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Abstract: The Eulerian stochastic fields (ESF) method, which is based on the transport equation of the
joint subgrid scalar probability density function, is applied to Large Eddy Simulation of a turbulent
dilute spray flame. The approach is coupled with a tabulated chemistry approach to represent
the subgrid turbulence—chemistry interaction. Following a two-way coupled Eulerian-Lagrangian
procedure, the spray is treated as a multitude of computational parcels described in a Lagrangian
manner, each representing a heap of real spray droplets. The present contribution has two objectives:
First, the predictive capabilities of the modeling framework are evaluated by comparing simulation
results using 8, 16, and 32 stochastic fields with available experimental data. At the same time, the
results are compared to previous studies, where the artificially thickened flame (ATF) model was
applied to the investigated configuration. The results suggest that the ESF method can reproduce
the experimental measurements reasonably well. Comparisons with the ATF approach indicate that
the ESF results better describe the flame entrainment into the cold spray core of the flame. Secondly,
the dynamics of the subgrid scalar contributions are investigated and the reconstructed probability
density distributions are compared to common presumed shapes qualitatively and quantitatively in
the context of spray combustion. It is demonstrated that the ESF method can be a valuable tool to
evaluate approaches relying on a pre-integration of the thermochemical lookup-table.

Keywords: LES; spray combustion; Eulerian stochastic fields; artificially thickened flame;

Euler-Lagrange; OpenFOAM,; Sydney spray burner; FGM; presumed PDF

1. Introduction

Probably the strongest argument in favor of liquid fuels compared to gaseous fuels
or electrical batteries is their high energy density at ambient conditions. This aspect has
contributed to the strong attention dedicated to combustion devices fueled with liquids
in recent decades. Presently, liquid fuels are still the primary choice for transport and
storage issues but, in the context of climate protection, the acceptance of combustion-
based technologies decreased. To design not only highly efficient combustion systems but
also to minimize their environmental impact, the trend has turned towards alternative
fuels such as biofuels and e-fuels. As outlined by Jenny et al. [1], the high number of
interdependent phenomena makes the simulation of spray combustion a difficult task.
Besides the challenges related to turbulence modeling and the detailed representation of
the chemistry, the modeling of their mutual interaction at unresolved scales still constitutes
a central aspect of combustion simulation research. It is, therefore, indispensable on one
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hand to solidify the understanding of combustion and spray combustion but also to find the
accurate modeling tools to reliably predict the combustion of alternative fuels on the other.

With respect to simulations of thermo-fluid systems in engineering applications, large
eddy simulation (LES) has become a popular method due to its well-balanced trade-off
between computational costs and great predictive power [2,3]. In comparison to the
computationally prohibitive direct numerical simulation (DNS), which resolves all scales,
the LES requires the usage of models to describe the various effects taking place at scales
smaller than the resolving filter size. This motivates the evaluation and comparison of
models to represent the underlying physics as accurately as possible.

Regarding turbulent combustion simulations, it is essential to connect the fuel chem-
istry and the feasible computational costs of the LES. In fact, the combustion of already
simple fuels yields the production and consumption of numerous species O(100) which are
described by an even larger set of reactions ((1000) . The solution of transport equations
for each of these species is unfeasible for large scale application due to the stiff coupling of
the equations being solved. To avoid the expensive consideration of the detailed kinetics,
various chemical reduction mechanisms [4] and chemistry tabulation approaches have been
suggested and successfully applied [5-9]. In this regard, various methods, including the
intrinsic low-dimensional manifold (ILDM) by Maas and Pope [10], the reaction-diffusion
manifold (REDIM) [11], the flamelet progress variable approach (FPV) [12], the flame
prolongation of ILDM (FPI) [13,14] or the flamelet generated manifold (FGM) [15], among
others, have been proposed. Flamelet-based methods allow for an efficient inclusion of
detailed kinetics in LES at feasible computational costs [2,3]. Due to the representation of a
turbulent flame by an ensemble of one-dimensional flames, chemistry can be preprocessed
and stored in a thermochemical lookup table. These approaches map the thermochemical
state onto a reduced number of scalars, for which respective transport equations are solved.
For a n-dimensional tabulation strategy, this allows the retrieval of the thermochemical
state for any given combination of the n scalars used to access this state.

In the context of LES of turbulent combustion, the challenge of the proper repre-
sentation of the effect of turbulent scales on the chemical reaction at the subgrid level
emerges. This results in additional unclosed terms in the transport equations of scalars
and requires additional modeling. In this context, many approaches exist to represent
the turbulence—chemistry interaction within the LES context, which are well summarized
in the review paper by Pitsch [3]. Among these are flame front tracking methods [16,17],
flame front thickening approaches [18,19], and statistical approaches that are probabil-
ity density function (PDF)-based methods [20]. These so-called PDF methods can be
subdivided into either presumed or transported PDF approaches [20]. Although in the
former, the shape of the subgrid PDF is presumed (a priori) [21] and reconstructed through
transport (or algebraic) equations for lower order moments of the PDF, the latter consists
of approximating the transport of the (joint) PDF at runtime using either a Lagrangian
particle-based monte carlo approach [20,22], a quadrature-based moment method (QMOM,
see for instance [23]) or the Eulerian Stochastic Field-also known as Eulerian monte carlo
(EMC)-method [24,25]. The Eulerian stochastic fields (ESF) method has been originally
proposed by Valifio [24] and later improved in [25] based on an Ito-interpretation of the
stochastic integral. An alternative formulation has been derived and successfully applied
by Sabel'nikov and Soulard [26] based on a Stratonovich interpretation of the stochastic
term. A comprehensive comparison of both approaches may be found in [27,28]. The ESF
approach has been applied to a multitude of reactive flow problems, for instance, for the
Sandia flames D-F [29,30], to stratified premixed combustion [31], to a partially premixed
swirled flame [32], to oxy-fuel combustion [30], to a mix mode flame [33] and was recently
extended in [34] to include effects of differential diffusion, thus demonstrating the good
prediction ability of the method.

In regard of the application of the ESF approach to LES of multiphase combustion, first
promising results have been attained. More specifically, the approach has been validated
for multiphase combustion in a gas turbine combustor [35], a methanol spray flame [36],
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as well as for spray auto-ignition under exhaust gas recirculation (EGR) conditions [37],
and moderate or intense low-oxygen dilution (MILD) spray combustion [38]. However,
all approaches relied on a reduced kinetic mechanism to take into account combustion
chemistry. In contrast, the present contribution profits from the recent progress made in
tabulated chemistry approaches for spray combustion and combines it with the advanced
subgrid closure for the turbulence—chemistry interaction provided by the ESF method.

The simulations are performed for the configuration EtF6 of the Sydney Diluted Spray
Burner [39—41]. Many different groups have investigated the burner as it provides an
extensive database for model validation as well as a reduced modeling effort due to the
dilute nature of the spray. Herein, most of the investigations based on LES either opted for
a flame thickening strategy [7,9,42,43], a presumed PDF approach [8,42], or a combination
of these methods [44]. In the context of transported PDF methods applied to this burner,
only a few contributions can be found in the literature. To mention are two publications by
Heye et al. [45,46]. In [45], a particle-based transported PDF approach is coupled to LES
and the approach is validated for the spray flame EtF1. The second contribution stands
out as it compares simulation results of four different research groups. Therefore, the
simulations feature—besides various numerical treatments and codes—different spray
injection strategies, turbulence modeling, evaporation modeling, chemistry treatment, and
turbulence combustion interaction. More precisely, the approach introduced in [45] is
compared with a presumed PDF approach for the flame EtF6 and set aside the ESF method
coupled to a reduced chemistry approach for the flame EtF2. Recently, the EtF6 flame has
been investigated by Dressler et al. [7] in the context of the artificially thickened flame
(ATF) approach.

