
fluids

Article

Linear Non-Modal Growth of Planar Perturbations in a Layered
Couette Flow

Emmanouil G. Iliakis and Nikolaos A. Bakas *

����������
�������

Citation: Iliakis, E.G.; Bakas, N.A.

Linear Non-Modal Growth of Planar

Perturbations in a Layered Couette

Flow. Fluids 2021, 6, 442. https://

doi.org/10.3390/fluids6120442

Academic Editor: Xavier Carton

Received: 11 November 2021

Accepted: 2 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratory of Meteorology and Climatology, Department of Physics, University of Ioannina,
45110 Ioannina, Greece; miliakis98@yahoo.com
* Correspondence: nbakas@uoi.gr

Abstract: Layered flows that are commonly observed in stratified turbulence are susceptible to the
Taylor–Caulfield Instability. While the modal stability properties of layered shear flows have been
examined, the non-modal growth of perturbations has not been investigated. In this work, the tools
of Generalized Stability Theory are utilized to study linear transient growth within a finite time
interval of two-dimensional perturbations in an inviscid, three-layer constant shear flow under the
Boussinesq approximation. It is found that, for low optimization times, small-scale perturbations
utilize the Orr mechanism and achieve growth equal to that in the case of an unstratified flow. For
larger optimization times, transient growth is much larger compared to growth for an unstratified
flow as the Kelvin–Orr waves comprising the continuous spectrum of the dynamical operator and
the gravity edge-waves comprising the discrete spectrum interact synergistically. Maximum growth
is obtained for perturbations with scales within the region of instability, but significant growth
is maintained for modally stable perturbations as well. For perturbations with scales within the
unstable region, the unstable normal modes are excited at high amplitude by their bi-orthogonals. For
perturbations with modally stable scales, the Orr mechanism is utilized to excite at high amplitude
neutral propagating waves resembling the neutral Taylor–Caulfield modes.

Keywords: Taylor–Caulfield Instability; layered flows; non-modal growth; optimal perturbations;
Orr mechanism

1. Introduction

Stratified shear instability is ubiquitous in the atmosphere and the ocean and con-
tributes to turbulence production and, more importantly, to the mixing of momentum
and trace constituents (see the recent review by Caulfield [1]). A vast amount of research
for over a century now—since the seminal works of Helmholtz [2], Lord Kelvin [3] and
Lord Rayleigh [4]—has been devoted to the understanding of the inner workings and the
evolution of the instability as well as to the quantification of its mixing efficiency.

Depending on the shear and the density stratification of the flow, there are three main
types of instabilities. The first and most well studied is Kelvin–Helmholtz instability that
is very common in cases in which density varies on a depth that is large compared to the
depth of the shear layer. This is an unstratified instability arising from opposite gradients
of vorticity at the edges of the shear layer in the flow and is partially stabilized by the
stratification of the fluid [5]. The non-linear evolution of the instability produces elliptical
billows [6] that are susceptible under certain conditions to secondary instabilities [7–9] and
collapse, producing efficient mixing.

In the other two types of instabilities, stratification plays a crucial role. If the density
varies substantially on a scale that is much shorter compared to the depth of the shear
layer, Holmboe instability arises [10]. This instability is markedly different compared to
the Kelvin–Helmholtz instability regarding its onset, its characteristics and its non-linear
evolution. Instead of a single, stationary unstable mode that grows in the case of Kelvin–
Helmholtz instability, there are two unstable propagating waves with slower growth rates
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compared to the Kelvin–Helmholtz modes. The phase speed of the waves are opposite in
the case of symmetric flow, that is, in the case in which the density interface is located at
the midpoint of the shear layer. In the case of asymmetry, the phase speeds as well as the
growth rates differ [11]. Experimental studies [12–14], as well as numerical studies [15–17],
have examined the non-linear evolution of the instability and showed that the unstable
modes evolve into propagating vorticity patches above/below the density interfaces and
form cusps with sporadic turbulence and mixing produced as fluid is being pulled from
the tops of the cusps.

