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Abstract: In this manuscript, a function is derived that allows the interactions between the
atoms/molecules in nanoparticles, nanodrops, and macroscopic liquid phases to be modeled.
One goal of molecular theories is the development of expressions to predict specific physical proper-
ties of liquids for which no experimental data are available. A big limitation of reliable applications
of known expressions is that they are based on the interactions between pairs of molecules. There
is no reason to suppose that the energy of interaction of three or more molecules is the sum of the
pairwise interaction energies alone. Here, an interaction function with the limit value w = e2π/e is
presented, which allows for the derivation of the atomic mass unit and acts as a bridge between
properties of elementary particles and emergent properties of macroscopic systems. The following
properties of liquids are presented using the introduced interaction function: melting temperatures
of n-alkanes, nanocrystals of polyethylene, melting temperatures of metal nanoparticles, solid–liquid
phase transition temperatures for water in nanopores, critical temperatures and critical pressures of
n-alkanes, vapor pressures in liquids and liquid droplets, self-diffusion coefficients of compounds
in liquids, binary liquid diffusion coefficients, diffusion coefficients in liquids at infinite dilution,
diffusion in polymers, and viscosities in liquids.

Keywords: atomic mass unit; nanoparticles; nanodroplets; melting temperatures of n-alkanes; critical
temperatures of n-alkanes; entropy of vaporization; vapor pressures; diffusion in liquids; diffusion in
polymers; viscosities in liquids

1. Introduction

Macroscopic systems of atoms and molecules exist as gases, liquids, and solids. The
starting point for the discussion of gases is the completely disordered distribution of the
molecules of a perfect gas without a specific volume. The starting point for the discussion
of solids is the ordered structure of a perfect crystal. Liquids lie between these two extremes.
The potential energy of the particles in the liquid, responsible for the attractive interaction,
is of the same order of magnitude as the kinetic energy. The consequence is a mobile
structure, but with a specific volume, which considerably complicates the theoretical
treatment of liquids. However, it is just these properties that determine the exceptional
importance of liquids to the high variety of material systems, including living matter.

Macroscopic systems have emergent properties unknown for individual particles,
like temperature, as an example. Expressions for bulk properties can be obtained from
statistical mechanics. With these expressions, properties of macroscopic systems can be
interrelated through a common link of intermolecular force laws. The Molecular Theory of
Gases and Liquids, published by Hirschfelder et al. in 1954 [1], describes the interactions
between two molecules in terms of functions based on quantum mechanics.

However, emergent properties are very difficult to reduce to just interactions between
pairs of particles without consideration of the other nearby particles. An attempt to
consider more than one pair resulted in the Axilrod–Teller equation [2], but without
significant improvement.
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An enormous number of methods has been published for modeling liquid properties,
as shown in the book The Properties of Gases and Liquids by Poling et al. [3]. All models use
partially empirical structures with several empirical constants. Predictions with reliable
results, based only on interactions between pairs of particles, need sophisticated algorithms
and high computational efforts.

This complex modeling situation is the reason for this investigation, in which a reliable
assumption of the interaction basis, combined with a maximum of simplicity for practical
applications, is the main goal for prediction modeling of liquid properties.

2. The Interaction Function

A first physical assumption for an interaction model is a system of uniform particles
with equal finite energies. This is also a basic assumption of quantum mechanics. The N
particles of the system form n groups of x1, x2, . . . , xn particles. For modeling possible
interactions between these particles, the physical system is correlated with the system of
natural numbers. The n groups are correlated with the n natural numbers x1, x2, . . . , xn.
With this correlation a connection with the fundamental laws of arithmetic is established.

A fundamental law of natural numbers is the relation g ≤ m between the arithmetical
mean m = (x1 + x2 + . . . + xn)/n = N/n and the geometrical mean g = (x1·x2· . . . ·xn)1/n.
The general theorem states that the extreme value g = m is valid only if all the xi numbers
are equal. This property is used as starting point for comparisons with physical systems
consisting of uniform particles. A consequence of the maximum g = m is a system of
uniform groups of unities. Such uniformity of elementary particles, atoms, and molecules
of a specific structure is a characteristic property of matter.

However, in addition to the extreme g = m, the following relations with further
extreme values result. If the natural number N can be written in different ways as a sum of
ni identical prime numbers xi as a result of g = m, then the corresponding product yi = xi

ni

has a maximum value of xi = 3, as shown in the following examples where ni xi = N = 30.

xi ni yi = xi
ni = xi

N/xi

2 15 32,768

3 10 59,049

5 6 15,625

This property of grouping natural numbers leads to the function

y = xq/x with q ≥ 1 and the maximum value ymax = 3q/3 for x = 3. (1)

With xi >> 1 and (1 + 1/xi)xi = e = 2.71828 . . . , the value Ymax = eq/e > ymax = 3q/3 is the
result (Figure 1).

The functions ymax and Ymax in Equation (1) represent a form of collective organization
in the system of natural numbers. The fundamental additive (extensive) and multiplicative
(intensive) rules in arithmetic lead to microsystems made of three particles with a maxi-
mum relative intensity of interaction represented as ymax, and to macrosystems made of
x >> 1 particles, with a maximum relative intensity of interaction represented as Ymax in
Equation (1).

Although not decisive for the following, the xi interacting particles in Equation (1) can
be treated mathematically as a permutation. The process can be understood formally as
x! interacting steps. Each individual step is interpreted mathematically as one change of
places between two numbers. The total number of such place exchanges is x!. The relative
number px of exchanges related to x! with no particle remaining in its starting position is
then [4]:

px = 1/2! − 1/3! + . . . .+ (−1)x 1/x!, where lim px = pe = 1/e for x >> 1. (2)



Fluids 2021, 6, 354 3 of 31

The limit value pe = 1/e is designated as the maximum probability of a place exchange
in the system. In this model it is assumed that the interaction between uniform particles in
the system occurs with the maximum probability eq·pe = eq/e.

Now a second fundamental assumption for the physical system is introduced with the
number 2π. The first assumption of a finite energy says nothing about the dimension of the
initial particles. Assuming a spherical particle with the relative radius r = 1, a circumference
of 2π is the result. In conformity with quantum mechanics, any particle traveling with a
linear momentum p should have a wavelength λ given in the de Broglie relation p = h/λ,
with Planck’s constant h. With a relative wavelength λ = 2π, a new initial value q = 2π
is introduced into Equation (1) instead of q = 1, and the following number, w = e2π/e, is
the result for the maximum value Ymax in macrosystems. In this way a combination of
arithmetic and geometry occurs.
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The number w represents the limit value of the following power sequence [5,6]:

wn,e =

(
1 +

2π

n

) n
e
, (3)

with the limit value:

lim
n→∞

wn,e = w = e2π/e= 10.08909 . . . ≈ 2π

w1 − w1,e
= 10.0898 . . . ,

where w1 = (1 + 2π)1/2 = 2.6987 . . . and w1,e = (1 + 2π)1/e = 2.076 . . .
The power sequence in Equation (3) is denoted in the following as the interaction

function. The limit value w represents a relative energy density in the macrosystem.
A first application of the interaction function starts with the term w1 in Equation (3).