The detailed objectives of this work are first to demonstrate the prediction ability of
the ESF-tabulated chemistry approach in the context of LES of spray combustion. Secondly,
given the additional droplet-thickened-flame-interaction treatment that arises when using
the flame thickening approaches in the presence of a Lagrangian dispersed phase [7], we
compare the ESF approach with a well-established ATF-based framework and demon-
strate that the ESF approach can evenly represent the process of spray combustion. This
is noteworthy since, in contrast to ATF, the ESF framework does not necessitate any par-
ticular modification of the droplet heat and mass transfer, as no thickening is applied.
Subsequently, the ESF simulations are used to evaluate the scalar subgrid dynamics and
to compare the obtained scalar distributions with common shapes used in the context of
presumed PDF methods.

The structure of this manuscript is as follows: The modeling framework is first intro-
duced in Sections 2.1 and 2.2. Next, the numerical setup and the investigated configuration
are described in Sections 2.3 and 2.4. Thereafter, the previously mentioned aspects are
discussed in the results part (Section 3). Finally, Section 4 summarizes the manuscript and
its main outcomes. For the sake of completeness, an estimation of the sampling errors, a
brief description of presumed PDF approaches and of the Hellinger distance as measure to
compared two PDFs are provided in Appendixes A-C, respectively.

2. Numerical Treatment and Description of the Test Case

This section first introduces the modeling strategies applied. It is subdivided into a
part dedicated to the gaseous phase modeling followed by one subsection describing the
liquid-phase treatment. Subsequently, the numerical setup and the investigated experimen-
tal configuration are presented.

2.1. Gas Phase Modeling

In the context of Euler-Lagrange methods for turbulent two-phase flow systems,
the evolution of the turbulent carrier phase in LES is expressed by the filtered mass and
momentum transport equations given as
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Here, filtered and Favre-filtered quantities (in the LES context) are respectively de-

noted by () and 6, p corresponds to the density, u; the Cartesian velocity component
in the i-th direction, y the dynamic viscosity, g the gravitational acceleration, and p the
hydrodynamic pressure. Additionally, the liquid-phase contributions in the gaseous phase
are represented by the source terms S,,; and S, ; following a two-way coupled approach.
The unresolved momentum transport is taken into account through the subgrid-scale
stress tensor T if °, which is modeled using the Sigma eddy-viscosity model [47]. To track
the filtered scalar quantities of species mass fractions, a tabulated chemistry approach is
applied. Following the FGM methodology introduced in [15], the thermochemical state
(e.g., temperature, chemical source term, density and species mass fractions) is mapped
onto a reduced set of table controlling variables ¢ for which additional transport equations
are solved. In this regard, a two-dimensional table is used, which has been generated
from freely propagating flamelets assuming unity Lewis numbers. The flamelets have
been computed using the chemical mechanism by Marinov [48] and a piecewise cubic
hermite polynomial is employed to interpolate between the flammability limits and the
pure streams of oxidant and fuels. The thermochemical state is accessed at runtime through
the mixture fraction Z and a reaction-progress variables PV, defined as

Yco, Yco Yn,0

PV = .
Wco, 2Wco 2Wnh,0

®)

In the context of LES, a detailed description of the unknown interaction between
subgrid turbulent motions and the reaction zone can be taken into account if the joint scalar
subgrid distribution is known at any given time [20]. To this end, the Eulerian Stochastic
Fields method is adopted, which is based on the transport equation of the Favre-filtered
joint scalar probability density function P(¢) subsequently abbreviated as FDF. Within
LES of two-phase flows, the transport equation for the Favre-filtered probability density
function reads [35,37]
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The evolution of the joint scalar FDF is determined by convective transport and other
terms on the right-hand side, namely chemical reaction, scalar source terms due to the
presence of the liquid phase and two additional terms, which represent the transporting
velocity diffusion in physical space and diffusion in scalar space. These last two terms
describe processes occurring at scales smaller than the resolving scales of the LES and
therefore necessitate modeling. Based on the Reynolds analogy, the effect of unresolved
turbulent fluxes is modeled similarly to the momentum transport equation using a tur-
bulent Schmidt number Scsgs = 0.7. For the diffusion in scalar space, the linear mean
square estimation closure (LMSE) [49-51], also known as interaction by exchange with
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the mean (IEM) [52] micro-mixing model, is employed. The terms 71 and ri1, denote the
total mass flux and mass flux of ¢, caused by evaporation of the liquid phase. In our
work, these mass fluxes are equivalent to volume-integrated quantities of the Lagrangian
source terms (e.g., it = [|,S,,;). The ESF approach, as proposed by Valifio [24,25], is
applied to solve Equation (4). For this purpose, the FDF is represented as an ensemble
of N; Eulerian stochastic fields for each of the table controlling variables ¢, for which
additional stochastic differential equations are solved. Following the Ito-interpretation of
the stochastic integral [24], the stochastic fields evolve according to [24,25,35]
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The last term on the right-hand side is the stochastic contribution, which represents the
random advection caused by the unresolved turbulence in the presence of scalar gradients
for the individual fields. In the FDF context, this term induces diffusion in scalar space at
the subgrid level. In this context, dW/ = 5/"\/A; denotes an increment-vector of a stochastic
Wiener process, which is constant in space but different for each field. Accordingly, dW]{’lx
represents its jth component. Please note that the quantities i, jisgs and Sc denote the
filtered viscosity, subgrid-scale viscosity and Schmidt number, respectively. From the
solution of the stochastic fields, it is then possible to obtain the moments of the respective

marginal subgrid FDF, shown exemplarily for its mean ¢, and variance o2

«={Z,PV}, (5)
n=(1,2,..,Ny).
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In difference to the original formulation [24], to previous works [36-38] and in agree-
ment with [25], only the subgrid eddy diffusivity is taken into account for the stochastic
contribution. This is important as it ensures that the stochastic term vanishes in the absence
of subgrid contributions (i.e., tsgs = 0). The Wiener process is a random walk, normally
distributed with a mean value of zero and a variance equal the time step size At. However,
for a low number of stochastic fields, sampling the components of the vector increments 7
of a normal distribution will rarely match these constraints. Therefore, a weak first-order
approximation is applied where the increments are sampled from a dichotomic distribution
{—1,1} [53]. The correct mean and variance are ensured by introducing a complementary

increment 17,§¢+N5/ 2 —ni for the first half of the stochastic increments before randomly
shuffling the set to avoid any correlation between 7, and 17;+N5/ 2 [54]. Therefore, an even

number of stochastic fields is used. More details on the solution procedure employed can
be found in Section 2.3.