In the case in which there are multiple layers of the fluid with sharp density interfaces,
then even for inflectionless shear flows, a third type of instability can arise. This instability
was first noted by Taylor [18] for a three-layer fluid and was later thoroughly investigated
by Caulfield [19]. It is thus referred to as Taylor–Caulfield Instability (TCI) and is the
focal point of this work. Its non-linear evolution was investigated in experiments [20] as
well as in numerical simulations [21–24]. It was found that the instability manifests as
elliptical vortices, which resemble the Kelvin–Helmholtz billows and are situated between
the density interfaces. An interesting feature observed in all numerical studies is the
existence of ’parasitic’ waves on the sheared density interfaces in the flow that can locally
produce mixing or disrupt the structure of the billows.

The TCI has recently gained interest for two reasons. The first is that it is the least
studied among the three. The second is that the fluxes in stratified turbulence are ex-
pected to amplify any fluctuations in a uniform density gradient [25]. This anti-diffusive
mechanism leads to an instability of the statistical state dynamics and forms well-mixed
layers separated by thin layers of sharp density gradients [26], a result that is verified by
numerical simulations of stratified turbulence [27,28]. As these layers are under shear, the
TCI might play a role in the rich phenomenology observed with layer merging/splitting,
as well as the re-homogenization of the flow [29].

The linear instability characteristics of TCI have been investigated for an inviscid
flow [19], for a viscous flow [23] and for an arbitrary number of interfaces [30]. The mecha-
nism underlying the instability can be interpreted as arising from the interaction of gravity
edge-waves. According to this idea by Taylor [18] and Goldstein [31], each density interface
supports two localized gravity waves propagating upstream and downstream relative to
the mean flow velocity at the position of the interface. The gravity waves supported at the
different interfaces interact through action at a distance. That is, they impose velocities at
the other interface and can enhance/reduce the amplitude as well as affect the propagation
speed of the waves at the other interface. Instability arises when the waves supported at
the different interfaces phase-lock in a mutually growing configuration. Attempting to
provide a mechanistic understanding of baroclinic instability, Bretherton [32] expanded
this idea to the interaction of edge-waves supported at vorticity interfaces (the waves are
termed in this case as vorticity edge-waves or counter-propagating Rossby waves). This
led to the interpretation of the other two main shear instabilities through this mechanistic
approach [33]. Kelvin–Helmholtz instability occurs due to the resonance between two
vorticity edge-waves [34] while Holmboe instability occurs due to the interaction between
a vorticity edge-wave and a gravity edge-wave [35]. It was also shown that, although the
analytic treatment of the edge-wave interactions is possible in the case of piecewise-constant
density and vorticity profiles, the analysis and the results qualitatively hold even for smooth
profiles [15,36].

Apart from modal exponential growth, shear flows also support non-modal growth
even in cases in which modal instability is absent due to the non-normality of the linear
operator governing the evolution of small perturbations [37–39]. Such transient growth can
occur either due to the interaction of the edge-waves that comprise the discrete, modal part
of the spectrum of the linear operator [40,41], or due to the interactions of the members
of the continuous spectrum of the operator [42,43]. A paradigm for the dynamics of the
latter is transient growth in parallel Couette flow, which lacks any discrete modes and
exhibits only a continuum of neutral singular modes. Lord Kelvin [44] and Orr [45]
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showed, through plane-wave solutions with time-dependent wavenumber, that the energy
of perturbations grows transiently and that the energy growth has no bound for inviscid
flows. This so-called Orr mechanism was found to produce robust linear growth in many
stratified two-dimensional shear flows [46–52] as the dynamics of the Kelvin–Orr waves do
not depend on the details of the shear flow and stratification was not found to decrease the
obtained growth dramatically. In addition, these waves can interact with the vorticity or
the gravity edge-waves and deposit their energy to the modal part of the spectrum, thereby
exciting at high amplitude the unstable or the stable analytic modes [38,48,53–55]. As a
result, recent studies addressing transient growth in the non-linear regime of perturbation
evolution, showed that the linear transient growth is robust and capable of leading to
mixing of a stratified fluid even in the absence of modal instabilities [56,57].