This is the first term, where n = 1 in the power sequence wn =
(
1 + 2π

n
) n
(1+1/n)n and with

the same limit value w as in Equation (3).
In conformity with the Einstein equation E = mc2, a body at rest has a rest energy

(mass energy) of E0 = m0·c2, with the speed of light c.
The value w1 represents the relative energy of one elementary particle. In conformity

with Equation (1), a maximum of interaction is the result with a combination of three
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elementary particles, and this leads to ymax = 3q/3 = w1
3 = 19.6554, with a value q = 8.1330397

and q/3 = 2.711 . . . ≈ e. Now, with E1
3 = 1/[exp(w1

3)·w1
3] = 1.48 × 10−10, the relative rest

energy is defined as resulting from the three interacting particles w1.
In order to transform the relative energy value w1 into a quantity expressed in IS units,

the limit value w in Equation (3) must be related to the decimal system with the basic
number 10. In this way w1·w/10 represents the energy as J.

That means the rest energy E0 = E1
3·w/10 J = 1.49326 × 10−10 J, and with

c = 2.99792458 × 108 ms−1 the theoretical atomic mass unit u0 = m0 = E0/c2 = 1.661475
× 10−27 kg ≈ 1.66054 × 10−27 kg = u [7] is the result.

The interaction function is of fundamental importance for emergent properties in fluid
phases and the first term w1 forms a bridge between the fundamental atomic mass unit
and macroscopic properties. This connection explains the importance of the relative mass
values M of particles in macroscopic systems related to the n-alkanes with i carbon atoms,
as reference homologous series for all organic substances, and the term (M − 2)/14 = i = n

in wn,e =
(
1 + 2π

n
) n

e from Equation (3).

3. The Interaction Function and the Optimal Entropy

The next application of the interaction function refers to emergent properties of fluids.
The starting point is a system with one mol of uniform particles with a relative molar
energy w1 = (1 + 2π)0.5. If these particles interact in conformity with Equation (3), the limit
of relative molar energy w = e2π/e is the result for a fluid phase. This is a reference value
resulting from optimal interaction of uniform particles in a liquid phase as a consequence
of Equation (1) where q = 2π. However, if no interactions occur between the n particles,
then w1,e = (1 + 2π)1/e represents the fluid phase in this situation as a limit value for n >> 1.
This can be understood as the critical state of a system without interactions and holds for
a liquid as well as for a gas phase, with a compression factor Z = 1. However, the term
w1 = (1 + 2π)1/2 in Equation (3) represents the relative molar energy of a perfect gas phase.
That means that a supplementary relative internal molar kinetic energy Eint related to the
difference w1 − w1,e exists in the system. This energy determines a certain temperature T.

In order to establish a connection between the difference w1 − w1,e and SI units, start
with n = 1000 mol of hypothetical particles with the atomic mass unit u = 1.66 × 10−27 kg in
a volume V = 1 m3 and the Avogadro constant NA. This system, where
N = n·NA = 103 (mol) × 6.02214 × 1023 (mol−1) particles, defines the mass unit of
N·u = 1.000 kg. The total energy of the system is E = ∑niεi, where ni particles with en-
ergy εi and the total number of particles is N = ∑ni. Using the Boltzmann distribution,
E = (N/q) ∑εiexp(−βεi), where β = 1/kT and the translational partition function is q [7]. The
following relationship between N/q and the two terms w1 and w1,e is now postulated:

N
q

= w1 − w1,e = 0.6227236 (4)

This takes into account the relative internal molar kinetic energy w1 − w1,e.
With the translational partition function q = N/(w1 − w1,e) = V/λ3 and

λ3 = h3/(2πu0kT)3/2, a value of T = 2.98058 K is the result, using the previous values
for N, V, u, the Planck constant h = 6.62607015 × 10−34 Js, the Boltzmann constant
k = 1.380649 × 10−23 JK−1, and the thermal de Broglie wavelength λ.

The self-diffusion of particles and the entropy of a system are both a result of random
particle motion. With the Sackur–Tetrode equation, the molar entropy Sm of the above
system can be calculated at temperature T and pressure P:

Sm = R·ln
(

e5/2kT
Pλ3

)
(5)
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where λ3 = 1.03407 × 10−27 for T = 2.98058 K and P = 1 Pa, and the value of
Sm = 108.85 JK−1mol−1 results from Equation (5), with the gas constant R = 8.31447 JK−1mol−1.
The same value results for T = 298.058 K and P = 105 Pa. The internal energy of the gas
phase at T = 2.98058 K is RT = 24.78 J mol−1.

The consequence of the above result is an optimum value of molar entropy for fluid
systems at T = 298 K and P = 1 bar. At these conditions a maximum of the variety in the
structure of matter (including living matter) occurs. As an example, the many enzyme
reactions in water at room temperature can be mentioned. In the range of 273 < T < 373 K
and 0.7 < P < 1.7 bar, deviations of the entropy from 108 JK−1mol−1 are < 7%.

It can be supposed that the natural evolution occurs not only in the direction of
increasing entropy, but also in the direction of increasing the variety of structures. Of
course, the necessary conditions for such macroscopic systems are assumed, which occur
with low probability in the known world.

The liquid phase is determined in the temperature range between the freezing point
Tf, the boiling point Tb, and the critical temperature Tc with the critical pressure Pc, which
means Tf ≤ T ≤ Tc.

In conformity with classic statistical mechanics, the molar volume heat capacity of
monoatomic solids is CV,m = 3R JK−1mol−1 (Dulong–Petit rule). This rule is valid only at
high temperatures, as demonstrated with quantum mechanics (Einstein and Debye), where
CV,m = 0 at T = 0. The molar entropy of melting, Sm,S, is for many monoatomic solids < 3R.
One reason is the existence of several phase transitions in the solid state [8]. Here a molar
entropy of Sm,S = 3R JK−1 mol−1 is assumed at Tf. For the molar entropy of liquid evapo-
ration, a value of Sm,L = R·w = 83.9 K−1mol−1 has been defined [5] (Troutons law). That
means a total molar entropy results for a gas phase, Sm,G = R(3 + w) = 108.83 JK−1mol−1,
in the above optimal situation, in conformity with Equations (4) and (5) with the value
108.85 JK−1mol−1.

The molar entropy change for the isothermal expansion of a perfect gas is
∆S = R·ln(V2/V1) JK−1mol−1. When V2 = 2.479 × 10−2 m3mol−1 for the molar volume of
the perfect gas at 298.15 K, the value V1 = 1.03 × 10−6 m3mol−1 = 1.03 cm3mol−1 results
for the molar volume of gas in a mol of liquid, independent of its composition [8].

4. Modeling of Liquid-Phase Properties with the Interaction Function

All prediction equations presented in the following are based on the interaction
function of Equation (3). Its application fell into two categories [5]:

1. Prediction of physical properties of nanoparticles or drops made of a limited number
n of atoms or molecules as functions of n, with an asymptotical limit value for n >> 1.
With specific constants C and corresponding dimensions with basic IS units, the
energy En = Cwn of corresponding nanoparticles and E = Cw for macrosystems is
the result.

2. Prediction of physical properties of macroscopic systems with molecules from a
homologous series, like n-alkanes, with i carbon atoms. When Ei = C0wi,ew the
energy of a macrosystem can be defined that contains molecules from a homologous
series with i identical atomic groups in each molecule, then the dimensionless ratio
Ei/E∞ = C0wi,ew/C0ww = wi,e/w is the result.

That means, even one molecule can be treated as a system of i interacting subparti-
cles in conformity with the interaction function defined in Equation (3). The non-polar
Methylene group -CH2- with two strong covalent bonded H-atoms is such a subparticle,
with a certain individuality along the i carbon atoms in the chain. This is in contrast to
the situation in a strong polar molecule, like water, with three atoms with a relative free
mobility to each other.

