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Abstract: One of the most important and complex effects associated with the presence of particles
in the flow is the gas-dynamic interaction of particles with the shock layer. Of particular interest
is the intensification of heat transfer by high inertia particles rebounding from the surface or by
the products of erosion destruction, which reach the front of the bow shock wave and violate the
gas-dynamic structure of the flow. In this case, according to experimental data, the increase in heat
fluxes is much greater than it could be predicted based on the combined action of the kinetic energy
of particles and a high-speed flow. The problem is related to the destruction of the flow structure.
In this paper, the problem is studied with numerical simulation. We show that the key role in the
intensification of heat transfer is played by the formation of an impact jet flowing onto the surface. An
area of increased pressure and heat flux is formed in the zone of action of the impact jet. This effect is
maintained over time by the successive action of particles.

Keywords: heterogenous supersonic flow; gasdynamical particle—shock wave interaction;
numerical simulation

1. Introduction

Flows with suspended solid or liquid particles (heterogeneous flows) are present in
many applications. Heterogenous flows are used in some technologies and structures
for transport and energy purposes, such as the pneumatic conveying of bulk materials,
the jet-abrasive treatment of machine parts, and for rocket engines running on metalized
fuel. In many devices, particles enter the fluid flow against the will of the developers.
For example, we can cite steam and gas turbine installations and gas-dynamic research
stands, where it is problematic to get rid of particles completely despite the use of powerful
filtration systems. In the atmosphere of the Earth and other planets, there is dust or clouds
containing liquid (rain) or solid (snow, hail) particles. Therefore, one of the important
problems of high-speed flight in the lower atmosphere is overcoming areas with different
dispersion formations.

Various aspects of heterogeneous flows and their interaction with bodies are consid-
ered in a number of monographs and reviews [1–6]. From the point of view of the effect of
a heterogeneous flow on an obstacle, the following main mechanisms can be distinguished:
shock action, leading to additional heating and, possibly, erosion of the surface, enhance-
ment of the convective heat transfer, and the radiative heat transfer between a dispersed
phase and the body surface. It should be noted that these mechanisms are interrelated.
The intensity of the erosion depends on the temperature of the material, which is formed
under the action of the convective and radiative heat transfer. On the other hand, the
release of the erosion products into the flow and changes in the body’s shape due to erosion
affect the heat transfer processes [2,7].

In this work, we focus on the issues of convective heat transfer enhancement. A num-
ber of new effects complicate the convective heat transfer in a heterogeneous supersonic
flow around bodies compared to the traditional dust-free gas flow. Among them are the
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intensification of heat transfer due to an interphase energy exchange in the boundary
layer, the acceleration of the laminar-turbulent transition, and the intensification of heat
transfer due to the formation of craters on the exposed surface. The issues of heat transfer
intensification in heterogeneous flows around bodies are considered in [8–13] for various
inertial properties of particles and modes of particle deposition on the surface. Heat transfer
enhancement caused by craters on the surface is discussed in [14,15].

Of particular interest is the intensification of heat transfer by high inertia particles
rebounding from the surface or by the products of erosion destruction, which reach the
front of the bow shock wave and violate the gas-dynamic structure of the flow. In this case,
according to the experimental data [16–20], the increase in heat fluxes is much greater than
it could be predicted based on the combined action of the kinetic energy flux of particles
and the high-velocity flow. Thus, it is impossible to explain the increase in the model
heating by the complete transition of the kinetic energy of particles into thermal energy.
The problem is related to the destruction of the flow structure. This case is challenging
for the numerical simulation due to the significant difference in scales between the body
and particles.

In our previous work, we developed algorithms for the numerical simulation of a
supersonic flow around bodies, taking into account the gas-dynamic interaction of the
shock layer with a high inertia particle [21–24]. Distinctive features of our technique are
the use of high-resolution adaptive sliding Cartesian grids, the immersed boundary ghost
cell method for boundary conditions treatment, and the parallelization of computations
on GPUs.

We used the developed computer model to carry out a series of computational experi-
ments aimed at identifying characteristic shockwave and vortex structures formed when
a single particle reflected from the surface passes through the bow shock wave [21,22].
Variants of flow around a cylinder with spherical bluntness and a flat end have been inves-
tigated. Detailed spatio-temporal pictures of the gas-dynamic interaction of the disturbed
region in the vicinity of the particle with the macroscopic flow in the shock layer and the
bow shock were obtained. It is shown that the shock wave and vortex flow structures are to
a certain extent similar to those observed in the flow around spiked bodies [25,26]. Further-
more, a study of the oscillatory flow and heat transfer regimes induced by the gas-dynamic
interaction of a high inertia particle with the shock layer was carried out. The shockwave
structures and oscillation frequencies obtained through numerical simulation [23] agree
well with experimental data [17].