However, there is no study investigating non-modal growth for multi-layered strat-
ified flows as in the TCI. In this work, we undertake this task and utilize the tools of
Generalized Stability Theory [38] to investigate linear transient growth of perturbations
in a three-layer constant shear flow under the Boussinesq approximation. This flow lacks
any inflectional points. Therefore the TCI can be investigated in isolation as the Kelvin–
Helmholtz instability is absent. We also consider the perturbations to be two-dimensional
and the fluid to be inviscid. While viscosity affects the modal stability properties of the
flow [23] and three-dimensional structures might play a role on the late stages of evolution
for these layered flows [58], these two assumptions were made as a first step of probing the
transient growth dynamics in the simplest setting. However, some of the potential effects of
viscosity and three-dimensional dynamics on the obtained results will be briefly discussed.
This paper is organized as follows. In Section 2, we present the linearized Boussinesq
equations governing the evolution of small two-dimensional perturbations in the inviscid
three-layer stratified shear flow. In Section 3 we discuss the modal characteristics of TCI,
while in Section 4 we investigate the non-modal growth of perturbations. Specifically, we
calculate the initial perturbations leading to the maximum energy growth over a specified
time interval. We also analyze the growth achieved, the perturbation evolution as well as
the mechanisms underlying this growth. Finally, we end with a discussion of our results
in Section 5, their relevance in the dynamics and evolution of layered flows as well as a
brief discussion on the effect of viscosity and three-dimensionality of perturbations on
our results.

2. Linear Equations for the Evolution of Small Perturbations

We consider the parallel shear flow of a stably stratified fluid in a channel of width 2h
(z∗ ∈ [−h, h]) with mean velocity:

U∗(z∗) = s z∗ i, (1)

and mean density,

ρ∗0(z
∗) = ρm −

∆ρ

2

{
tanh

[
R
h

(
z∗ − h

3

)]
+ tanh

[
R
h

(
z∗ +

h
3

)]}
, (2)

that is hydrostatically balanced by the mean pressure field p∗0(z
∗). Asterisks denote dimen-

sional variables, while s is the shear rate. The fluid consists of three layers with densities
ρm − ∆ρ, ρm and ρm + ∆ρ and approximate width 2h/3. The sharpness of the transition
between the three layers is measured by the parameter R.

We examine the stability of this flow under two-dimensional, small-amplitude per-
turbations u′∗(x∗, z∗, t∗), ρ′∗(x∗, z∗, t∗), p′∗(x∗, z∗, t∗). The linearized, non-dimensional equa-
tions governing the evolution of the perturbations under the Boussinesq approximation are:
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(
∂

∂t
+ z

∂

∂x

)
u′ = −∇p′ − Jρ′k, (3)(

∂

∂t
+ z

∂

∂x

)
ρ′ + u′ · ∇ρ0 = 0, (4)

∇ · u′ = 0, (5)

where length, time, velocities, density and pressure have been non-dimensionalized by the
channel half-width h, the shear rate 1/s, the velocity scale sh, the density difference ∆ρ and
the pressure scale ρms2h2 respectively and J is the bulk Richardson number J = g∆ρ/ρms2h.
The non-dimensional mean velocity and density profiles are given by:

U(z) = z, ρ0(z) =
ρm

∆ρ
+

1
2

[
tanh

(
Rz− R

3

)
+ tanh

(
Rz +

R
3

)]
, (6)

and are shown in Figure 1 for R = 30. The non-dimensional boundary conditions are:

u′(x, |z| = 1, t) = 0. (7)
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Figure 1. (a) The non-dimensional mean flow velocity U(z) = z. (b) The non-dimensional mean flow
density ρ0(z)− ρm/∆ρ with R = 30.

Taking the curl of (3) to eliminate pressure, introducing a streamfunction ψ′ through the
relation u = ∇× (ψ′ k) and taking harmonic solutions of the form [ψ′, ρ′] = [ψ̂(z, t), ρ̂(z, t)]eikx,
we rewrite the system of Equations (3)–(5) in the compact form:

d
dt

x̂ = Ax̂, (8)

where

A = ik
(
−∆−1z∆ J∆−1

dρ0/dz −z

)
, (9)

is the dynamical operator, x̂ is the state vector x̂ =
[
ψ̂, ρ̂

]T , ∆ = ∂2/∂z2− k2 is the Laplacian,
and ∆−1 is its inverse that is rendered unique by the boundary conditions:

ψ̂(|z| = 1, t) =
∂ψ̂

∂z

∣∣∣∣
|z|=1

= 0. (10)
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3. Modal Characteristics of the TCI

The modal growth of perturbations is revealed by eigenanalysis of the dynamical
operator A. We discretize the streamfunction and the density in a staggered vertical grid
with N points. The state vector then becomes a (2N + 1)× 1 vector and the dynamical
operator becomes a (2N + 1)× (2N + 1) matrix, whose eigenvalues λi and eigenvectors
wi are calculated numerically. All calculations were performed with N = 1600 points
and numerical convergence was tested by doubling the grid points and checking on the
convergence of the results.