2.2. Liquid-Phase Description

The liquid phase is described as a multitude of spherical parcels tracked in a La-
grangian manner, each parcel representing a heap of real droplets sharing the same proper-
ties. The parcels evolution is determined by a set of coupled ordinary differential equations
for its position x,, velocity uy,, mass m, and temperature T):
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Herein ) ; F; denotes the forces acting on the parcels considered in the present investi-
gations, which is drag [55,56] and gravity. Sh, Sc, Pr and Nu are the Sherwood, Schmidt,
Prandtl and Nusselt number, respectively, all of which evaluated at representative condi-
tions around the droplet. 7, = p;d3/18}1, represents the particle relaxation time. The parcel
mass and temperature equations correspond to the formulation of Miller et al. [57], where a
heat transfer correction parameter due to evaporation, here denoted with f, is introduced.
H ) corresponds to the mass transfer driving potential. The quantities Ly, ¢, and ¢, ; stand
for the latent heat of vaporization of the liquid, the heat capacity at reference conditions,
and the liquid heat capacity, respectively. In this work, the infinite conductivity Model M7
from Miller et al. [57] is used, which has been adopted extensively in spray combustion
studies [7,43,58]. To derive the introduced equations for droplet heat and mass transfer,
constant thermodynamic properties across the droplet boundary layer are assumed [59]
and it is, therefore, crucial to estimate these quantities as accurately as possible. In view of
this, the well-established “1/3”- rule (6, = 6; — (6s — 0), 0 = (T,Y;)) [57,60,61] proposed
by Yuen and Chen [56] is applied here. Once the composition and temperature at the
reference state (-), are known, the Wilke rule [62] is used to obtain the dynamic viscosity u
and thermal conductivity A while the heat capacity is mass averaged. Please note that in
this work, no dispersion or additional subgrid effects are taken into account in the droplet
evolution equations. A comprehensive description of how these unresolved turbulence
effects can be considered is presented in [38] and will be subject of future works.

In the context of tabulated chemistry, the procedure can be summarized as follows:
First, the composition and temperature are retrieved from the thermochemical lookup
table. Secondly, reference conditions are determined according to Yuen and Chen [56].
Subsequently, all properties of interest are evaluated through NASA polynomials [63].
Finally, the mixing rules are applied, and mass and heat exchange computed. The validation
is presented in [7].

2.3. Numerical Setup

All investigations are performed using the finite volume open-source C++ code Open-
FOAM [64]. Herein a low-Mach formulation described in Ries et al. [65] is adopted and
solved using a merged PISO-SIMPLE algorithm [66,67]. Regarding the numerical schemes
applied, a second-order implicit time-stepping scheme has been applied to all fields with
exception of the stochastic field equations, for which a first-order scheme is employed
due to the stochastic nature of the equation. For the convective momentum fluxes, a
second-order scheme with filtering of the high frequency modes has been applied. For the
convective scalar fluxes, a second-order total variation diminishing (TVD) scheme using
the Minmod flux-limiter is employed [68].

Currently, the solution procedure for coupled partial differential equation systems
involving stochastic components is still a big challenge. The main problem is related to the
tight coupling of the solved equations, more precisely to the density derivatives found in
the equation for the pressure, which directly impacts the momentum transport. In fact, the
stochastic fluctuations of the density and its derivative make the solution procedure prone
to numerical instabilities [69], especially for a low number of stochastic fields. Therefore,
stabilization procedures have been developed and successfully applied to bypass this issue.
In the context of particle-based methods, this is usually treated through an additional
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Eulerian enthalpy equation, for which the source term is obtained from the Lagrangian
particles [70-72].

In the context of ESF, similar approaches are used, and so-called auxiliary moments
are introduced, which are less susceptible to stochastic fluctuations [31,54,73]. In this work,
the procedure proposed by Prasad [73] is adopted, which has been modified to fit the
tabulated chemistry framework employed. Therefore, additional auxiliary moments are
solved, for which the source terms are recovered from the transported FDF. This yields the
following transport equation for the Favre-filtered auxiliary first moment of the mixture

fraction Z* and progress variable PV i

apZ* i AN i i | Hsgs 0Z* -
o " ox; (pZ u]) 0x; [(Sc * Scsgs ) Oxj +5z (12)
PPV 0y x| Mg \OPV' | | . 1N
ot (0PV" ;) = o [( St s ) o | HOPat g Lk 09

Hereby, the chemical source term in the progress variable equation is obtained by averaging
the source terms of the individual stochastic fields, and is therefore in its closed form. These
auxiliary control variables are then employed to obtain the filtered density p* and viscosity
fi*, which are used consistently in all equations solved.

The solution procedure is as follows: Each time step starts by evolving the Lagrangian
particles and computing the source terms for the Eulerian transport equations. This implies
an explicit treatment for all source terms in the mass, momentum, and all scalar transport
equations. Subsequently, an initial predictor step for the density is performed. Thereafter,
within the SIMPLE-loop, an initial momentum predictor is computed before solving the
equation of the stochastic fields. It is important to notice that at this stage, only the drift
term, i.e., the deterministic part, of the stochastic fields is computed. From this solution
of the stochastic fields, one also obtains the closed-form source terms needed to calculate
the evolution of the auxiliary moments. Next, these moments are solved, i.e., 7*and PV"
and the density and viscosity updated. Finally, the pressure equation is solved within the
PISO-loop and the velocity corrected. Herein, as proposed by Garmory [28], the stochastic
fields are first solved without the stochastic contribution and, once all fields have reached
convergence, the respective stochastic terms are added.

2.4. Experimental Configuration

The present investigations are performed for the flame EtF6 of the Sydney Dilute
Spray Burner [39]. The burner consists of three concentrically arranged streams, namely
a central jet, a pilot, and a primary coflow stream (see Figure 1). The spray is generated
using an ultrasonic nebulizer placed approximately 21 central jet pipe diameters upstream
of the burner exit. The droplets are then transported downstream in the central pipe with
diameter D = 10.5mm. The central jet is surrounded by an annular pilot consisting of
burnt products resulting from a stoichiometric mixture of acetylene, hydrogen and air
reaction. Jet and pilot are centered in a primary coflow consisting of pure air. The primary
coflow has a diameter of 103 mm. The coflow is composed of pure air with an exit bulk
velocity of 4.5ms~!. The burner and coflow are placed in a wind tunnel with a cross-section
of 290 mm x 290 mm with the same composition and velocity as the primary coflow.
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Figure 1. Schematics of the Sydney Spray Burner exit, dimensions in mm. The red colored area
sketches the hot pilot consisting of burnt products.

To note is that two experimental data sets for the operating condition investigated
are available, namely exp. A and B (see Table 1). Even though both sets delivered similar
results, some deviations can be observed, thus providing an initial estimate of the exper-
imental uncertainties. In particular, radial velocity measurements are only available for
experimental set B [39,74].

Table 1. Operating conditions for the investigated case [39,74].