Such predictions can be generalized for any organic compound with the relative molec-
ular mass M and different polarity and structure, with an additional specific parameter for
that molecule.



Fluids 2021, 6, 354 6 of 31

The property of chain formation is characteristic for organic compounds and the
n-alkanes are therefore the reference series for all organic compounds [5,6].

The structure of this series with i carbon atoms and relative molecular masses of
Mi = 14·i + 2 delivers a basis for the correlation of emergent properties of fluid systems with
the interaction function of Equation (3). The relative molecular mass M of a compound
can be related to the number i = (M − 2)/14, corresponding to a hypothetical alkane with i
carbon atoms. When i = n the interaction function wn,e is used.

Compounds of the first category above, for example monoatomic systems, are corre-
lated with the first term w1,e of the interaction function.

The different emergent properties of liquid systems result as exponential functions.
The specific polarity and specific structure of a compound is taken into account with an
increment. This increment results often in the formation of a temperature-dependent
factor f = a + bT or f = a + b/T. The relative simplicity of this temperature dependence
results from the exponential form of most prediction equations, with the increment f in
the exponent. This increment can be included in n = (M − 2 + f )/14 or can be used as a
separate parameter in the prediction equation for the corresponding property. The uniform
treatment of all these properties, based on wn,e, allows for a significant reduction in the use
of additional empirical factors to a minimum, because the derived prediction equations
have a real connection to the corresponding properties. The two empirical terms a and b in
this increment term compensate for the approximations resulting from the simplifications
used. The assignment of these increments to specific functional groups and structures is
important. If experimental values for a property under consideration are available for the
most important functional groups and specific structures, then a map of such values may
be a helpful basis for estimations of values for unknown cases.

In the following, examples of emergent properties are discussed in connection with
phase transitions, like melting or freezing points (Tm and Tf, respectively) and vapor
pressures Pvp, until the critical temperature Tc at equilibrium, and with dynamic processes,
such as diffusion coefficients DL and viscosity coefficients ηL in liquids and diffusion
coefficients DP of compounds in polymers.

It is obvious that two values obtained for two temperatures for a single specific
parameter, related to the relative molecular mass M, can offer only an approximation of the
requested property. However, if such simple results obtained for various functional groups
and specific structures are in the same order of magnitude as results from sophisticated
models that are based on several empirical constants with the need for high computational
effort, it is more advantageous to use the simpler way.

4.1. Modeling Melting Temperatures of n-Alkane Macrosystems Using the Interaction Function

The melting or freezing point of a pure substance is one of the most important specific
macroscopic properties for its characterization and identification. It is also a specific
parameter for crystalline polymers. The stability of alkane crystalline structures results
from two types of interactions: lateral association of chains with interactions in the x- and
y-directions and interactions in the z direction across gaps between methyl end groups [9].
The melting point of a macroscopic alkane crystal sample is the result of the different
orientations of the molecules along the coordination axis, but is determined mainly by the
chain length of the molecules, e.g., by the number i of the methylene groups (particles),
including the two methyl end groups, because the molecular interfaces are proportional
to i. One can assume that the main interactions occur along the x- and y-directions and
are proportional to an interaction function wi,e. However, the interaction between the two
methyl groups from two neighbor molecules along the z-direction must also be taken into
account. Therefore, a constant with a smaller value than wi,e must be used for the z-axis. The
ratio w1/wi,e, where w1 = (1 + 2π)1/2, was found to be the best approximation for the relative
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interaction in the z-direction. The ratio of the melting point of an alkane with i C-atoms
Tm,i and the limit value Tm,∞ for i >> 1 can then be described by the following equation:

Tm,i

Tm,∞
=

(wi,e)x + (wi,e)y +
(

w1
wi,e

)
z

(w)x + (w)y +
(w1

w
)

z
=

2wi,e +
w1
wi,e

2w + w1
w

(6)

In order to determine the limit value Tm,∞, accurate melting points of known alkanes
are necessary.

From the experimental melting temperatures Tm,i of the n-alkanes [10] the correspond-
ing limit values Tm,∞ were calculated with Equation (6). The first few members of the
homologous series did not show a regular increase in their melting points with carbon
number. This irregularity was caused by crystal structural differences between molecules
with even and odd i-values as well as by the methyl end groups. To avoid these effects,
alkane molecules from i > 23 were selected from [10].

In addition, the melt temperature of Tm,192 = 400.65 K was determined [11] at the
equilibrium between the molten and crystalline state for the synthesized straight-chain
alkane C192H386. From all these data the main limit value Tm,∞ = Tm = 415.8 K was obtained
for unfolded polymethylene with a standard deviation of s = 0.35.

Shorter chains have sharp melting points, which means that the transition from a solid
to liquid state occurs within a small temperature interval, e.g., approximately 0.25 K for
i = 44. A slower, more gradual melting process is observed for longer chains, which can
lead to large measurement errors when not adequately taken into account.

In a model [9] that incorporates the possible crystal systems into which alkanes can
crystallize (hexagonal, orthorhombic, monoclinic, or triclinic), the possible interactions
between all atoms of an alkane were calculated and summed up using the known distances
between atoms and bond angles between H-C and C-C. In this way, the results are expressed
as a function of chain length for every crystal system. Using non-linear (parabolic) curve
fitting onto the experimental melting point curves in the range from 26 ≤ i ≤ 100, the limit
value for an infinitely long alkane chain was found to be Tm,∞ = 415.14 K.

Here the limit value Tm,∞ = 415.8 K was used and in further applications the approxi-
mated value was 416 K. No additional increments were necessary for macroscopic crystals
of n-alkanes.

Table 1 contains the differences between the melting points calculated with Equation (6),
Tm,∞ 415.8 K, and available experimental data for n-alkanes where i > 23.

Table 1. Difference ∆Tcalc-exp K between melting points Tm,calc calculated with Equation (6) and
available experimental values Tm,exp for n-alkanes with i > 23 carbon atoms.

i ∆Tcalc-exp Ref. i ∆Tcalc-exp Ref.

24 0.23 [12] 35 −0.34 [10]

25 0.10 [12] 36 −0.09 [12]

26 0.11 [12] 38 0.11 [10]

27 −0.33 [12] 40 −0.13 [10]

28 −0.21 [12] 44 0.48 [10]

29 −0.51 [12] 46 0.57 [10]

30 −0.22 [12] 50 −0.17 [10]

32 −0.06 [12] 60 0.09 [10]

34 0.13 [10] 192 0.44 [11]

4.2. Modeling the Melting Points of Polyethylene Nanocrystals Using the Interaction Function

Many semi-crystalline polymers, like polyethylene (PE), form lamellae crystals that
are 10–30 nm thick and are at least one order of magnitude larger in the lateral direction [13].
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For the melting temperature T0
m,i of an alkane crystal, with only one lamella made of the

molecular chain with i carbon atoms but an unlimited lateral dimension, Equation (6) can
be adapted in the following manner:

T0
m,i

Tm,∞
=

(wi,e)x + (wi,e)y

(w)x + (w)y +
(w1

w
)

z
=

2wi,e

2w + w1
w

(7)

No interaction between layers in the z-direction occurred in this case, and for i >> 1 and a
macroscopic surface, an upper limit melting temperature Tm

0 = 415.8·(2w/(2w + w1/w)) = 410.36 K
was the result. For a microscopic monolayer lamella made of molecule chains with i C-
atoms and where j molecules are arranged in each lateral direction x and y, Equation (7)
is used:

T0
m,j,i

T0
m,i

=
wj,e

w
(8)

As an example, a microcrystal lamella of 300 nm × 300 nm × 30 nm was considered,
which is typical for PE. With the orthorhombic C-C lattice distance lc = 0.1273 nm in the
z-direction [13] 30/lc = 236 = i and approximately j = 2400 molecules arranged in the x- and
y-direction, T0

m,i = 415.8·(2wi,e/(2w + w1/w)) = 398.14 K was the result with Equation (7) and
T0

m,j,i = 398.14·(wj,e/w) = 396.94 K with Equation (8). The measured melting temperatures
collected from different sources for ultra-long n-alkanes [13] were between 395 and 404 K.