The growth rate σ = <(λ) and phase speed cr = −=(λ/k) of the normal modes are
shown in Figure 2 as a function of the wavenumber k and the bulk Richardson number J.
There are two branches of exponential instability. The first branch at lower values of J is the
TCI branch of stationary modes. As was shown by Eaves and Caulfield [23], in the limiting
case of R → ∞ the discontinuity of density supports four counter-propagating gravity
edge-waves (two at each interface of rapid density changes) that can interact resonantly.
The phase speed of the normal modes at resonance was calculated to be

c±t =

√√√√1
9
+

J
2kc
±

√
2J
9kc

+
J2 sinh2(2k/3)

4k2
c sinh2(4k/3)

, (11)

where kc = (k/2)[coth(4k/3) + coth(2k/3)]. The growth rates in the TCI branch for the
smooth density profile correspond closely to −ik=(c−t ), therefore the TCI branch results
from these resonant interactions. It is also worth noting that the unstable region is centered
around the line J = 2k/9 for which resonance of the gravity edge-waves in the long-wave
limit is achieved. The same holds for the maximum growth rate that is achieved for
kmax = 1.9 and Jmax = 0.5. The structure of the most unstable mode is shown in Figure 3a,b
and exhibits the familiar tilt of the streamfunction against the shear, while there is no
discontinuity of the streamfunction at the critical layer z = 0.
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Figure 2. (a) Growth rate of the most unstable modes as a function of wavenumber k and bulk
Richardson number J. Also shown is the line J = 2k/9 for which resonance in the long-wave limit
between the gravity edge-waves supported at the interfaces of sharp density gradient is achieved.
(b) Phase speed of the most unstable modes with k = 2 as a function of J (solid line). Also shown are
the phase speeds c+t (dashed line) and c−t (dash-dotted line) of the neutral modes in the R→ ∞ limit.
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Figure 3. Streamfunction (a) and density (b) for the most unstable mode in the TCI branch with
kmax = 1.9 and Jmax = 0.5. Streamfunction (c) and density (d) for the most unstable mode in the
‘overtone’ branch with k = 2.6 and J = 1.7. Also shown in all panels are the interfaces of large density
gradients (dashed lines) and the critical layers of the two modes (dashed-dotted) lines.

The second branch for higher values of J has modes with growth rates that are
approximately one order of magnitude smaller than the growth rates of the modes in the
TCI branch and also have non-zero phase speeds. The two complex conjugate eigenvalues
for each mode in this branch, correspond to two counter-propagating waves that are similar
to the higher-order Holmboe instabilities found by previous studies [36,59]. Their phase
speeds shown in Figure 2b are very close to the phase speeds c−t for J ' 1 and c+t for J ' 2
of the neutral modes in the R→ ∞ limit. However, these modes are rendered unstable by
the smooth density gradients and were referred to as “overtones” as they are caused by
resonances of higher order gravity edge-wave harmonics [30]. The structure of one of these
modes is shown in Figure 3c,d. We observe that it is markedly different from the mode in
the TCI branch, as it is centered around one of the regions of large density gradients (the
oppositely propagating wave is centered around the other). We also note that similar to the
TCI modes, there is no discontinuity of streamfunction at the critical layer but this layer
becomes evident by the concentration of the density perturbation around it. In addition,
according to the diagnostic developed by Eaves and Balmforth [24], which is based on the
contribution of vorticity and density to the pseudomomentum of the modes, these modes
are characterized as Taylor–Caulfield modes since vorticity does not contribute to their
pseudomomentum. We therefore interpret them as overtone TCI modes, even though they
are propagating and the streamfunction as well as the vorticity of the modes appears to be
concentrated around one of the two density interfaces.

4. Non-Modal Growth of Perturbations

Apart from modal exponential growth, the non-normality of the dynamical operator
can give rise to transient non-modal growth of perturbations that can in turn lead to
turbulence and mixing. It is therefore of interest to calculate the initial conditions yielding
the largest energy growth over a specified time interval Topt, as well as to quantify the
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amount of growth achieved. The time interval Topt is physically limited by the time scale
of the mean flow changes and is typically in the order of 1-100 advective time units. The
amount of growth is quantified by specifying a norm for the perturbation amplitude. In
this work, we follow previous studies [46,48] and consider the perturbation energy density,

E(t) =
1
2

∫ 1

−1

(
|u′|2 − J

(dρ0/dz)
ρ′2
)

dz, (12)

where the overbar denotes an average over a horizontal wavelength, as the positive definite
norm quantifying growth. We also note that, while a different choice of norm can be made,
E has the advantage that it is conserved in the absence of a mean flow.