Operating Conditions EtF6

exp. A exp. B
Bulk jet velocity (m/s) 36 36
Jet Reynolds number 27,400 27,400
Overall equivalence ratio ¢ 1.8 1.8
Carrier mass flow rate (g/min) 225 225
Liquid fuel injection rate (g/min) 45 45
Liquid flow rate at jet exit (g/min) 413 41.1
Vapor flow rate at jet exit (g/min) 3.9 3.7
Equivalence ratio at jet exit ;s 0.15 0.2

The computational domain employed in this work is the same as the one described
in [7] to allow for a consistent comparison of the simulations. Please note that the spa-
tial resolution has been shown to be sufficient in [7]. The cylindrical mesh ranges 75D
downstream in axial and 10.5D in radial direction and consists of 4.3 million hexahedral
control volumes. This implies that the secondary coflow, i.e., the wind tunnel coflow, is only
partially included in the computational domain. A section of 6D upstream of the burner
exit is included for the central jet to generate valuable flow conditions at the burner exit
plane. Therefore, a fully developed turbulent flow has been assumed. The flow conditions
have been achieved by using a recycling method, namely by mapping the velocity profile
at the burner exit onto the inflow plane. As described in [7], the central jet bulk velocity
has been modified to fit the mean profiles measured in the experiments. The pilot and wind
tunnel streams have been assumed laminar while synthetic turbulence has been applied to the
primary air coflow. Unlike in the experiment, the pilot flame composition is simplified to a
burnt stoichiometric ethanol-air mixture, which is similar to the approach used in [7-9,42,75].
For the near wall region, the wall function formulation by Spalding [76] has been applied.
All further boundaries are employing a constant total pressure formulation, which mimics
the entrainment effect of the spray jet flame onto the surrounding wind tunnel coflow.

The liquid phase is injected 0.3D downstream of the burner exit, which corresponds to
the first plane where the droplet sizes have been experimentally determined. In this work, a
radially conditioned size distribution is adopted, which has been obtained from experimen-
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tal set A [74]. The dispersed phase velocity at injection is assumed as the carrier velocity
interpolated at the droplet position. The employed injection strategy assumes an equal
mass for all injected parcels. This results in a number of real droplets represented by com-
putational parcels varying from parcel to parcel. The parcel mass at injection was estimated
a priori to obtain a computationally affordable number of simultaneously tracked parcels
(2.3 million). By using this strategy; it is also possible to inject parcels representing less
than one real droplet. This is the case for droplets with larger diameters.

3. Results

In this section, the LES results obtained for the flame EtF6 using the ESF method
with 8, 16 and 32 stochastic fields are investigated. The ESF simulations are subsequently
abbreviated as ESF(8), ESF(16) and ESF(32), respectively. Herein, the results are first pro-
vided in terms of instantaneous contour plots before comparing the simulation results with
experimental data for the gaseous and liquid phase. In this context, the ESF simulations are
also compared with previous LES results presented in [7], which were performed using the
Artificially Thickened Flame model. Next, time series of the table controlling variables are
presented for the LES performed with 32 stochastic fields and the shape of the reconstructed
marginal subgrid scalar distributions are compared with common presumed PDF shapes.
Thereafter, the differences between the presumed PDF and the actual reconstructed PDF
are evaluated quantitatively by comparing the PDF-integrated progress variable source
term and the Hellinger distance.

3.1. Flame Characteristics and Carrier Phase Analysis

In this part, the main features of the flame are first discussed based on instantaneous
and averaged contour plots obtained from the ESF solution before going over to a compari-
son of the simulation results with experimentally available data. Additionally, the LES-ESF
results are set aside previous results shown in [7], which were obtained using the ATF
model. Since the ATF model accounts for the turbulence-chemistry interaction in the con-
text of LES, it is also used together with experiments to appraise the ESF-based approach.

Figure 2 depicts contour plots of the FDF-integrated temperature (top) as well as the
mixture fraction field (bottom) for the LES with 16 stochastic fields. Each subfigure is
subdivided in its temporal average and instantaneous field, respectively, shown in the
upper and lower parts. At lower axial positions, the central spray jet core and the pilot flame
are concentrically arranged and the boundaries between both streams are very distinct.
In this region, the cold jet core has not reached flammability and therefore hinders the
pilot flame from propagating towards the center. Also to mention is the minor wrinkling
effect of the shear layer on the flame. As axial distance from the burner exit increases, the
flame wrinkling becomes more intense and large structures can propagate towards the
centerline. This process seems to be dominated by advection as the mixture around the
centerline is still below flammability. The significant increase in mixture fraction between
x/D = 10 and x/D = 20, which can be observed for mean and instantaneous contours,
indicates strong evaporation of droplets. Both the higher interaction of turbulence with the
flame front and a mixture evolving towards flammability promote the propagation of the
reaction zone towards the centerline. This results in a cold spray core which disappears
for axial distances x > 25D. A comparison of the instantaneous contours of temperature
with Figures 9-11 of [7] already suggests a stronger turbulence flame interaction for the
transported PDF approach than for the ATF-based simulations. This is not unexpected as
the ATF-induced flame thickening generally reduces the flame distortion caused by the
turbulent eddies, yielding less spatial displacement of the flame for this approach. This
impression will be confirmed later in this section by quantitatively comparing temporal
rms values of temperature at various positions for the ATF and ESF-based approaches.
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Figure 2. Temporal average (upper part) and instantaneous contours (lower part) of both the Favre-filtered Probability
Density Function FDF-integrated temperature (top) and first moment of the mixture fraction FDF (bottom) for the Eulerian
Stochastic Fields (ESF16) simulation. The vertical green bars denote axial positions at which simulation data are compared
with experiments. The magenta-colored point exhibits the position of probe A, for which time-series analyses are performed
in a later section.

Next, radial profiles of carrier velocity and scalar temporal statistics are evaluated
at the axial positions x/D = 0.3, 10, 20,30, marked with green vertical lines in Figure 2.
To quantify the averaging error of the temporal statistics shown, an error estimation has
been performed and is presented in Appendix A. The results of the ESF simulations using
8, 16 and 32 stochastic fields are set aside experimental measurements. The simulation
results are also plotted alongside results obtained using the ATF method with standard
correction of heat and mass transfer of the droplet (referred to as std. correction in [7]).
Since the ATF-based simulations were performed using the same framework as their
ESF pendant, a comparison of the approaches makes an estimation of the impact of the
flame-turbulence-interaction treatment for this flame possible. The simulation results are
compared with available measurements for experimental sets A and B. It is worth noticing
that the experimentally determined velocity statistics are based on droplet velocities with
diameters <10 pm assuming a Stokes number well below unity. First, taking a look at
the time-averaged velocity statistics of the carrier phase shown in Figure 3, at the lowest
axial plane, the three distinct streams corresponding to spray jet, pilot flame, and coflow
are visible in the axial velocity profile (Figure 3a). As distance from the burner exit
increases, these peaks rapidly merge into each other to form one uniform profile which
can then be observed at all further axial positions. The simulation results agree well with
the experimental data except for the most downstream plane, where the axial velocity
is overpredicted. A possible reason for this effect is the adiabatic tabulation strategy
employed. Since a two-dimensional lookup table is used, any cooling effects or heat losses
due to the evaporation of the spray are inherently neglected, which is likely to induce
higher temperatures than in the experiment. This causes a higher thermal expansion of the
carrier phase, which in turn yields higher velocities. Additionally, as will be shown next
by means of the scalar statistics shown in Figure 4, the simulations tend to overestimate
the length of the cold spray core. This is likely to shift the combustion reaction and the
associated thermal expansion to higher axial positions. The overestimation of the length
of the cold spray core will be the subject of discussion later in this section. Even though
underestimating the centerline fluctuations at the lowest axial position, the standard
deviation of the axial velocity seems to reproduce the experimental trends well. This
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behaves similarly for the radial velocity statistics with exception of radial velocity rms at
the most downstream position.

