈ fv0

For the simulations with an elastic plate, we aimed to match the fundamental frequency
of the structure to the frequency of vortex shedding from the rigid plate ( fn ≈ fv0 = 0.225 Hz).
After initial selection of the material properties of the elastic plate using Equation (1), the
structural frequencies were accurately computed via eigen-mode analysis with the finite-
element method. When the plate is immersed in fluid, the actual structural frequency will
be lower due to the added mass effect [54]. However, here, we use the structural frequency
in a vacuum. For a solid density of 7000 kg/m3 and Young’s modulus of 0.50 GPa, the
eigen-mode analysis resulted in fn = 0.215 Hz, which yields a density ratio of ρ∗ = 7 and a
reduced velocity of U∗ = 11.6 for the test case, which is discussed below.

Figure 6 shows snapshots of the vorticity distribution vorticity over the elastic plate at
different instants. The process of vortex shedding is similar as in the case of the rigid plate
comprising the two-step process of vortex formation from the free edge and from the bottom
(cf. Figure 3). However, vorticity concentrations now appear more compact, and vortex
motions appear better organized. In addition, the lift-off process of the ground vortex is
much clearer for the dynamic case, while the ground vortex remains rather organized after
the lift-off. Figure 7 shows the contours of the velocity magnitude, which further illustrate
the flow disturbance caused by the regular shedding of vorticity. In both Figures 6 and 7, it
can be hardly discerned that the plate gets deflected in the streamwise direction.

Figure 8 shows time series of the streamwise velocity and corresponding spectra
corresponding to the last 40 time units of the simulation for the case of a flexible plate
at the same monitoring points as for the rigid plate. For the dynamic case, the velocity
fluctuations are again close to periodic, but there exist cycle-to-cycle variations. The
dominant spectral peak occurs at 0.2275 Hz, which is slightly higher than the frequency of
vortex shedding from the rigid plate ( fv0 = 0.225 Hz). The magnitude of the dominant peak
at each monitoring point is lower for the elastic than for the rigid plate, which illustrates
that the solid deflection weakens the velocity fluctuations associated with vortex shedding.
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 Figure 6. Snapshots of the vorticity distribution around a vibrating elastic plate at different instants from left to right, then
below for ρ∗ = 7 and U∗ = 11.6.

 

 Figure 7. Contours of the velocity magnitude around a vibrating elastic plate at different instants going from left to right,
then below for ρ∗ = 7 and U∗ = 11.6.
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Figure 8. Time series of the streamwise velocity (left plot) and corresponding spectra (right plot) at different locations
downstream of the elastic plate for ρ∗ = 7 and U∗ = 11.6.

Figure 9 shows the time series of the tip displacement for the last 40 time units of
the simulation and the corresponding spectrum. It can be clearly seen that the plate
oscillates back and forth with a root-mean-squared amplitude of 0.027H in addition to
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being deflected by 0.153H on average. In this test case, the tip oscillation is not very
regular, and several peaks appear in the tip-displacement spectrum in the right plot. The
dominant peak occurs at 0.45 Hz, which is exactly twice the frequency of vortex shedding.
The second highest peak occurs at the first superharmonic, while the third highest peak
occurs at the first subharmonic. We see that the plate responds to fluid-induced loading
by synchronization at twice the vortex shedding frequency when the primary structural
frequency is close to the Strouhal frequency of the rigid plate. The synchronization of
the vortex shedding to the subharmonic of the oscillation frequency is commensurate to
the lock-in phenomenon observed for elastically-mounted rigid and cantilevered elastic
circular cylinders undergoing vortex-induced vibration in the streamwise direction [55–57].
Interestingly, the same phenomenon is observed here for an elastic plate vibrating along
the streamwise direction despite the geometry being substantially different. Therefore, the
excitation mechanism can be classified as vortex-induced vibration.

  

 

D
is

p
la

ce
m

e
n

t 
 

Figure 9. Time series of the tip displacement of the elastic plate (left plot) and the corresponding spectrum (right plot) for
ρ∗ = 7 and U∗ = 11.6.

Figure 10 shows time series of the reaction drag and lift forces acting on the elastic
plate from the beginning of the simulation (left plot) and corresponding spectra computed
for the final 40 time units of the simulation (right plot). In this particular test case, the
average drag and the root-mean-squared amplitude of the unsteady drag for the vibrating
plate are not much different from their corresponding values for the static plate. However,
when the plate is vibrating, the spectrum of the drag force displays a very pronounced
peak at 0.45 Hz, i.e., at twice the frequency of vortex shedding, having twice the magnitude
of the corresponding peak for the static case. In addition, the dominant peak is much more
distinct from other spectral peaks for the elastic plate than for the static one. This might
be attributable to additional inertial forces arising from the motion of the plate, which
are in-phase with the acceleration and therefore have the same frequency as the motion
by default. The lift force increases relative to the static case, but it remains much lower
than the drag force. The spectrum of the lift force displays a dominant peak at the main
vibration frequency and minor peaks at its superharmonics in contrast to the static plate, in
which case the main spectral peak occurs at the shedding frequency.
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Figure 10. Time series of the reaction drag and lift forces acting on the elastic plate (left plot) and corresponding spectra
(right plot) for ρ∗ = 7 and U∗ = 11.6.