When alkane chains become long enough (i > 200) they start to fold. The layer
thickness d of a lamella is then no longer proportional to the total chain length but rather
proportional to the length of the chain segment between a CH3 end group and a folding
point or the segment between two folding points. Nevertheless, the contributions to the
melting temperature in the x- and y-directions are assumed to depend on the whole chain,
which means on the contribution of the wi,e value in Equation (7). This is in accordance
with the situation in the critical state, with no distinctive direction in space [5]. The increase
in the critical state temperature values Tc,i occurs only in conformity with the wi,e-values. It
is only important that the primary structure of the non-branched alkane chains with the
covalent C-C bonds represent a linear arrangement.

This is in accordance also with the finding that cyclic alkanes can have the same
melting point as the linear alkanes with the same number of C atoms (i > 140) but with a
thickness of the lamellae in the stack that is only half of that of the linear alkanes [14].

From a collection of available experimental data [13] on the melting temperatures of
the ultra-long alkanes that exist in extended chains as well as folded-chain crystals with up
to i = 390 carbon atoms, the melting temperatures are functions of i and not functions of
the lamella thickness.

This is also in line with the dynamic explanation of the melting process, where the
mobility of the molecule is the dominant factor for the breakdown of the lattice [13].
However, the mobility depends on the number i of repeating units within the chain
molecule. The melting transition is not as sharp as for pure one-component systems
and covers a certain temperature range. In folded alkanes, it can also lie below the
corresponding i value of the alkane. One explanation may be the fact that after folding the
whole surface of the chain it is not available for interaction with the neighbor molecules,
because the neighboring folds neutralize each other.

The limit value Tm,∞ = 415.8 K and the molecular specific lattice distance lc are the
only data needed in addition to the relative molecular mass M if the melting temperature
for a nanocrystal with defined dimensions is calculated.

4.3. Modeling the Melting Temperatures of Metal Nanoparticles Using the Interaction Function

A solid rectangular material composed of similar nx·ny·nz = N spherical particles was assumed.
The melting temperature of the material is the result of interactions between the particles arranged
along the three-coordination axis. The relation Tm,N/Tm = (wnx,e + wny,e + wnz,e)/(wx + wy + wz) was
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considered in conformity with the interaction function between the melting temperature
Tm,N of the material with N particles and the melting temperature Tm of a macroscopic
sample. For a cube with nx = ny = nz, Tm,N/Tm = wn,e/w, where n = N1/3. That means a
decrease in the melting temperature of material clusters occurs with a reduction in their
size.

Various structures of nanoparticles are possible, depending on their mode of prepa-
ration. In a solid spherical cluster composed of approximately the same number N of
spherical particles as in a cube, N1/3 particles are arranged along the diameter d and a
similar relation, Tm,N/Tm = wn,e/w as above for a cube, can be assumed. With the diameter
d0 of a particle, n = d/d0.

In a simple three-dimensional arrangement of particles, each atom is surrounded
by six atoms at equal distances. However, spherical particles (metal atoms) crystallize
preferably into one of the densest spherical packings, e.g., gold atoms with a face-centered-
cubic internal structure, fcc (face centered cubic) [15]. In such a system, each atom is
surrounded by 12 atoms at equal distances. The different arrangement possibilities in
a crystal produce different coordination numbers. Depending on the number of direct
neighbors, more than one of these can be affected by the interaction along one of the three
coordination axes. The coordination number is taken into account by multiplying the
particle number N1/3 along the cluster diameter with a factor, for example a = 2 for the
coordination number 12. The simplest way of modeling the melting temperature Tm,d of a
metal cluster with diameter d is to correlate the melting ratio Tm,d/Tm with the interaction
function as Tm,d/Tm = wn,e/w, where n = a·d/d0 and Tm of the bulk. However, a consequence
of the small radius of nanoparticles is the interaction of the surface atoms attracting inwards
only, for example in the x-direction. Taking this into account for three-dimensional clusters
with three coordination axes, wnx,e/3w < wn,e/w is the result for the surface layer, because
wny,e = wnz,e = 0. That means that a surface layer with the thickness of two atoms can be
assumed to be liquid below the melting temperature Tm,d.

If d − 4d0 is used instead of d, the following equation for the melting temperature of a
cluster is defined using the interaction function:

Tm,d

Tm
=

wn,e

w
with n = a·d− 4d0

d0
(9)

The first suitable experimental data [16] to test this comes from the melting of gold
clusters ranging in diameter from 2 to 24 nm. The number N of atoms in such large-
sized clusters lies between 300 and over 1/2 million. Even for such clusters, the melting
points are significantly lower than the melting point of macroscopic gold samples where
Tm = 1336 K. In Figure 2, the values of measured melting-point data obtained for different
cluster diameters d [16] are presented in comparison with the Tm,d values calculated with
Equation (9). For Au, the metal atom diameter [15] d0 = 0.2884 nm for a coordination
number 12 and a = 2 were used.

The pre-melting effect resulting from weaker bonded surface atoms has been men-
tioned in several studies [16–18]. Molecular dynamics were used for simulations of the
melting temperature.

Further examples with reliable experimental data obtained from indium clusters [19],
Pb [20,21], Sn [22], and Al [23] are in agreement with the above results for Au obtained
with the interaction model.

For modeling the melting temperature of nanoparticles, molecular dynamic simula-
tions [24] and analytical approaches [25] are described.

Equation (9) can be extended for melting temperatures Tmw,d of nanowires with
diameter d and Tmf,d of nanofilms with thickness d. For nanowires

Tmw,d

Tm
=

2wn,e + w
3w

with n = a·d− 4d0

d0
(10)
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is used. For nanofilms the corresponding equation is

Tm, f ,d

Tm
=

wn,e + 2w
3w

with n = a· d
d0

(11)

with film thickness d. Equations (10) and (11) were verified with experimental data obtained
for indium nanowires and nanofilms [26], using a = 2 like for fcc structures.
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Figure 2. Experimental data [16] (x) and calculated melting temperatures of different diameter d
gold clusters. The solid line represents Equation (9) and the dashed line represents n = a·d/d0 in
Equation (9).

All published models for the melting temperatures of nanoparticles are more or less
based on simplified assumptions. The real properties of the clusters considered depend on
many conditions found during their preparation and different modes of measurement [16].
The crystalline structure of very small clusters can be changed, for example, during the
preparation. The pre-melting surface region of not-perfectly-spherical particles may be of
different thicknesses at different positions, but a mean liquid layer of 1–2 atom diameters
is a reliable assumption.

Here, only Tm, the melting temperature of the bulk material, the atom diameter d0,
and the corresponding coordination number are needed for a given nanoparticle with
diameter d. In all published models more specific parameters are involved.