Comparing the different approaches, it is possible to conclude that the flow-field is
not strongly affected by the combustion model employed. Both approaches, the ATF model
and the ESF-based framework are reproducing the measured velocity statistics. It is also
interesting to note that the presented simulation results are not sensitive to the number of
stochastic fields used. This indicates that the results reached convergence with respect to at
least 8 stochastic fields used.
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Figure 3. Mean and rms of resolved axial and radial velocity component at various axial distances from the burner exit compared

with experimental data (O : Exp. set A; A : Exp. set B). Radial velocity statistics only available for experimental set B. (a) axial

velocity mean; (b) axial velocity rms; (c) radial velocity mean; (d) radial velocity rms.

Figure 4 presents radial profiles of different scalar quantities at the axial positions
highlighted in Figure 2. Please note that for the rms quantities, the time-averaged sub-
grid contributions obtained from the ESF simulations are also displayed (dashed lines in
Figure 4b,d). At the lowest axial position, the distinct temperature peak corresponding to
the hot flue gas of the pilot flame and the differences in mixture fraction between jet, pilot
and coflow are clearly visible. Additionally, small peaks are perceivable for temperature
and mixture fraction rms, resulting from the interaction with the shear layers. At this
position, all approaches perform similarly. Going over to higher axial positions, the flame
progresses towards the centerline, as shown by the time-averaged temperature in Figure 4a.
At the same time, this temperature increase induces strong evaporation of liquid droplets,
yielding an increase of the mixture fraction, which can be observed in Figure 4c. The
uniform profiles of mixture fraction and temperature at the most downstream position
confirm that the cold core has disappeared. Going back to the temporal averages of the
excess temperature in the very left column of Figure 4, large discrepancies between the
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simulations and the experiments are visible at all measurement planes. First, it can be
observed that the peak temperatures are overestimated at all axial positions. Nevertheless,
this is consistent with the employed two-dimensional lookup table, as has been previously
outlined in the discussion of the velocity profiles. The impact of the evaporative cooling
on the carrier temperature has been investigated by Sacomano Filho et al. [43] for the
flame EtF5 of the Sydney Spray Burner. Thereby, it has been shown that the peak carrier
temperature is better matched when evaporative cooling is considered. A consideration
of the evaporative cooling could be included by either using a third table dimension as
the enthalpy [43,77] or through linearization of a transported energy variable [78]. The
second point is related to the lower centerline temperatures perceived for all simulations
when compared with experimental data. This can be observed in Figure 4a at the axial
positions x = 10D and x = 20D. The results suggest that all simulations are underpre-
dicting the flame propagation towards the jet center, a matter that was observed in our
previous work for the ATF model [7] and in the LES shown by Heye et al. [46] for the
two spray flames EtF2 and EtF6. The possible reasons for this behavior can be divided
into two categories: (1) Deviations related to the modeling strategy and (2) uncertainty in
boundary conditions (or a combination of both). Regarding the modeling framework, the
main shortcomings related to this issue are the neglect of radiative heat transfer and the
absence of differential diffusion effects. The former reduces heat diffusion in the central
jet, which in turn yields lower evaporation rates of the spray. This retards the evolution
of a burnable mixture and the flame propagation towards the center. The Lewis number
of unity assumption is also contributing to a slower flame propagation in the central jet
by omitting the forward diffusion of small species as hydrogen. The uncertainties in the
boundary conditions are mainly related to the mixture composition at the burner exit.
In this work as well as in previous simulations of various configurations of the Sydney
Spray Burner [7,9,42,44-46,77], a homogeneous distribution of fuel within the spray pipe is
assumed. However, depending on the flow characteristics inside the central jet, the spray
dynamics may change, yielding different spatial distributions of the fuel at the burner exit
(for instance, due to the development of a liquid film at the pipe walls [41]). As pointed out
in the conclusions presented in [46], non-homogeneous mixtures at the burner exit may
significantly impact the development and propagation of the flame front.

First disparities between the ATF and the ESF approaches arise around x = 10D and
reach their maximum at x = 20D. At the latter position, differences are noticed for all
scalar quantities shown. The results suggest that the LES-ESF predicts an earlier flame
propagation of the flame towards the centerline, which is expected since these simulations
move across the lower flammability limit at lower axial positions, as the averaged mixture
fraction profiles suggest. The differences between the approaches are even more pro-
nounced when considering the scalar rms profiles shown in Figures 4b,d and 5. Compared
to the ATF-based framework, the transported PDF-based method does predict higher rms
values at all axial positions for both temperature and mixture fraction field. However, it
is challenging to evaluate the differences due to the unavailability of measurements with
respect to the scalar rms values. The results suggest significantly stronger variations across
the possible range of values for the ESF simulations, which confirms the initial impression
based on the instantaneous scalar contours shown in Figure 2 of a stronger sensitivity of
the flame to turbulent motion. For instance, the centerline rms of temperature and mixture
fraction for the LES-ESF approach are approximately twice as high as the LES-ATF-based
modeling strategy. This indicates a higher probability of extreme events, i.e., events far
away from the temporal means of the respective fields, for the ESF approach. The lower rms
values perceived for the ATF approach are also consistent with the observations made in a
stratified flame [31]. Regarding the rms values for the mixture fraction, both approaches
do not only differ with respect to the intensity of the scalar fluctuations, but also in the
shape of the profiles. This can be observed at the two axial positions x = 10D and x = 20D,
where the ESF approach predicts a double peak structure similar to the temperature rms
profile. In difference, the ATF approach produces a triple-peak-like profile, which is on
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one hand resulting from a reduced sensitivity of the flame to turbulent motion (or flow
perturbations in general) and to the correction of heat and mass transfer of liquid droplets
due to the flame thickening on the other. Additionally, one important feature of transported
PDF methods is their ability to include subgrid contributions in the scalar fluctuations,
shown as dashed lines in Figure 4b,d. As expected for LES, the subgrid contributions to the
scalar fluctuations are much smaller than their resolved counterpart. In difference to the
carrier velocity statistics, the results suggest a minor dependency of the ESF simulations
regarding the number of stochastic fields used. This is most pronounced around x = 20D
at the centerline, where the ESF(8) simulation predicts the highest centerline temperatures
and slightly higher temperature and mixture fraction rms. Considering the corresponding
subgrid statistics, the number of stochastic fields appears not to have a strong influence.
These findings are confirmed by the axial centerline profiles shown in Figure 5.
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Figure 4. Mean excess temperature (a), temperature rms (b) along with mixture fraction mean (c) and rms (d) at various axial

distances from the burner exit compared with available experimental data. The dashed lines correspond to the unresolved

contributions obtained from the LES-ESF simulations. The horizontal grey dotted line shown in (c) correspond to lower

flammability and stoichiometry. O : Exp. set A.
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Figure 5. Axial evolution of temporal averages and rms of temperature (a) and mixture fraction (b) along the centerline.
The dashed line corresponds to total rms while the dotted line represent the unresolved contributions obtained from the
LES-ESF simulations.

3.2. Dispersed Phase Analysis

A first qualitative impression of the liquid phase is provided in Figure 6, which
presents instantaneous contours of the mixture fraction superimposed with the Lagrangian
parcels representing the liquid phase. Isolines of temperature have been added to get a
better notion of the hot gases. As shown in the figure and previously outlined in Section 2.4,
the parcels are injected 0.3D downstream of the burner exit plane. The parcels are then
mainly traveling within the cold central core, which indicates a stronger liquid flux in this
region. However, as the axial distance increases, more parcels can exit the cold core and
interact with the hot pilot gases. This causes the droplets to quickly evaporate, yielding the
observed gradual increase in mixture fraction. Downstream of x = 30D, significantly less
parcels can be perceived as even more droplets have evaporated.