The numerical simulation [24] showed significant growth of the heat flux even under
the gas-dynamic action of a single particle. However, it lasts for a relatively short period
and does not lead to overall heat transfer intensification. The next question is whether
several particles’ subsequent actions can keep the high heat flux level over time. This effect
is the subject of the present article.

2. Model and Methods

In our previous work [21–24], we considered the gas-dynamic interaction of a single
particle with a shock layer in the flow around an axisymmetric body. In this case, the
particle moved strictly along the axis of symmetry, which made it possible to solve the
problem in a two-dimensional formulation. This is of principal importance since modeling
the gas-dynamic interaction requires a high grid resolution near a moving particle. Even in
a two-dimensional version, solving the problem requires enormous computational costs.
The deviation of a particle from the axis of symmetry violates the axisymmetric structure
of the flow and requires three-dimensional modeling. Considering that in this work we
studied the collective action of a group of particles on the shock layer, we were forced to
simplify the problem by considering the process in a two-dimensional formulation (plane
flow). Of course, it was difficult to talk about the quantitative agreement between the
results and experimental data with this approach. However, it was possible to trace the
qualitative features of the group effect of particles on the flow structure and heat transfer.
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Thus, a supersonic flow around a flat, blunt body was considered. The flow was
assumed to be laminar. Particles successively left the body surface towards the flow.
Figure 1 represents the computational domain.
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Figure 1. The computational domain: AB is the input boundary, BCD is the output boundary, ODE is
a circular cylinder, P is a particle, and KLM is the shock front at the initial moment.

The flow of a viscous compressible gas is described by a system of two-dimensional
unsteady Navier–Stokes equations:

∂q
∂t +

∂F(q)
∂x + ∂G(q)

∂y = ∂Fv(q)
∂x + ∂Gv(q)
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0

τxx
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τxxu + τxyv − qx
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0
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where t is time, ρ is the gas density, p is pressure, T is temperature, u and v are gas velocity
components along the x and y axes, γ is the specific heat ratio, e = p

ρ(γ−1) +
1
2
(
u2 + v2)—

total specific energy, H = e + p
ρ —total enthalpy, and qx and qy are heat flux components.

The equation of the state connecting the gas parameters has the form: p = ρRT.
The viscous stress tensor components are: τxx = 2

3 µ
(

2 ∂u
∂x − ∂v

∂y

)
, τyy = 2

3 µ
(

2 ∂v
∂y − ∂u

∂x

)
,

τxy = τyx = µ
(

∂u
∂y + ∂v

∂x

)
.

The viscosity coefficient is calculated using Sutherland’s formula, and the thermal
conductivity coefficient is defined from the viscosity coefficient and the Prandtl number,
which is supposed to be constant and equal to 0.72.

To complete the problem formulation, we set the conditions on the boundaries of the
computational domain.

The conditions at the input boundary are the following:

∂ρ

∂n
= 0, u = u∞, v = 0,

∂p
∂n

= 0,
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where u∞ is the free flow velocity and n—normal vector to the boundary.
The conditions at the output boundary are:

∂ρ

∂n
= 0,

∂u
∂n

= 0,
∂v
∂n

= 0,
∂p
∂n

= 0

On the cylinder surface, we set standard boundary conditions:

∂p
∂n

= 0, u = 0, v = 0, T = Tw

where Tw is the surface temperature.
The same conditions were set at the particle boundaries.
At the initial moment, the first particle started from the body surface against the inci-

dent flow along the normal to the surface; the gas flow pattern at this moment corresponded
to the stationary regime of the transverse flow around a circular cylinder. Further, other
particles were sequentially launched from close by but at different points on the surface.

The motion of the particles in a gaseous medium is described by the classical
dynamic equations:

drp

dt
= vp, mp

dvp

dt
= fD

where mp rp, vp are the particle mass, position vector, and velocity, and fD is the drag force.
In this work, the drag force was calculated by integrating the gas pressure distribution

over the particle surface. A comparison with experimental data [21] showed that, although
this approach ignored the friction force, it allowed a much more accurate description
of the particle dynamics in comparison with the known criterion dependencies for the
drag coefficient.