4.4. Modeling the Solid–Liquid Phase Transition Temperatures for Water in Nanopores Using the
Interaction Function

The melting of ice and freezing of water in a series of mesoporous silica materials
with pore diameters from 2.9 to 11.7 nm was studied using differential scanning calorime-
try [27,28]. A lowering of the melting temperature up to 50 K was found for water in
pores of radius r nm and was described with the equation Tm − Tm,r = C/(r − t), where
C = 52.4 K nm, obtained from fitting experimental data and t = 0.6 nm. Tm and Tm,r are the
bulk and pore phase transition temperatures, respectively. From the experimental investi-
gation [27], a surface layer of non-frozen water needed to be considered in all pores, which
reduced the effective pore radius from r to r − t. The thickness of this layer, t = 0.6 nm,
corresponded to approximately two water molecules.

One cm3 of H2O with a density of 0.93 ± 0.03 g cm−3 in the pores [27] contains
N = 0.93× 6.022× 1023/18 = 3.111× 1022 water molecules, which means N1/3 × 10−7 = 3.145
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molecules per nm, with a molecule diameter d0 = 0.318 nm. With two molecules, t = 0.636 nm
was the result. In contrast to the methylene groups in the n-alkanes with two non-polar
covalent bonds between hydrogen and carbon, water, with its strong hydrogen bonds, was
treated here in a first approximation as a system where each molecule had three interacting
subparticles * in the crystal. Consequently, in a pore with the diameter d nm and the pore
axis along the z-axis, a number n = 9.435(d − 2t) particles was assumed to interact along
the pore diameter in the x- and y-axis, respectively. Along the z-axis in a filled pore an
unlimited number of N particles can be assumed. With these assumptions and taking into
account the liquid layer of 0.636 nm, the following equation for the dimensionless ratio
between the melting point Tm,d and Tm = 273.15 K was the result:

Tm,d

Tm
=

wnx,e + wny,e + wnz,e

3w
=

2wn,e + w
3w

with n = 3·3.145·(d− 2·0.636) (12)

This equation has the same structure as Equation (10) for nanowires. An explanation
of the liquid layer t is similar to that of the metal nanoparticles above.

In Figure 3, the experimental values Tm,d/Tm [28] are compared to the theoretical curve
obtained with Equation (12).
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A remarkable conclusion resulted from a comparison of the melting of metal clusters
to the melting of ice in pores. In both cases, independent observations came to the necessary
assumption of a thin liquid skin that surrounds the solid core. The liquid layer of water
has been experimentally proven [29] and can be described as a uniform and continuous
liquid mantel at the inner pore walls. For metal clusters with often different geometrical
structures, the behavior of the liquid skin is less well established. In the case of metal
clusters this skin is formed on the free surface, whereas the liquid layer in the pore is
between the pore wall and the ice phase.

From the experimental results [27], a limiting pore diameter of 2.7 nm was determined.
With this value and Equation (12), where n = 3·3.145·(d − 2·0.636), a maximum melting
point depression of 61.76 K was the result, compared to the published values 61.6 K and
63 K [29]. This supports the validation of Equation (12).
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If wn,e/w is used for nanoparticles of ice instead of Equation (12) similar to nanowires,
a maximum depression of 92.6 K would result. This value is important for modeling vapor
pressures of water nanodroplets.

In this approach only the melting temperature of ice and the molecular diameter d0 of
water are needed.

The remarkable importance of the above study with water in nanopores lies in the
homogeneous structures of the used mesoporous silica materials with constant diameters.
This allows for precise measuring of the melting temperatures as function of the pore
diameter and extrapolations to minimum values.

4.5. Modeling Vapor Pressures in Liquids Using the Interaction Function

An equation for vapor pressures of pure organic fluids and partial pressures in multi-
component systems was recently published [5].

The exact correlation between the vapor pressure Pvp of a liquid and the temperature
T at equilibrium needs an equation of state that includes the gas and the liquid phase.
The lack of exact equations of state leads to the critical state as a starting basis. Due
to the large range of molecular masses, the model is developed in two steps: first for
monoatomic systems and for the first small molecules in a homologous series, and second
for homologous series beyond the first molecules.

The following critical reference state equation [5] for small molecules resulted:

Pc,r·Vc,r = R·Tc,r·Zc,r

where the critical pressure Pc,r = 2.375 × 106 Pa, the critical molar volume
Vc,r = 4.153 × 10−5 m3mol−1, the critical compression factor Zc,r = w1/w = 0.2675, and the
critical temperature Tc,r = 44.35 K, with the gas constant R = 8.31447·JK−1mol−1.

The critical pressure Pc,i for the homologous series of n-alkanes with i C atoms and
the critical temperature Tc,i are used as starting points [5]:

ln(Pc,i) = w·ln(w) + ln(w1/w) − 2π/(1 + ln(w/wi,e) − ln(w)/ln(wi,e) + w1 − w1,e) (13)

with a limit value ln(Pc,∞) = w·ln(w) + ln(w1/w) − 2π/(w1 − w1,e) = 11.9127, Pc,∞ = 1.491 bar.
The critical temperatures are:
Tc,i/Tc,∞ = wi,e/w with Tc,∞ = 1036.5 K [5].
No additional specific constants are needed, only the number i of carbon atoms.
The general vapor equation for organic fluids based on Equation (13) is:

ln(Pvp ) = w·ln(w) + ln
(w1

w

)
− 2π(

w
wk,e
· T

Tc,∞

)1/ln(π)
+ ln

(
w

wk,e

)
− ln(w)

ln(wk,e)
+ w1 − w1,e

(14)

where the critical temperature Tc,k = (wk,e/w)·Tc,∞ of a hypothetical alkane with the
relative molecular mass M + U and the limit value Tc,∞ = 1036.5 K for polymethylene [5].

The general application of the vapor equation for organic fluids lies in the introduction
of a dimensionless structure increment U with the same unit as the dimensionless molecular
mass M. This increment U takes into account the polarity and structure difference of the
compound in comparison to an n-alkane with the same molecular mass M. In this way
a parameter

k = (M − 2 + U)/14 (15)

is defined [5] and introduced into the interaction function wk,e = (1 + 2π/k)k/e instead of
wi,e. This procedure is also used in the treatment of vapor pressures in liquid droplets.

Depending on the polarity of the compound, the increment U is defined as Ua
= u1 + [(u2 − u1)/(1/T2 − 1/T1)](1/T − 1/T1) = u1 + a(1/T − 1/T1) for molecules with
low polarity and Ub = u1 + [(u2 − u1)/(T2 − T1)](T − T1) = u1 + b(T − T1) for very
polar molecules. The two values u1 and u2 can be determined using Equation (14) at
two temperatures with U as an unknown constant, as shown in [5].
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In addition to the U-values for organic compounds, the U-values for water are predicted,
because water stands for the compound with the upper limit of polar increments. With the
two values of u1 = 75.71 for T1 = 298.15 K and u2 = 68.06 for T2 = Tb = 373.14 K, the increment
for water is U = Ub = u1 + [(u1 − u2)/(T1 − T2)]·(T − T1) = 75.71 − 0.102·(T − 298.15). For
water, the value M = 2 × 18.015 = 36.03 is used because Equation (14) does not give correct
results for low M values. This example with water is given because it is used later for the
prediction of vapor pressure in water nanodroplets.