To address transient growth, we rewrite the energy in terms of the state vector as
E(t) = x̂†Mx̂, where

M = − δz
4

(
∆ 0
0 J/(dρ0/dz)

)
, (13)

is the energy norm, δz is the grid spacing and the dagger denotes the Hermitian transpose.
We transform the dynamics into energy coordinates ŷ = M1/2x̂, where M1/2 is the Cholesky

factorization of the energy norm M = M1/2
(

M1/2
)†

. In these coordinates, the energy
is given by the Euclidean norm of the state vector and the dynamics is governed by
the operator AM = M−1/2AM1/2. The optimal perturbations giving rise to the largest
energy growth,

G(Topt) =
E(Topt)

E(0)
, (14)

over an interval Topt are then calculated through a singular value decomposition of the
propagator eAMTopt = UΣV†, where U, V are unitary matrices and Σ is a diagonal matrix
with the singular values along its diagonal. The optimal growth is the square of the largest
singular value of the propagator, while the optimal perturbation is the corresponding
column of V [38].

The main physical mechanism underlying transient growth in planar flows is the Orr
mechanism [45], which is exemplified by considering an unstratified, unbounded flow. In
this case the dynamics reduce to the conservation of vorticity:

(∂t + ikz)∆ψ̂ = 0. (15)

The solution obtained by Kelvin [60] and Orr [45] is given in terms of plane waves
with time dependent vertical wavenumber:

ψ̂ =
k2 + m2

k2 + (m− kt)2 ψ̃(0)ei(m−kt)z. (16)

The constant phase lines of these Kelvin–Orr waves, rotate clockwise as the vertical
wavenumber decreases linearly with time due to shearing of the perturbation. In addition,
shearing deforms the perturbation and constantly increases the distance between the
constant phase lines for perturbations leaning against the shear (m > 0). To compensate
for the decreasing distance and conserve vorticity, the amplitude of the streamfunction
increases (e.g., Equation (16)) leading to energy growth. The energy amplification continues
until the phase lines of the waves become vertical at t = m/k. Subsequently, their energy
decays as the time dependent wavenumber becomes negative and shearing decreases the
distance between the phase lines. Therefore, the optimal perturbations have an initial
tilt m/k = Topt, such that their phase lines become vertical at Topt and achieve a growth
equal to GOrr(Topt) = 1 + T2

opt [61]. From the geometric point of view of non-normality,
this growth arises due to the properties of the linear operator AM, which has a continuous
spectrum of singular modes with eigenvalues kc and eigenfunctions

ψ̂ ∼ e−k|z−c|, (17)
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centered around z = c. As these modes are non-orthogonal in the energy norm, an initial
perturbation can have a very large projection on some of these modes. This large projection
is initially masked by the projections onto other modes, thereby yielding an order one initial
norm. However, as the perturbation evolves, the projection is unmasked yielding a large
norm and producing growth [38]. In the presence of boundaries, the growth achieved as a
function of wavenumber is shown in Figure 4a. We observe that, for large wavenumbers,
G0 asymptotically reaches the value of growth for the unbounded flow. The reason is that
for large k, most of the singular modes have the form of (17) rapidly decaying away from
z = c and are unaffected by the boundaries at |z| = 1. In contrast, singular modes with
lower wavenumbers have a slower decay with height and are significantly affected by the
boundaries producing lower growth.
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Figure 4. (a) Optimal growth G0 at Topt = 5 for an unstratified flow as a function of wavenumber.
Also shown is the corresponding growth for an unbounded shear flow 1 + T2

opt. (b) Optimal growth
G at Topt = 5 as a function of wavenumber and bulk Richardson number. (c) Ratio of the optimal
growth G at Topt = 5 over the corresponding growth for an unstratified flow (G0) as a function of
wavenumber and bulk Richardson number.