Figure 6. Instantaneous contours of mixture fraction superimposed with the Lagrangian parcels alongside isolines of
temperature (T = 500, 1000, 1500 K) for ESF(32).

Going over to time-averaged droplet statistics, Figure 7 presents the mean diameter
D1, Sauter mean diameter D3y, and liquid volumetric flux. At the most upstream plane,
all fields agree well with the experimental measurements. Considering Figure 7a,b, a first
observation is that as the axial distance from the burner exit increases, the representative
diameters tend to be underestimated. The reason for these deviations in the characteristic
diameters are two-fold: First, since the flame entrance into the spray jet occurs at higher
axial distances (see Section 3.1), small droplets are more likely to be present at higher axial
positions. Secondly, by simplifying the injection velocity of the parcels to the gas phase
velocity [45], a low Stokes numbers for all droplets injected is being presumed. This yields
higher velocities for the large particles than experimentally determined. These higher
velocities eventually favor the exit of large droplets from the central jet due to their high
inertia. Both effects are contributing to the lower characteristic diameters observed in the
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LES. Moreover, the longer cold spray core is also responsible for the overprediction of the
volumetric flux at x = 20D (Figure 7c). The differences between ATF and ESF are only
visible in the liquid volumetric flux profiles at higher axial positions. These are consistent
with previous findings. As can be observed in Figures 4a and 5, the flame enters the central
region of the spray jet at lower axial positions for the ESF method. This earlier flame
propagation yields stronger evaporation rates of the spray, which become apparent in the
lower liquid volumetric fluxes for this approach. As for the carrier phase analysis, only
marginal differences between the stochastic field simulations can be perceived.

To sum up, considering the simplifications made in this work and the uncertainties in
the boundary conditions, the observed deviations with the experimental measurements
appear reasonable.
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Figure 7. (a) Sauter mean diameter D3;, (b) mean diameter Dy and (c) liquid volumetric flux at

various axial distances from the burner exit compared with available experimental data. O : Exp. set
A; A: Exp. setB.

3.3. Temporal Evolution of the Subgrid Scalar PDF and Comparison with Presumed Shapes

Following the discussion and interpretation of the previous results, an in-depth
analysis of the subgrid statistics is performed in the present section. The evaluations are
performed for the most detailed simulation, i.e., the LES-ESF with 32 stochastic fields. The
most common simplification to bypass the extensive computational costs linked to the
transported PDF method is to presume the PDF shape prior to the simulation. The shape
function has then to be parametrized by the moments of the distribution and it is commonly
assumed that the PDF can be represented by its first two moments. It is then possible to
pre-integrate the thermochemical lookup-table with the moments (usually the first one or
two) of the distribution, which in turn become additional table controlling variables (thus
increasing the dimensionality of the lookup-table). Herein, depending on the presumed
subgrid PDF shape, additional transport equations or closures are required. However,
solving one or two scalar transport equations in contrast to 8, 16 or 32 seems appealing,
especially in the context of expensive spray combustion simulations. This motivates the
subsequent analysis of the ESF simulations and its comparison with various presumed PDF
shapes. This investigation is done based on time series of the table controlling variables at
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position A (see Figure 2), which is located at the centerline 20 jet diameters downstream of
the burner exit plane. This position has been chosen based on the high scalar fluctuations
observed for temperature and mixture fraction shown in Figures 4 and 5. Please note that
the following investigation is performed at a representative position (similar behavior has
been observed at other positions), where a significant contribution of the subgrid terms
is expected.

Before going over to a detailed analysis of the PDF shapes, a first impression of the
dynamics of the subgrid fluctuations is presented in Figure 8, which depicts the time series
of the mixture fraction and progress variable stochastic fields alongside their respective
first moment (red line). Both fields are shown in their normalized form, which implies a
normalization of each progress variable stochastic field PV’ with its respective mixture
fraction field Z/, yielding

PV — PV, (Z7)
PVmax(Zi) - PVmin(Zi) .

A first observation is that both mixture fraction and reaction progress are subject to
strong variations, which is consistent with the high temporal fluctuations of temperature
and mixture fraction at the centerline shown in previous figures. In particular, the high
fluctuations of the normalized progress variable exhibited in the bottom part of Figure 8
indicate rapid changes between unburned (time instant @) and burnt states (time instant
@). Additionally, the paths of the stochastic fields attest strong variations of the width
and shape of the subgrid PDF for both mixture fraction and normalized progress variable.
Herein, it is also important to note that the mixture fraction stochastic fields extend over
a significantly narrower range than the normalized reaction-progress variable. Another
remarkable aspect is the apparent strong correlation of mixture fraction and reaction-
progress variable, as can be deduced from the similar shape of the profiles and which is
further attested by a Pearson correlation coefficient [79] for the stochastic fields of 0.87. It
seems that the relative contributions of convection and diffusion, which are acting on both
progress variable and mixture fraction, play a major role at this position.
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Figure 8. Temporal evolution of mixture fraction (top) and normalized progress variable (bottom) stochastic fields (grey

lines) alongside their respective first moment, i.e., their arithmetic mean (red lines). The probe is located at the centerline, 20

diameters downstream of the burner exit plane. The position is displayed in Figure 2. The vertical dotted lines indicate

three representative time instants, which will be discussed subsequently.
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The transported stochastic fields can be used to evaluate the shape of the one-time
(and one-point) marginal subgrid PDFs, which is done for the time instants @), @, and
@ displayed in Figure 8. Please note that the PDF shape is approximated by a kernel
density estimation (KDE) based on the distribution of the stochastic fields. The KDE
of the PDF P(x) is created by superimposing Gaussian density kernels and satisfies the
same condition as the real PDF, i.e., P(x) > 0 and f01 P(x)dx = 1. The KDEs are plotted
alongside three widely used presumed PDF shapes in Figure 9. The presumed PDF shapes
investigated are (1) the J-shape, (2) a top-hat profile and (3) a f-shape (see Appendix B).
Please note that the presumed shapes are all reconstructed using the first and second moments
of the runtime-computed PDF obtained directly from the ESF simulations via Equations (6) and
(7). The upper row of Figure 9 depicts the mixture fraction subgrid PDFs, while the lower
is showing the normalized progress variable. Starting with instant @ shown in the left
column of Figure 9, one can clearly see differences between the KDE and the presumed
shapes. At this time, the mixture is below the lower flammability limit and both PDFs
are narrow. Although the B-shape resembles the KDE most suitably, all presumed shapes
present deviations from the KDE. This cannot be postulated for time instant @), where the
rich mixture is almost fully burnt, as can be deduced from a mean normalized progress
variable close to unity. Here, the B-shape is not too far off the real PDF KDE for both scalars
and seems to perform better than the top-hat approximation. Going over to the time instant
© shown in the right column of Figure 9, one can observe that the KDE extends over a
broader range of values for mixture fraction and normalized progress variable. For the
mixture fraction, the ESF simulation predicts a subgrid distribution approximately ranging
from the lower flammability limit to stoichiometry, which can be represented by a S-shape.
Regarding the normalized progress variable, the distribution of the stochastic fields in
Figure 8 at that time instant suggest a multi-modal shape, which is confirmed by the KDE
shown in Figure 9. In this case, all presumed approaches have difficulties to approximate
the ESF-based solution.
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Figure 9. Comparison of common presumed subgrid PDF shapes and kernel density estimation (KDE) approximation of

the PDF obtained from the ESF simulation with 32 stochastic fields at the various time instants displayed in Figure 8 at the
probe position A shown in Figure 2.