3.3. Effect of Solid Elasticity and Density

A number of simulations were carried out to investigate the effect of the elasticity
and the density of the solid plate on its response. Both parameters affect the structural
frequency and thereby the reduced velocity U∗. This provides the opportunity to check if
response data could collapse as a function of U∗ when either the elasticity or the density
is varied. However, it should be noted that variations in the solid density also change
the density ratio ρ∗, whereas variations in the solid elasticity do not change ρ∗ so that
independent effects of U∗ and ρ∗ on the plate response can also be segregated.

Initially, the Young’s modulus of elasticity was varied from 1 GPa to 0.2 GPa so that
U∗ was in the range from 8.2 to 18.4, while keeping the density ratio constant at ρ∗ = 7. In
all these test cases, the frequency of vortex shedding from the vibrating plate remained
close (but not equal) to that from the static plate, fv0, as will be shown in the Discussion.
Figure 11 shows time series of the tip displacement and corresponding spectra over the
last 40 time units for three test cases. It can be seen that for U∗ = 8.2 and 11.1 (E = 1 and
0.54 GPa, respectively), the tip displacement becomes almost perfectly periodic with its
dominant spectral peak occurring near twice the frequency of vortex shedding of the static
plate, i.e., at approximately 2 fv0 (Figure 11a,b). It should be noted that the tip vibrated at
exactly twice the frequency of vortex shedding, which indicates strong synchronization
(or “lock-in”) between the plate motion and the flow for U∗ = 8.2 and 11.1. In particular,
the test case with E = 0.54 GPa was selected so that the structural frequency matches
precisely the frequency of vortex shedding from the rigid plate. By decreasing the elasticity
further down to 0.2 GPa, the reduced velocity increases to U∗ = 18.4, and the dynamics
of the flexible plate and that of the flow become more complex, leading eventually to a
chaotic-like response. This is evidence in the time series of tip-displacement oscillations and
the fact that the displacement spectra display a broader range of frequencies (Figure 11c).
In the latter case, the dominant peak in the displacement spectra is close to the structural
frequency rather than that of vortex shedding.

Subsequently, the density of the solid plate was varied while keeping constant the
Young’s modulus of elasticity at 0.5 GPa. Figure 12 shows time series of the tip displacement
over the last 40 time units for two test cases. For a solid density of ρs = 5000 kg/m3

(U∗ = 9.3), the tip displacement displays a predominant spectral peak close to twice the
frequency of vortex shedding from the static plate (Figure 12a). It is interesting to note
that for the last 20 time units, the tip oscillations display small-amplitude modulations,
although the oscillations appear rather repeatable from cycle to cycle. Another spectral
peak appears at approximately 3 fv0, but no peak can be observed at the nominal shedding
frequency. A further decrease of the plate density to ρs = 3000 kg/m3 (U∗ = 7.1) leads to
the re-emergence of a spectral peak close to fv0 in addition to the dominant spectral peak at
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2 fv0. Higher superharmonics are also present, which could indicate strong synchronization
between the tip motion and unsteady flow for U∗ = 7.1.

Generally, the tip displacement displays almost periodic oscillations phase-locked
with the unsteady flow when the structural frequency is close to (within ±5%) the fre-
quency of vortex shedding for the rigid plate, whereas in other cases, there exist amplitude
modulations and/or plausible lapses of synchronization. However, the ratio of the frequen-
cies of vortex shedding to the tip oscillation remained fixed at 1:2 in all cases, except for
the highest reduced velocity of U∗ = 18.4. The lack of repeatability from cycle to cycle for
nominally synchronized cases might be attributable to the turbulent nature of the flow.
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Figure 11. Time series of the tip displacement of the vibrating plate (left column) and corresponding spectra (right column)
at different elasticity values (a) E = 1.00 GPa (U∗ = 8.2), (b) E = 0.54 GPa (U∗ = 11.1), and (c) E = 0.2 GPa (U∗ = 18.4) and
constant density ratio ρ∗ = 7.
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Figure 12. Time series of the tip displacement of the vibrating plate (left column) and corresponding spectra (right column)
for constant elasticity (E = 0.5 GPa) and different solid densities: (a) ρs = 5000 kg/m3 (U∗ = 9.3) and (b) ρs = 3000 kg/m3

(U∗ = 7.1).