Thus, the Navier–Stokes equations were solved in a complex region with curvilinear,
movable boundaries determined by the motion of particles. This significantly distinguishes
this approach from the traditional Euler–Lagrangian approach, where the interphase
interaction is taken into account in additional exchange terms.

The Navier–Stokes equations were solved using the TVD—monotonized second-
order scheme in combination with the AUSM + (Advection Upstream Splitting Method
Plus) method for calculating fluxes through the faces of the computational cell [27–29].
Discretization of the Navier–Stokes equations was performed on a rectangular adaptive
grid. The boundary conditions were approximated according to the immersed boundary
ghost cell method [7,30–32].

We used sliding grids [33–35] to take into consideration the motion of particles. Along
with the primary coordinate system associated with the cylinder, local coordinate systems
were introduced that were attached to each moving particle. The gas flow around each
object was calculated on a separate “local” computational grid in its coordinate system.
The coordinate system associated with the cylinder was considered to be stationary, its
computational grid is hereinafter referred to as “primary”, and the conditions at its input
boundary were determined by the parameters of the incident flow. The boundary con-
ditions for the local grid attached to the particle were determined by the gas parameters
obtained on the primary grid depending on the particle position and velocity. At each
step of the calculation on the primary grid, the gas parameters in the outer cells of the
moving grid were calculated using bilinear interpolation since the centers of the cells of the
two grids were usually displaced relative to each other. The gas-dynamic equations were
solved in the local coordinate system of a moving particle. Its displacement was calculated,
and the obtained gas parameters in the inner region were transferred to the primary grid
using the inverse transformation. Figure 2 schematically shows the position of the local
computational grid relative to the main one at different points in time.
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3. Results and Discussion

In computational experiments, we simulated a transverse flow of supersonic air
around a circular cylinder. The particles were sequentially launched from the cylinder
surface. Each particle passed the shock layer, went beyond the bow shock, where it
was decelerated by the incident flow, turneds around, and continued to move towards
the model.

In Figure 3a the initial, unperturbed state is shown when the particles do not yet affect
the shock layer. In the Schlieren image, the detached bow shock wave is clearly visible.
In Figure 3b we show the final state when the particles (colored lines show the particle
trajectories for the variant with three particles) return to the shock layer, and, despite the
presence of local disturbances in their vicinity, they also practically do not affect the flow.
The subject of our study is the period between these states. The free flow and particle
parameters are given in Table 1.

Table 1. Free flow and particle parameters.

Free Flow Parameters Particle Parameters

Mach number 6 Diameter, mm 0.2
Reynolds number 1.09 × 106 Density, kg/m3 2170

Cylinder diameter, mm 75 Initial velocity, m/s 130–140
Velocity, m/s 1150

Density, kg/m3 0.094
Temperature, K 89.3

The gas parameters corresponded to the experimental ones [17]. Note that the parti-
cles left the surface towards the flow with initial velocities corresponding to the particle
reflection from the surface for the case when the particle initially moved in the incoming
flow with a horizontal velocity of 880 m/s and reflected from the surface with the recovery
coefficient of the normal velocity component equal to 0.15. The magnitude of the initial
particle velocity varied depending on the initial vertical displacement of the particle relative
to the axis.
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The computational area was a rectangle 0.125 × 0.2 m divided into 1250 × 2000 large
cells. To resolve the boundary layer at the surface, the mesh was refined. As a result, the
mesh had cells of six characteristic sizes with sides ranging from 3.125 × 10−6 m to 10−4 m.
The local grids attached to particles were also adaptive. The total number of cells in the
computational grid aws about seven million. The solution to the problem was carried
out in the parallelization mode of computations on GPU graphics processors using the
OpenCL technology.