So far, only a qualitative comparison of the presumed PDFs shapes with the stochastic
field simulation results has been provided. This analysis is subsequently complemented by
a quantitative investigation shown in Figure 10. The figure is divided into three parts, where
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the first one compares the PDF-integrated source term fol fol wpyP(Z,c)dcdZ obtained
from the ESF simulation with 32 stochastic fields with its pre-integrated equivalent resulting
from various presumed shapes (see Appendix B). The comparison is performed over the
same time period shown in Figure 8. The second part exhibits the absolute difference
|Awpy | between the simulation results and the a posteriori evaluated integrated source
terms. Finally, the Hellinger distance H? (see Appendix C), which is a measure for the
distance between two probability density functions, is evaluated for the marginal scalar
PDFs using 8 and top-hat presumed shapes.

First, considering the first row of Figure 10, the non-zero values in the profile of the
reaction-progress variable source term indicate regions of chemical reactions which are
caused by the flame front approaching and/or crossing the probe location. In between those
regions are zones where the source term is zero, which is consistent with the previously
discussed temporal profiles of the stochastic fields. More precisely, the zones are mostly
characterized by mixture fraction values below the lower flammability limit. The various
PDF-integrated source terms resulting from the presumed shapes are plotted alongside
the closed source term obtained from the stochastic fields simulation. Thereby, statistical
independence of Z and ¢ has been implicitly assumed for the presumed PDF method and
the same shape function has been set for progress variable and mixture fraction. This yields
three presumed joint PDF representations: (1) a double 4-, (2) a double top-hat- and (3) a
double g-distribution.
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Figure 10. Top: Temporal evolution of the PDF-integrated progress variable source term wpy at the location of Probe A for

the ESF simulations alongside results obtained from three presumed PDF shapes. Center: Absolute difference between

the presumed approaches and the ESF(32) simulation results. Bottom: Hellinger distance (see Appendix C) between the

stochastic fields PDF and the presumed shapes. Vertical dotted lines: time instants corresponding to the time instant

discussed previously.

As shown in the upper two rows of Figure 10, the value of the progress variable
source term may vary considerably depending on which shape of the scalar subgrid PDF
is assumed. Moreover, the results suggest that neglecting subgrid-scale interactions, as
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performed by assuming a double J-shape, yields at most times considerably higher values
of the source term compared with the ESE. The two other presumed approaches, i.e., the
top-hat- and S-shape, deliver considerably lower deviations and are at some points able
to reproduce the results from the stochastic fields reasonably well (see for instance the
source term peak around 5ms). From these profiles, it is also possible to infer that the
double top-hat- and double S-function presumed shapes perform almost evenly. This is
especially noteworthy since the top-hat-function considerably facilitates the storage and
the retrieval of the thermochemical state in the lookup table compared to its f-counterpart
(see for instance [44]). Nonetheless, the integrated source term profiles corresponding to
these presumed shapes also reveal substantial deviations from the ESF solution, as can be
noticed exemplarily around time instant @), where both approaches are approximately
50% off the ESF results.

Finally, the temporal evolution of the Hellinger distance (see Appendix C) is shown in
the bottom row of Figure 10 to quantify the differences between the presumed PDF shapes
and the ESF results. In this context, a value of zero denotes identical functions and one
indicates the maximum distance between both probability density functions compared.
The Hellinger distance is computed by comparing the marginal PDFs obtained from the
ESF simulation with their respective presumed shape. A first observation is that the top-hat
shape produces higher distances over the whole time range considered for both Z and c,
which is expected considering the qualitative comparison shown in Figure 9. A second
finding is that the subgrid probability density function of mixture fraction appears to be
approximated more accurately than its normalized progress variable equivalent. This can
be deduced from the higher distances obtained for the normalized progress variable. Going
back to the actual source term differences shown in the plot above (Figure 10, center row),
one can see a correlation with the Hellinger norm. For instance, the rise in |Awpy | around
3ms and at time instant @) clearly have their corresponding peaks in the H2-profiles for
the presumed PDFs of c¢. This finding, combined with a lower Hellinger distance for
the mixture fraction presumed PDFs, confirms that the mismatch of the source terms is
mainly caused by a deviation in the normalized progress variable presumed PDF shapes.
Moreover, a comparison of the two lower plots of Figure 10 also reveals regions where
the Hellinger distance attests high deviations in the PDF shape for both scalars, but no
deviations between the presumed and transported PDF-integrated source term are found.
The most striking examples for such a scenario can be found in the time range from 6 ms to
8ms and at time instant @. As previously outlined, in these ranges, the mixture fraction is
below the lower flammability limit and the thermochemical state does not vary strongly
across the table controlling variables. In these regions, predicting the correct shape of
the subgrid PDF has no impact on the closure of the reaction source term. This leads to
the conclusion that deviations in PDF shapes cannot be exclusively used to evaluate the
prediction ability of a presumed PDF approach. On the other side, the sole comparison of
certain PDF-integrated quantities also appears reductionistic due to the neglect of error
compensation effects and due to the fact that each quantity varies differently across the
thermochemical lookup table. In this context, it is important to mention that in difference
to the analysis presented in this work, presumed PDF approaches usually rely on closures
to obtain the required moments of the marginal PDFs, which may introduce additional
uncertainties. It seems that only a combination of both previously mentioned approaches,
i.e., comparing the subgrid PDF integrated values and a direct comparison of the PDFs
themselves with a suitable norm, can reveal the whole picture, thus helping to evaluate the
prediction ability of presumed PDF shapes.

4. Conclusions

A novel strategy to perform simulations of turbulent spray combustion has been
proposed in this work. The modeling framework is based on the Eulerian Stochastic Fields
method coupled to the FGM tabulation strategy, while the multiphase flow is treated
using a two-way coupled Euler-Lagrangian approach. The predictive capability has been
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demonstrated in a complex configuration, i.e., the ethanol spray flame EtF6 of the Sydney
spray burner. The results have been compared with experimental measurements and
previous simulations obtained using the Artificially Thickened Flame model with standard
correction of droplet heat and mass transfer, as shown in [7]. It has been demonstrated
that the approach is able to reproduce the temporal statistics of the flow-field reasonably
well. Regarding the scalar statistics of the carrier phase, an underestimation of the flame
propagation towards the jet centerline has been revealed, which is similar to the previous
observations of [7,46]. Nonetheless, as can be seen from the centerline evolution of the
carrier scalars shown in Figure 5, the LES-ESF simulations predict an earlier propagation
of the flame towards the center of the spray jet, which comes closer to the experiments
than the ATF results shown. The temporal scalar fluctuations indicate a much stronger
flame-turbulence interaction for the ESF-based approach. The liquid-phase statistics are
in excellent agreement with the experimental measurements at lower axial positions but
differ at higher distances from the burner exit, which is consistent with the evolution of
the carrier temperature. Moreover, it has been shown that the ESF results are not strongly
influenced by the number of stochastic fields employed in the range investigated, which
confirms previous investigations performed in purely gaseous combustion [33,80].