For J 6= 0, the energy growth achieved for low optimization times (Topt = 5) is shown
in Figure 4b as a function of wavenumber k and bulk Richardson number J. We observe
that, for such low optimization times, the growth achieved is very weakly dependent
on the bulk Richardson number for J ' 2 and increases with wavenumber, asymptoting
to a constant value. This value is approximately equal to G0 as revealed in Figure 4c
illustrating the ratio of the optimal growth to the corresponding growth for an unstratified
flow. Therefore for early times, the kinetic energy growth produced by the Orr mechanism
underlies the transient growth even for the stratified three-layer flow.

Figure 5 shows the finite time Lyapunov exponent ln(G(Topt))/2Topt for larger opti-
mization times. For low wavenumbers, we again observe lower values of optimal growth
along with a weak dependence on the Richardson number for J ' 2. Maximum growth
is achieved either at large wavenumbers for Topt = 10 or within the TCI branch for larger
Topt. Note however, that the optimal growth rate in the TCI branch is systematically larger
that the modal growth rate shown in Figure 2. The reason is that the optimal perturbation
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achieving this growth is the initial perturbation with the maximal projection on the unsta-
ble mode. For a non-normal operator, this perturbation is not the mode wi itself, but its
bi-orthogonal wad

i [38]. To find this projection, we write an initial perturbation x(0) as the
sum of the eigenmodes of AM:
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Figure 5. Finite time Lyapunov exponent ln(G(Topt))/2Topt as a function of wavenumber and bulk Richardson number for
(a) Topt = 10, (b) Topt = 50 and (c) Topt = 100.

x(0) =
2N+1

∑
i=1

αiwi. (18)

The projection coefficients αi can be calculated by utilizing the orthogonality between
wi and wad

i , as for a non-normal operator the orthogonal to the mode wi with eigenvalue λi
is the bi-orthogonal mode wad

i of the adjoint operator A†
M corresponding to the eigenvalue

λ∗i . As a result, the coefficients αi are given by:

αi =
wad

i
†
x(0)

wad
i

†wi

. (19)

The maximum projection on the unstable mode is thus found by substituting the
bi-orthogonal as the initial perturbation to yield:

pi =
1

wad
i

†wi

, (20)

for normalized bi-orthogonal vectors. Figure 6a shows the maximum projection pi for the
unstable modes in the TCI branch, which is the amplified amplitude with which these
modes are excited. We observe that the amplified amplitude is of the order of 50 for the
most unstable wavenumbers but can reach very high values for wavenumbers close to the
cut-off scale of modal instability.
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Figure 6. (a) Excitation amplitude pi for the unstable modes in the TCI branch by their bi-
orthogonals. Also shown is the cut-off scale for the TCI branch (dashed line). (b) Energy evolution
for the bi-orthogonal as an initial perturbation (solid) and for the most unstable mode as an initial
perturbation (dashed).

To illustrate the process of the excitation of the unstable mode with increased ampli-
tude, we plot in Figure 6b the energy growth for the bi-orthogonal and compare it with the
energy growth of the mode itself. We can see that the energy of both initial perturbations
grows at large times exponentially with the same rate 2λi, but during the early stages
of evolution there is an initial boost for the energy of the bi-orthogonal. Figure 7 shows
snapshots of the streamfunction during this early stage of evolution of the bi-orthogonal.
We observe that the bi-orthogonal shown in Figure 7a has a higher tilt compared to the
unstable mode shown in Figure 3a. As it is sheared over (Figure 7b), it is able to achieve
rapid transient growth for early times through the Orr mechanism until it assumes the
form of the normal mode (Figure 7c). For wavenumbers close to the cut-off scale, the
initial growth phase lasts longer yielding larger growth and larger projections. Asymp-
totically close to the modal marginal stability, the duration of the growth phase tends to
infinity along with the growth due to the Orr mechanism and leads to infinite values for
the projection (cf. Figure 6a). Therefore, we conclude that, for wavenumbers in the TCI
branch, the bi-orthogonals utilize the Orr mechanism to excite the unstable normal modes
at large amplitude.