For binary vapor–liquid equilibria between components 1 and 2, two increment
differences, ∆U1,2 and ∆U2,1, are introduced into Equation (15) for the two corresponding
k-values [5]:

k1,2 = (M1-2 + U1 + ∆U1,2)/14 and k2,1 = (M2-2 + U2 + ∆U2,1)/14 (16)

The increment differences are related to increments U1 and U2 and contain the ad-
ditional empirical fractions δ1,2 and δ2,1. As an example, Figure 4 shows the vapor mole
fractions Y1 for heptane and Y2 for toluene at the corresponding liquid mole fractions X1 in
the binary system heptane(1)-toluene(2) in comparison with experimental values at 25 ◦C.
The increment difference ∆U1,2 = (1 − X1)2·δ1,2·(U1 + U2), with δ1,2 = −0.25.
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Figure 4. Predicted vapor mole fractions Y1 (. . . .) of n-heptane and Y2 (- - - -) for toluene in
the binary system n-heptane(1)-toluene(2) at 25 ◦C [5] in comparison with experimental values (•)
and (N).

With known specific fractions of the two U-values in binary systems, the vapor–liquid
equilibrium behavior of multicomponent systems can be predicted without additional
empirical data as a good first approximation [5].

A big advantage of the above approach in comparison to other methods is the easy
direct measurement of partial pressures with head space gas chromatography (HSGC) and
the determination of the fraction values δ, with a few mixtures and molar fractions X1
between 0 and 1.

4.6. Modeling Vapor Pressure of Liquid Droplets with the Interaction Function

The vapor pressure in Equation (14) defined in [5] refers to macroscopic phases with
n >> 1 molecules. For small liquid amounts, as in the case of droplets, smaller n values
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appeared and a decrease in interaction energy between the molecules occurred, which led
to a higher vapor pressure.

In contrast to the solid phase, particles are mobile in all directions, and it was a priori
difficult to decide the exact modus of the interactions. The ratio P/P* between the vapor
pressure P of a liquid droplet with n molecules and the vapor pressure P* of the macroscopic
liquid phase can be assumed, for example in a first approximation, to be proportional to the
ratio e−wn,e/e−w = exp(w − wn,e), where wn,e = (1 + 2π/n)n/e from Equation (3). However,
the correlation of the interaction function wn,e with the homologous series of n-alkanes
with i carbon atoms suggests a stabilizing preference for interactions between the i particles
along a string. This was a consequence of electromagnetic interaction.

If the attractive interaction between the particles in the three-dimensional liquid
droplet, with mobility between the particles in all directions, occurred along a linear
arrangement, then a maximum value was obtained only for spherical droplets. In a
spherical droplet i = n1/3 molecules from the n molecules of the droplet then interacted
along the diameter. However, at the same time, all n molecules of the droplet could
exchange their relative places according to their kinetic energy, in conformity with the
structure of e1/e from Equation (1), and in this way the droplet was a system of dynamically
connected particles.

The relative interaction energy of a particle in the liquid phase is temperature depen-
dent and assumed to be

wk,e − wk,e (Tm·f v/T) (17)

where wk,e = (1 + 2π/k)k/e and k from Equation (15). Tm represents the melting/freezing
temperature of the macroscopic liquid phase. At T < Tm, no liquid phase exists. The factor
fv in Equation (17) was the sole additional temperature-dependent specific parameter for
the liquid stage.

This led along the circumference 2π and with i particles along the droplet diameter to
an amount defined as

ak,i = 2π·(wk,e − wk,e·(Tm·f v/T))·i (18)

and the final relation

P/P∗ = exp(w− wAi,e) with wAi,e =

(
1 +

2π

ak,i

) ak,i
e

(19)

was the result.
Checking the validity of the above relation started with mercury droplets. Liquid

mercury with monoatomic particles represents the simplest case, for which w1,e from
Equation (3) instead of wk,e and its Tm = 234.316 K are used in Equation (18):

a1,i = 2π(w1,e − w1,e·Tm·fv/T)·i, wAi,e = (1 + 2π/a1,i)
a1,i/e, ln(P/P*) = w − wAi,e

The relation w − wAi,e from Equation (19) can be compared to the results obtained
with the well-known Kelvin Equation:

ln
(

P
P∗

)
=

2·γ·Vm

R·T ·1
r

(20)

where the surface tension is γ, Vm is the molar volume of the liquid, and the droplet radius
is r.

The number n of particles in a spherical droplet resulted from the following relation:

n =
4π

3
·r3· ρ

M
·106·NA (21)

where ρ (g cm−3) represents the liquid density at temperature T, M (g mol−1) is the
molecular or atomic mass, r (nm) is the droplet radius, and NA = 6.022·1023 (mol−1) is
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the Avogadro number. The number of atoms along a droplet diameter n1/3 = i is listed in
Table 2, for r = 10 nm.

Table 2. The densities ρ (g/cm3), molar volumes Vm (m3/mol), and surface tensions γ (N/m) at
5 temperatures for Hg, where Tm = 234.316 K and M = 200.59 (g/mol) [10].

t ◦C 10 25 50 75 100

ρ 13.57043 13.53359 13.47251 13.41181 13.35142

Vm 105 1.478 1.482 1.4889 1.4956 1.502

γ 0.48855 0.48548 0.48036 0.47523 0.47011

i 55.467 55.417 55.334 55.250 55.167

ln(P/P*) 0.613 0.580 0.532 0.491 0.455

w − wA,i 0.614 0.580 0.547 0.487 0.456

e% −0.16 0.0 −2.82 0.815 −0.22
e = 100·(ln(P/P*) − (w − wA,i))/ln(P/P*).

The values for the temperature-dependent factor fv were calculated using the as-
sumed equation

f v = av +·bv T (22)

where av and bv are fitting parameters from the experimental data.
When fv = 0.295 + 0.002573·T the main error between the results obtained with

Equations (19) and (20) was <1% for r = 10 nm (Figure 5). This fv resulted from fitting
the corresponding values for the five selected temperatures. Neglecting the factor fv = 1.062
needed for Hg at 25 ◦C, an error of e = −22% resulted for ln(P/P*) at a droplet radius of
r = 10 nm.
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1 nm ≤ r ≤ 10 nm with (—) Equation (19), where k = 1, fv = 1.062, and (•) the Kelvin Equation (20)
atö 25 ◦C.

At r < 2 nm the results of the two methods deviated remarkably. At very small
droplets, with r < 1 nm, the Kelvin equation was affected by thermodynamic limitations, as
shown below.
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As the next example, the n-alkane tetradecane was used, representing the class of
compounds with no polarities. The following fv-value as a function of T K can be used in
Equation (18), with k = (M − 2)/14 for wk,e: fv = 0.41 + 0.001714T.

The percentage average absolute deviation AAD% for ln(P/P*) calculated with
Equation (19) for tetradecane (25–100 ◦C) was 3.04, in comparison to the results obtained
with Equation (20).

AAD% =
1
N ∑N

i=1

∣∣∣∣∣∣∣
ln
(

P
P∗

)calc

i
− ln

(
P

P∗

)exp

i

ln
(

P
P∗

)exp

i

∣∣∣∣∣∣∣·100

The experimental measurement of vapor pressures for small liquid drops is extremely
difficult. Of special interest in this connection is water, due to its importance in the form
of fog, as an example. In a recently published study [30], a grand canonical screening
approach was used to compute the vapor pressures of water nanodroplets from molecular
dynamic simulations. This method demonstrated that the applicability of the Kelvin
equation extends only down to small lengths of 1 nm. However, for clusters of 40 particles
or less, the macroscopic thermodynamics and the molecular descriptions deviate from
each other.