4. Discussion

The plate response is summarized in Figure 13, which shows the average tip dis-
placement ξave and the standard deviation of the tip displacement ξstd in the streamwise
direction for all test cases (values are normalized with the plate height, H). These values
were determined from the last 40 time units of the simulations. It should be noted that
U∗ increases non-linearly with increasing the density ρs or decreasing the elasticity E. It
can be seen in Figure 13a that as U∗ increases by decreasing E, there is a substantial rise in
ξave/H, i.e., the plate bends more in the streamwise direction, as might be expected. On
the other hand, ξave/H remains almost constant (in fact, there is a marginal decrease) with
U∗ by increasing ρs. Despite this difference in the average plate deflection, the ξstd/H data
appear to collapse when plotted against U∗, as indicated by the dashed curve in Figure 13b,
irrespective of whether the structural frequency is varied by changing the elasticity or
the density. The ξstd/H data display a nearly four-fold increase from 0.009 to 0.035 with
increasing U∗ in the range considered in the present study.
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Figure 13. The plate response as function of the reduced velocity U∗ = U0/ fn H: (a) average tip displacement ξave/H and
(b) standard deviation of the tip displacement ξstd/H. The reduced velocity is varied by changing either the density or the
elasticity of the solid plate; other parameters kept fixed, as indicated in the legend.

In some previous studies with flexible plates in cross-flow, data for the average
deflection were usually compiled as a function of a single dimensionless parameter, the
Cauchy number, Ca = ρ f bH3U2

o /EI, where b is the plate width and I is the area moment
of inertia of the plate [32,33,58]. The Cauchy number represents the ratio of the drag fluid
force to the elastic solid force. These studies focused on the average deflection (sometimes
reported in terms of a reconfiguration parameter) as a function of the Cauchy number.
Indeed, the present data also collapse fairly well when plotted against Ca, as shown in
Figure 14a. In fact, ξave/H scales almost linearly with Ca. It should be noted that for the
two-dimensional configuration considered in the present study, the Cauchy number can be
estimated by treating the plate as an elastic beam and is found to be equal to approximately
Ca ≈ U∗2/ρ∗. In contrast, the data for the standard deviation of tip oscillations ξstd/H do
not scale with Ca when the elasticity or the density is changed, as shown in Figure 14b.
This suggests that the mechanisms responsible for the shape reconfiguration of the flexible
plate (average deflection) and its streamwise oscillation are different: the former may be
attributable to the mean drag, whereas the latter to the nonlinear coupling of the flow
instability with the structural motion.
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Figure 14. The plate response as function of the Cauchy number Ca = U∗2/ρ∗: (a) average tip displacement ξave/H and
(b) standard deviation of the tip displacement ξstd/H. The Cauchy number is varied by changing either the density or the
elasticity of the solid plate; other parameters kept fixed, as indicated in the legend.
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The response frequency of the plate f and the vortex shedding frequency fvs as
functions of the reduced velocity are shown together in Figure 15. These frequencies
were determined by the dominant spectral peaks, and values were normalized with the
natural frequency of the structure, fn. It should be remembered that fn is not constant.
The continuous lines show b-spline interpolations of the data. It can be noted that fvs/ fn
increases almost linearly with reduced velocity U∗ = U0/ fnH, irrespective of whether the
structural frequency is varied by changing the elasticity or the density. This indicates a
fairly constant nominal Strouhal number, fvs H/U0. However, a gradual change in the slope
can be observed, in particular outside the grey-shaded region marked as “synchronization”,
which indicates a slight increase in the nominal Strouhal number. This might be attributable
to the fact that the plate bends more as U∗ is increased by decreasing the elasticity modulus,
and the effective height of the plate becomes lower. If the effective height is He f f , then
the shedding frequency should increase with U∗, so that the effective Strouhal number
remains approximately constant fvs He f f /U0.
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Figure 15. The response frequency of the plate f / fn and the frequency of vortex shedding fvs/ fn as
functions of the reduced velocity U∗ = U0/ fn H: The reduced velocity is varied by changing either
the density (blue symbols) or the elasticity (red symbols) of the solid plate.

The gray shading in Figure 15 indicates the region where the main frequency of
plate vibration synchronizes at twice the frequency of vortex shedding, f = 2 fvs. This
demonstrates that within this region, the excitation mechanism is vortex-induced vibration.
However, the synchronization ceases for the two higher U∗ values considered. In particular,
some coupling must exist between the vortex shedding and the plate motion at U∗ = 11.6;
as shown in Figures 9 and 10, the oscillations of the tip displacement and the drag force are
almost perfectly periodic most of the time, but there are some lapses, which is indicative of
transitions between synchronization and non-synchronization states. On the other hand, at
the highest value of U∗ = 18.4, the tip oscillations become chaotic, as seen in Figure 11c,
while the predominant frequency of vibration becomes almost equal to the structural
frequency of the plate, i.e., f ≈ fn. This could indicate that the vibration resembles
flutter, i.e., fluid-elastic instability associated with relatively large amplitude oscillations
at the structural frequency beyond some critical reduced velocity [59]. It will be very
interesting to examine the plate response in more detail in the range of 11.1 < U∗ < 18.4,
which corresponds to the transition between synchronized vortex-induced vibration and
chaotic-like flutter vibration, in future work.
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