Figure 7. (a) Streamfunction of the bi-orthogonal to the most unstable mode for kmax and Jmax. (b,c) Snapshots of the
streamfunction at (b) t = 4 and (c) t = 20 showing the evolution of the bi-orthogonal. In all panels the interfaces of large
density gradients are also shown (dashed lines).
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More importantly though, we observe in Figure 5 that there is transient growth even
for exponentially stable modes. Such growth is lower compared to the corresponding
growth within the TCI branch, but is nevertheless significant. Comparison with the optimal
growth for an unstratified flow revealed that it can be up to five times larger than G0 for
Topt = 50 and up to 30 times larger for Topt = 100, showing that the perturbations take
advantage of the interactions between the Kelvin–Orr waves and the gravity edge-waves
to produce more growth compared to the unstratified Orr dynamics.

This synergistic action is evident in the evolution of the optimal perturbation in this
case which is shown in Figure 8a. We observe a large energy amplification until Topt as
would be expected by the Orr dynamics with an equipartition of the energy between kinetic
and potential forms (not shown). However, instead of an energy decay after t = Topt we
observe a large energy oscillation which is also present at lower amplitude in the ampli-
fying stage. This oscillation is produced by the excitation of propagating waves that are
shown in Figure 8b where the streamfunction at the upper density interface (z = 1/3) is
plotted as a function of x and time t. The tilted alternating bands in streamfunction indicate
a wave propagating upstream with a specific phase speed. At the lower density interface,
a counterpart to this wave propagating downstream with the same phase speed is also
observed (not shown). To examine these waves into detail, we project the optimal pertur-
bation vopt onto the modes of AM as in (19). Figure 8c shows the projection coefficients
αi as a function of the phase speed of the modes wi. We have maximum projection near
the phase speeds c±t of the neutral waves in the R → ∞ limit, showing that the optimal
perturbation is mainly composed of these neutral modes and a collection of continuous
spectrum modes with similar phase speeds. The structure of these waves is similar to
the unstable modes in the ’overtone’ branch (not shown) with maximum values of the
streamfunction at the two density interfaces and the density perturbation centered around
the level z = c−t . We therefore conclude that the initial perturbation excites at very large
amplitude neutral waves that are supported by the interaction of the gravity edge-waves
at the two density interfaces.

We investigate the excitation of these neutral waves by the Kelvin–Orr waves and plot
in Figure 9 the evolution of the optimal perturbation and its discrete Fourier decomposition
in z. The optimal perturbation that is shown in Figure 9a has a very high tilt against the
shear and it comprises of five bands of large wavenumbers as shown in Figure 9b. The
snapshots of the evolution of the streamfunction (Figure 9c–e), as well as the Fourier de-
composition of the streamfunction at later times (Figure 9f) reveals that as the perturbation
is sheared over, its wavenumbers decrease linearly with time according to the Orr mecha-
nism. For example, as it is shown in Figure 9f after t = 10 advective time units, the first
band of wavenumbers for the initial perturbation that was centered around wavenumber
m = 10 has decreased to zero. As this first band of wavenumbers goes to zero and the
perturbation starts to tilt vertically (Figure 9d), the next band of wavenumbers is still in the
growing phase and the streamfunction tilts again against the shear after a few advection
times (Figure 9e). Therefore the perturbation undergoes another period of growth. During
these successive growth periods the amplitude of the neutral waves increases as they are
gradually excited.
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Figure 8. (a) The evolution of the energy of the optimal perturbations with k = 3 (solid line),
k = 2.5 (dashed line) and k = 2.475 (dash-dotted line). The bulk Richardson number is J = 0.5
and Topt = 100. (b) Hovmöller diagram of the streamfunction of the optimal perturbation for k = 3.
That is, contours of <[ψ̂(z = 1/3, t)eikx] as a function of x and t for the optimal perturbation. Also
shown (dashed line) is the phase speed of the mode onto which the optimal perturbation projects (see
panel (c)). (c) Projection coefficients of the optimal perturbation for k = 3 on the normal modes and
the continuous spectrum modes. Also shown (dashed lines) are the c±t phase speeds of the neutral
normal modes in the R→ ∞ limit.