Equation (19) was not affected by thermodynamic limitations, as can be seen in the
comparison of predicted vapor pressure of water nanodroplets to the results obtained with
the grand canonical screening approach [30].

Relative vapor pressures P/P* for eight different water droplets composed by n
molecules and the corresponding radius r at 278, 298, and 318 K are given in [30]. For 298 K
these values were:

n 9 20 37 51 94 237 471 960

r (nm) 0.359 0.524 0.630 0.714 0.869 1.184 1.486 1.888

P/P* 7.35 5.71 4.39 3.78 3.02 2.18 1.82 1.62

For the Kelvin Equation (20), the surface tensions γ = 0.07199 (N/m) and the molar
volumes Vm = 1.807 × 10−5 (m3/mol) for water at 298 K.

The number n of particles in a spherical droplet and i = n1/3 for Equation (18) resulted
from Equation (21), with ρ = 0.997 (g/cm3) and M = 18 (g/mol).

The value k = (M − 2 + U)/14 = 7.839 for water in Equation (15) resulted from [5],
where U = Ub for water, as shown above, and the corresponding wk,e = 5.46 for Equation (18)
at 298 K. Instead of the product Tm·fv with the empirical factor fv, the minimum melting tem-
perature, Tm,min for ice nanoparticles was used in Equation (18). The value Tm,min resulted
from the above treatment of ice in nanopores, as in Section 4.4. Instead of (2wn,e + w)/3w
in Equation (12), the ratio wn,e/w was used for ice nanoparticles and

Tm,min = 273.15·(wn,e/w) = 180.51 K, where n = 3·3.145·(d − 2·0.636) and d = 2.7 nm
was the result, with a maximum depression of 92.6 K.

This result emphasizes the importance of reliable values obtained for melting temper-
atures of nanoparticles. No empirical fv-value is needed.

Figure 6 shows the comparison of the logarithm of the relative vapor pressure as a
function of the inverse radius at 298 K of the values from [30], and of the values obtained
with Equation (19) and with the Kelvin Equation (20).

This result can be considered a validation of the interaction function as the basis for a
correct model for vapor pressure predictions in liquid droplets. It explains the deviation
between the results from Equation (19) and the Kelvin Equation (20), as shown in Figure 5
for Hg.
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Due to the correct applicability of the Kelvin Equation at r = 10 nm, a comparison
of results obtained with Equations (19) and (20) for w − wA,i at r = 10 nm allowed for the
easy determination of the fv values for different structures from tabulated experimental
surface tensions [10]. Essentially all estimation techniques for the surface tension were
empirical [3] and it is therefore recommended to use the collection of experimental data as
given in [10] or [12]. From these data a corresponding collection of fv-values as functions of
specific structures can be derived, for which the corresponding U-values [5] are predictable.
This makes prediction in the absence of experimental values possible, down to droplets
with ≈8 particles.

4.7. Modeling Diffusion Constants in Liquids Using the Interaction Function

The interaction function can also be considered a starting point for dynamic processes
like diffusion occurring in macroscopic systems. Although transport phenomena based
on diffusion are determined from concentration gradients and therefore not equilibrium
processes, self-diffusion also takes place at equilibrium. This means that the diffusion
coefficient can be described as an exponential function of the interaction function in
Equation (3) [6].

In conformity with the three fundamentally different states of aggregation, three differ-
ent procedures for predicting diffusion coefficients were used. Here, the IS unit conversion
factor Du = m2s−1 = 104 cm2s−1 was used. Diffusion in liquids has few similarities with
diffusion in gases and solids.

4.7.1. Diffusion in Gases

At constant temperatures, the ratio DG,2/DG,1 of the self-diffusion coefficients in an
ideal gas at two states 1 and 2 equals the ratio V2/V1 of the system volumes at these states.
When V1 = RTr/pu and V2 = RT/p, a starting point for modeling diffusion coefficients is
the relation [6]

DG =
T·pu

Tr·p
Duexp(w1), (23)

where w1 is from Equation (3) for free moving monoatomic gases, pu = 1 Pa, and Tr = 298.15 K.
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At p = 1 bar = 105 Pa and T = 273 K, for example, DG = 1.36 cm2s−1 was the result with
Equation (23), compared to 1.4 cm2s−1 measured for He [31]. At these conditions the gas
phase can be considered ideal, with no further interactions between the gas particles. In
this investigation no further treatment for the gas phase followed, since many accurate
methods are already explained in the literature [32].

4.7.2. Diffusion in Solids

The other extreme case of diffusion is represented by a perfect solid state, in which no
free moving particles exist. With the IS unit Du, one can assume the following expression
for self-diffusion coefficients of atoms in a solid metal:

DS = Duexp
(
−w

2
3
1,e·w·

Tm·R
T·R − w

)
. (24)

The first term in the bracket represents the activation energy of diffusion as an interac-
tion between a relative cross-sectional area of a monoatomic particle in a condensed state
and the solid matrix with its melting temperature Tm. The second term is a further brake
on the diffusion of an atom in a solid matrix. Whereas the diffusing particles in the gas
phase move through a matrix in which all particles are in the same degree of movement,
the diffusing atoms in one solid metal move through a rigid matrix made of immovable
particles. This different situation is taken into account with the limit value w.

As an example, tantalum (Ta), with a high melting temperature Tm = 3269 K, has a
self-diffusion coefficient DS = 7.4× 10−20 cm2s−1 at 1200 K and 4.8× 10−9 cm2s−1 at 2900 K
and an activation energy for diffusion of EA = 424 kJ·mol−1 [33]. The corresponding values
calculated with Equation (24) were 1.6 × 10−20 cm2s−1 at 1200 K and 3.8 × 10−9 cm2s−1 at
2900 K and 446 kJ·mol−1, respectively.

A difference of 20 orders of magnitude between the diffusion constants in a solid
matrix and a gas phase, as shown in the above examples, emphasizes the significant
difference between these extremes of aggregate state [6].

The negative terms in the exponent of Equation (24) demonstrate the strong interaction
between the particles in a solid state. A similar effect is the relative rest energy, E1

3

defined above in Section 2 (The Interaction Function) as resulting from the three interacting
particles w1.

4.7.3. Diffusion in Liquids

Situated between a state with completely free movement of the particles and a state
with a practical absence of any movement, liquids represent extremely complex behavior.
Not only do single particles in the liquid phase move through the macroscopic matrix,
but more or less microscopic and macroscopic parts of the liquid itself also move through
the system. An additional effect is the overlapping of the linear occurring interactions
in conformity with electromagnetic interactions and the kinetic displacement of particle
groups in the liquid. This may initiate turbulence in the liquid via twist effects.

Liquid state theories for calculating diffusion coefficients are quite idealized and none
are satisfactory in providing relations for calculating DL [3].