In a next step, the ESF simulation with 32 stochastic fields has been used to characterize
the evolution of the subgrid contributions at a representative position. Thereby, the time
series shown for the two table controlling variables of mixture fraction and progress
variable (in its normalized form) revealed strong variations of the subgrid PDF width
and shape, which has been confirmed by reconstructing the marginal subgrid PDFs at
various time instants. Additionally, these one-time, one-point PDFs obtained from the ESF
simulations have been compared qualitatively with common presumed density function
shapes. Thereafter, this analysis has been complemented by a comparison of the PDF-
integrated source term of the progress variable. It has been shown that the closed reaction-
progress variable source term value is strongly connected to the presumed PDF shape. The
highest deviations between source term obtained from the transported and presumed PDF
have been observed for a double § distribution and the smallest deviations for a double
B-shaped PDF. Next, the temporal evolution of the Hellinger distance revealed a clear
correlation with |A@py |, which is the absolute difference between computed and presumed
PDF-integrated source term. The profiles also suggest that the difference in source term
value is mainly caused by a deviation in the normalized progress variable presumed
PDF shapes. The analysis also unveiled regions where the Hellinger distance attests high
deviations in the PDF shape for both scalars, but no deviations between the presumed
and transported PDF-integrated source term are found. This leads to the conclusion that
quantifying the similarity of presumed and transported PDF shape is not sufficient to
evaluate the prediction ability of a presumed PDF shape. On the other side, a quantification
solely based on integral values for certain quantities also appears incomplete. For instance,
comparing a different quantity than the progress variable source term may favor one
or another presumed shape, depending on the operating condition and the respective
subgrid fluctuations. The analysis demonstrates that a combination of both evaluation
methods improves its informative quintessence. Nevertheless, a complete evaluation of the
presumed PDF function performance and accuracy should include results obtained from
simulations conducted with this approach. Furthermore, while the considered position
unveiled various possible subgrid PDF shapes, many more scenarios exist. To make
the present investigations more general, it remains to be shown whether the results can
be transferred to other operating conditions or configurations. These aspects and the
incorporation of subgrid effects on the disperse phase will be subject of future works.
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Abbreviations

The following abbreviations are used in this manuscript:

LES  Large Eddy Simulation

DNS  Direct Numerical Simulation
FGM  Flamelet Generated Manifold
ATF  Artificially Thickened Flame
ESF Eulerian Stochastic Fields
PDF  Probability Density Function
FDF  Filtered Density Function
KDE Kernel Density Estimation
TH top-hat

Appendix A. Estimation of Sampling Errors

In the present LES study, statistical moments (e.g., mean and rms velocities) are used
to assess the performance of the proposed ESF approach in the turbulent spray flame
EtF6 test case [39]. Herein, statistical moments are estimated by a finite number of sample
averages over a finite time period. They consequently contain sampling errors that must
be quantified to ensure estimates with a sufficient degree of accuracy.

Following the procedure described in [81,82], the sampling error of basic estimates
in LES can be calculated a posteriori by means of the local mean magnitude velocity
|U|, the local turbulent length scale L; and the record length t4,. In the case of the rms
velocity, which can be seen as a representative statistic quantity in turbulent flows, the

error measure reads
Lt
erms = | =, Al
rms |u| . tgy ( )

in which the local turbulent length scale is defined as L; = K32/ €x [83]. To close Equation
(A1), expressions for the total turbulent kinetic energy k and its dissipation rate €; are
required. In the context of LES, these quantities can be approximated as

1, _, oul’
(k) ~ 5 ;) + (ksgs)  and (&) = —<T§jax;> + <€k5gs> (A2)

where (o) denotes spatial or temporal averaging. By using the inertial subrange theory,
the total turbulent kinetic energy and its dissipation rate can be calculated as (ksgs) =
<ng5>2/ (A?C%) and <€ksgs> = <1/sgs>3/(A4C§), respectively, with Cx = 0.094 and Cs =
0.17 (see [82,84]).

Figure A1l presents (top) the turbulent length scale L; and (bottom) the resulting
sampling error in the turbulent spray flame EtF6 test case for an averaging time of t,, =
0.25s. LES results are exclusively shown for the simulation with eight stochastic fields
ESF(8) and for the region of interest (0 < x/D < 30, r/D < 3). Similar results are obtained
for the other cases and therefore not shown here.
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Figure A1. Predicted (top) turbulent length scale L; and (bottom) sampling error ;s for an averaging time of f;, = 0.25s.
LES results obtained with eight stochastic fields (ESF(8)).

As it might be expected, the turbulent length scale is small close to the injection region
(Lt ~ D) and it increases gradually downstream (see Figure Al(top)). In line with this
observation, the sampling error in Figure Al(bottom) appears small close to the injection
and increases with increasing axial and radial distance. Thereby, the sampling error is
smaller than 10% in almost the entire region of interest. This error is further reduced

by a factor of ~ , /7" 41 for each radial position by means of spatial averaging in the

azimuthal direction [81]. As a result, from the present averaging time of t;, = 0.25s and by
means of spatial averaging in the azimuthal direction, a sampling error less than 5% for
second-order statistics is likely expected in the present LES study of turbulent spray flame
EtF6 test case.

Appendix B. Presumed PDF Approaches

In contrast to the ESF method, presumed PDF approaches rely on the prior assumption
of a shape function for the scalar probability density distribution. The shape function has
then to be parametrized by the moments of the distribution and it is often assumed
that the PDF can be represented by its first two moments. However, in the case of a
multidimensional probability distributions P(¢), prescribing a feasible presumed shape
turns out to be a difficult endeavor. This problem leads to the simplified assumption
of statistical independence between the scalar dimensions of the PDF, thus substantially
facilitating its description to the product of its marginal PDFs P(¢) ~ [T P(¢;). Therefore,
if the moments of the marginal PDFs are known, it is possible to evaluate any quantity
under consideration of the subgrid influence. In the case of a two-dimensional PDF of
mixture fraction and reaction-progress variable, one obtains the closed progress variable
source term

Gpy = / / @py(Z,PV)P(Z,Z,0%)P(PV,PV,03,)dZdPV. (A3)

With respect to the application of the presumed PDF approach for reactive flow
problems, the -, top-hat-, and é-shape are most widely spread. The S-shape [21] is a
combination of I" functions

F'(a+b) , 4

P(x,X,0%) = ONOR (1—x)tt (A4)
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for which the parameter a and b are computed from the first two moments of the probability
density function as

azf(@—l); b:lj(wq). (A5)

Similarly, the top-hat-shape relies on the first two moments of the PDF [85]:

~ if (x; <x <
Pz =00 Fla<r<n) (A6)
0 else
with the parameters
1
Xg = ;0 xg=X—1/120%;,  x, =X+ /1202, (A7)
Xp — Xa

Each of these presumed shapes has a different physical interpretation. For instance,
presuming a d-shape for the subgrid PDF for both mixture fraction and reaction-progress
variable is equivalent to assuming that wpy = wpy(Z, PV).

Appendix C. Hellinger Distance

To estimate the differences between probability distributions, different approaches
can be applied. For instance, Ihme and Pitsch [86] applied the Kullback-Leibler divergence
or maximum entropy principle to derive a statistically most likely distribution (SMLD)
based on DNS data. In this work, the Hellinger distance is used, which is a symmetric
measure to evaluate the similarity of two probability density function P(x) and Q(x) [87]

HA(P,Q) =1~ [ /P(x)Q(x)dx (A8)

and is bounded between zero and one, where zero indicates identical distributions and one
maximum distance between P and Q ones.
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