To understand the spacing of the five bands of wavenumbers that constitute the opti-
mal perturbation, we investigate the late stage of the evolution of the optimal perturbation
that occurs after t = Topt and is shown in Figure 10. We observe that the neutral waves
at the two interfaces constantly repeat a cycle in which they come in phase (Figure 10a)
and out of phase (Figure 10c) as they counter-propagate. In between, as the waves come
partially in and out of phase, the streamfunction tilts with the shear (Figure 10b) and against
the shear (Figure 10d) leading to energy decay and to energy growth of the perturbation
respectively. The result is the large energy oscillation observed in Figure 8. During the
excitation phase for these waves, the energy oscillation induced by the neutral waves and
the energy amplification brought by the Kelvin–Orr waves should synchronize in order to
achieve maximum growth. To achieve this, the spacing of the five bands of wavenumbers
coincides with the period of the excited neutral waves as shown in Figure 9b.
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Figure 9. The evolution of the optimal perturbation for k = 3, J = 0.5 and Topt = 100. (a) The streamfunction of the optimal
perturbation. (b) The absolute value of the Fourier amplitude of the streamfunction obtained through a discrete Fourier
transform. Note that the minimum wavenumber is π leading to the jagged appearance of the line. (c–e) Snapshots of the
streamfunction at (c) t = 10, (d) t = 23 and (e) t = 29. (f) The absolute value of the Fourier amplitude of the streamfunction
at t = 10 (solid line) and t = 29 (dashed line).

The same phenomenology of neutral wave excitation holds for all other stable regions
in the k-J parameter space. The only difference is that when we approach the TCI branch,
the phase speed of the neutral modes goes to zero. Therefore, the period of the oscillation
increases as shown in Figure 8a illustrating the energy evolution for the optimal perturba-
tions for two other wavenumbers approaching the stability boundary. More importantly,
the amplitude of the oscillation increases rapidly.
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Figure 10. Late stage of the evolution of the optimal perturbation for k = 3, J = 0.5 and Topt = 100.
Shown are contours of the streamfunction at (a) t = 100, (b) t = 105, (c) t = 111 and (d) t = 114.

5. Discussion

In this work, linear non-modal growth of planar perturbations in a constant shear flow
with three density layers was examined. Robust growth at a finite time interval was found
with maximum growth obtained for modally unstable perturbations and suboptimal but
large values of growth obtained for modally stable perturbations. It was also shown that
the optimal perturbations utilize the Orr mechanism to either excite the unstable normal
modes or a pair of neutral counter-propagating Taylor–Caulfield modes at high amplitude.

This dynamics might play a role in the evolution of the flow even in the non-linear
stage. Numerical simulations of TCI have shown that in many cases the elliptical vortices
formed by the primary instability are eventually sheared out and decay [23,24]. After this
period, there are persistent oscillations in energy associated with the appearance of parasitic
waves that are characterized by increased shear and mixing in one of the interfaces. While
these waves were interpreted as Holmboe waves, we note that the neutral Taylor–Caulfield
modes as well as the unstable overtone modes share similar characteristics. Taking into
account the fact that the flow is modified by the elliptical vortices in many of the cases
described above and that the growth of the parasitic waves occurs at a finite time interval,
we believe that the Orr mechanism that does not depend sensitively on the details of the
flow and produces rapid growth at finite time intervals, can play a significant role in the
excitation of these waves, whether they are unstable modes of the flow at the given time
or not.

A possible avenue for future work would be to extend the analysis to three-dimensional
perturbations in a viscous flow. In full three-dimensional dynamics there is an additional
transient growth mechanism, the lift-up effect, which involves the tilt-up of the background
spanwise vorticity by the cross-stream perturbation velocity to produce a large amplifica-
tion of the streamwise velocity [62,63]. In addition, three-dimensional unstable modes will
appear at least for Richardson numbers approximately lower than Jmax. The reason is that
Yih’s theorem [64] establishes that the most unstable modes are two-dimensional only if the
maximally growing perturbation at fixed bulk-Richardson number grows slower than the
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square root of the Richardson number. That is if fσ = maxk(σ)/
√

J is a decreasing function
of J. Calculation of fσ reveals that the criterion is satisfied for J ' 0.4, which means that the
maximally growing modal instability is three-dimensional for low Richardson numbers.

Regarding the effect of viscosity on non-modal growth, it is known that for unbounded,
unstratified flows, transient growth is bounded. For streamwise independent perturbations,
growth is maximized at times of O(Re) and is of the order of O(Re2), while for planar
perturbations growth is maximized at times ofO(Re1/3) and is of the order ofO(Re2/3) [39].
We therefore expect that stable or unstable modes including those in the new branch that
appears in the presence of viscosity [23], would be excited at amplitudes of that magnitude.
However, the exact interplay of the Orr and the lift-up mechanisms in producing growth
and in the excitation of normal modes remains to be seen in a future work.
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