Let us first consider the variant of the passage of the bow shock wave by a single
particle. Figure 4 shows the evolution of the shock layer. It can be seen that when a particle
crosses a shock wave, the stationary shock wave structure is destroyed, and a cone-shaped
disturbed region with a vertex moving with the particle is formed. The formation of a
complex shock wave and vortex flow structure was analyzed in detail in our previous
work [21,22]. From the point of view of the effect of the flow on a body, the fundamental
moment is the formation of an impact jet directed towards the surface. In Figure 4a–c it
is clearly seen how such a jet is formed in the zone of the lower λ-configuration. In the
zone of action of the impact jet, an area of increased pressure is formed on the surface.
This is reflected in the intensity of heat transfer. The distributions of the pressure and heat
flux along the surface at successive times are shown in Figure 5. Here, all quantities are
referred to the values at the critical point for an unperturbed flow. The initial distributions
of the pressure and heat flux are shown by curve 1. One can see the appearance of a region
of increased heat transfer in the vicinity of the critical point, where the heat flux is more
than twice the value in pure gas (curve 2). With time, the increased pressure and heat
transfer region shift downstream (Figures 4e,f and 5, curves 3, 4). As a result, the periods
of increased heat transfer at a certain position on the surface are changed by periods of a
significant decrease in heat flux. Thus, the action of a single particle does not lead to an
increase in the integral (over time) heat flux.
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Consider a variant of two particles sequentially leaving the surface. Particles come out
from different but close points on the surface. Figure 6 illustrates a variant when the parti-
cles’ initial angular (relative to the horizontal axis) positions are equal to 1 and 1.5 degrees.
In Figure 6a, the first particle (green trajectory) crosses the shock wave, forming a per-
turbed region, while the second particle (red trajectory) moves in its wake and has not yet
influenced the overall flow structure. In Figure 6c, the second particle crosses the shock
wave and forms its perturbed region. Here, in the zone of the lower λ-configuration, a
supersonic jet directed to the surface is clearly visible. Figure 6c,d illustrates the combined
hydrodynamic effect of particles on the shock wave structure of the flow. It is characteristic
that the zone of action of the impact jet on the surface remains fairly stable during the
considered time interval. A similar picture is observed for another variant with two parti-
cles, whose initial angular positions are shifted to 2 and 2.5 degrees. This case is shown in
Figure 7. Here the second particle moves in the region of intense wave action of the first
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particle, and, as a consequence, its distance outside the shock wave is less pronounced
than the distance of the first particle. This distinguishes this case from the one considered
in Figure 6. However, similar to the first variant, there is a stable zone of action of the
impact jet on the body surface. This expresses itself in a relatively stable zone of increased
pressure and heat transfer in the vicinity of the critical point, which is seen in the graphs
of the pressure and heat flux distributions along the surface (Figure 8). Note that the
intensification of heat transfer in the case of the two particles is more pronounced than in
the case of a single particle. It can be seen that the heat flux increases more than three times.
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Figure 7. Schlieren images at successive times. (a)—0.3 ms, (b)—0.38 ms, (c)—0.69 ms. Variant 2 with two particles.
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Figure 8. Distributions of pressures (a) and heat fluxes (b) along the surface at successive times for variant 2 with two
particles. 1—initial moment, 2—0.3 ms, 3—0.38 ms, 4—0.69 ms.

Figure 9 shows a variant with three particles sequentially launched from the surface.
Figure 9a corresponds to the time when the first two particles leave the shock layer, while
the third one is still within the shock layer and practically does not affect the flow structure.
The flow pattern is almost identical to that observed in the case of two particles (Figure 7b).
In Figure 9b,c, the third particle crosses the bow shock. The picture of the gas-dynamic
interaction is more complicated here. However, the tendency towards the formation of a
stable region of action of the impact jet takes place, and a zone of increased pressure and
heat transfer on the surface is observed (Figure 10).
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Figure 9. Schlieren images at successive times. (a)—0.38 ms, (b)—0.63 ms, (c)—0.79 ms. A variant with three particles.
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Figure 10. Distributions of pressures (a) and heat fluxes (b) along the surface at successive times for the variant with three
particles. 1—initial moment, 2—0.38 ms, 3—0.63 ms, 4—0.79 ms.

4. Conclusions

A series of computational experiments were carried out aimed at identifying character-
istic shock wave structures formed when particles reflected from the surface pass through
the bow shock wave. The values of pressure and heat flux obtained in the computations
were significantly higher than those in particle-free flow. We show that the key role in the
intensification of heat transfer is played by the formation of an impact jet flowing onto the
surface. In the zone of action of the impact jet, an area of increased pressure and heat flux
is formed. This effect is maintained over time by the successive action of particles. The di-
rections for further research are connected with three-dimensional modeling and the study
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of complex flow structures and heat transfer enhancement caused by the particle–shock
layer interaction.
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