Here the following expression for a self-diffusion coefficient of molecules in liquids
was assumed:

DL = DL,r·Du·exp

[
wn,e − (wn,e·w)

1
2 ·

wn,e
w ·Tm,∞

T
· fD

]
(25)

where:
DL,r =

w
w1 − w1,e

exp
[
w1,e − (w1,e·w)

1
2 − 2w

]
= 2.29246 × 10−9. (26)

The reference factor DL,r refers to the relative kinetic energy of the liquid to the
ratio between w and the initial free kinetic energy w1 − w1,e of the system (see above,
Section 4). The expression in the bracket has the following meaning: As mentioned
above, microscopic parts of the liquid moving through the matrix are represented by
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w1,e. They are hindered by interaction with the matrix and the resistance from the matrix

w1,e − (w1,e·w)
1
2 − w. At the same time, macroscopic parts from the liquid, represented

by w, are moving and are hindered from interacting with the surrounding liquid and its
resistance w − (w·w)1/2 − w = −w. In the above relation a simplified contribution of these
two extremes is used.

The exponent in Equation (25) contains the specific diffusing particle, with its rela-
tive molecular mass M, represented as wn,e = (1 + 2π/n)n/e, where n = (M − 2)/14. Its
freezing temperature is approximated by (wn,e/w)Tm,∞, with the asymptotic limit tempera-
ture Tm,∞ = 416 K of polymethylene. This approximation represents a simplified form of
Equation (6). The only empirical parameter is a fine-tuning constant, fD = aD + bD·T, as a
linear function of temperature, close to 1. This constant also compensates for the above
simplifications in the expression.

4.7.4. Self-Diffusion Coefficients

Only a limited number of experimental data for self-diffusion coefficients are known.
The validation procedure of the above relation for DL starts with the homologous

series of n-alkanes.
For n-alkanes [34,35], the following values for the factor fD = aD + bDT in Equation (25)

were the result:

fD1 = 0.544 + 1.426 × 10−3·M + (5.5 × 10−4 + 2.483 × 10−6·M)·T for n = (M − 2)/14 ≤ 10 and
fD2 = 0.544 + 1.426 × 10−3·M + (1.26 × 10−3 − 2.374 × 10−6·M)·T for n ≥ 11

(27)

The factors fD1 and fD2 in Equation (27) were obtained by fitting experimental data
in [34,35].

For a compound CnH2n+2 only the number n of carbon atoms and the temperature
were needed.

For heptane the percentage average absolute deviation AAD% = 6.3 for 7 DL-values in
the temperature range 190 < K < 377 [35]. For dodecane and tetradecane the corresponding
errors were AAD% < 5 [34]. The error (e%) between experimental and predicted DL-values
was 0.1 for octadecane at 50 ◦C and −16 for C32H66 at 100 ◦C [35].

Table 3 contains values for fD and AAD% values for 13 compounds at different temperatures.

Table 3. The aD and bD values for the factor fD in Equation (25) and the AAD% values for N measured
DD-values in the temperature range ∆T [34] b, [35] a for 13 compounds.

Compound aD bD·103 AAD% N ∆T (◦C)

Methylacetate a 0.928 0.1933 0.1 4 15–45

Ethylacetate a 1.034 −0.15 1.9 5 15–55

Dioxane b 1.1666 0.05 0.4 5 15–55

Cyclopentane a 1.22 −0.6751 6.4 4 −23–46

Cyclohexane b 1.1934 −0.1752 0.4 5 15–55

Benzene a 1.285 −0.7045 4.2 12 7–65

DMSO b 1.3646 −0.633 0.3 4 25–55

1- Pentanol b 2.056 −2.0 1.0 6 5–55

1-Butanol a 1.8337 −1.365 0.1 3 25–45

1-Propanol a 1.992 −1.733 0.4 4 15–45

Ethanol a 2.66 −3.952 1.4 8 7–65

Methanol a 2.51 −4.0 2.0 8 −5–55

Water a 5.17 −12.0 4.1 21 0–100
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An increase in the aD-values and decrease in the bD-values resulted in increasing
polarities of the compounds (Figure 7). This behavior allowed for a rough estimation of the
DL-values for compounds with unknown fD-values. With more experimental data, closer
correlations between fD-values and functional groups are possible. A rough estimation
of self-diffusion values is also possible from viscosity coefficients, as shown below in
Section 4.8.
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4.7.5. Binary Liquid Diffusion Coefficients

A binary mixture of n-hexane (A) and n-dodecane (B) was considered as an additional
example of liquid diffusion. The mutual diffusion of these two hydrocarbons increases
as the mixture becomes richer in A. If the mole fraction XA → 1.0, the mutual diffusion
coefficient DAB = DBA → D◦BA, where this notation signifies that the limiting diffusivity
represents the diffusion of B in a medium consisting essentially of A [3]. Similarly, D◦AB
is the diffusivity of A in essentially pure B. Self-diffusion coefficients differ from binary-
diffusion coefficients, and there is no way to relate the two coefficients directly, without an
additional specific parameter [3].

Liquid state theories for calculating binary liquid diffusion coefficients are not satisfac-
tory in providing relations for calculating the mutual diffusion coefficient DAB. Different
models are presented in [3]. Some models are based on the Stokes–Einstein equation,
which strictly applies to macroscopic systems with large spherical molecules diffusing in a
dilute solution.

The following equation is proposed for the mutual diffusion coefficient in a binary
mixture of compounds with the relative molecular masses MA and MB as function of the
mole fraction XB:

DAB = DBA = DL,rDuexp

[
wB,e − (wB,ew)

1
2

wB,e
w ·Tm,∞ fDBXB +

wA,e
w ·Tm,∞ fDA·δD

T

]
. (28)

where XA and XB are the mole fractions of A and B in the liquid, A = (MA − 2)/14 in
wA,e = (1 + 2π/A)A/e, and B = (MB − 2)/14 in wB,e = (1 + 2π/B)B/e. The corresponding factors
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fDA and fDB are for the pure compounds A and B, respectively, introduced above for the
self-diffusion coefficients.

δD is an interaction factor of the two compounds in the binary system that is obtained
from a comparison of the calculated data using Equation (28) with a few experimen-
tal points.

If A = B, wB,e = wA,e, fDA = fDB = fD, XA = XB = 1, and δD = 0. That means that
Equation (28) leads to Equation (25). For the binary system hexane(A)-dodecane(B),
δD = 0.86·XA + 0.105. The AAD% = 1.6 for DAB at 298.15 K [35] (Figure 8).
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experimental points (•) [35] and calculated (—) with Equation (28).

For hexane(A)-hexadecane(B), δD = XA + 0.045.
For the binary system benzene (A)-ethanol (B) at 25 ◦C and Equation (28), the interac-

tion factor δD is: δD
25 = 1.8·XB (1 − XB)4 − 0.93·XB

1.5 + 0.79.
The AAD% = 3.0 for DAB at 25 ◦C (Figure 9).
δD

40 = 1.55XB (1 − XB)4 − 0.89·XB
1.6 + 0.77 at 40 ◦C and AAD% = 2.8.

These AAD% values from comparison with experimental data in [35] are significantly
smaller than the corresponding predicted data obtained from [36,37].

4.7.6. Diffusion Coefficients in Liquids at Infinite Dilution

The following relation was defined for the diffusion coefficient D◦AB of compound A
at infinite dilution in a solvent of compound B:

D0
AB = DL,rDuexp

[
wA,e − (wA,ew)

1
2

wB,e
w ·Tm,∞ fDB·ϕB

T
− wA,e

wB,e

]
wB,e

wA,e
. (29)

In addition to the molecular weights of solvent B and solute A and factor fDB = aDB + bDBT
for the self-diffusion of B, factor ϕB = c + d·wA,e is needed to predict the whole series of
D◦AB data in one solvent B. Factor ϕB with its linear dependence from wA,e resulted from
comparisons of data calculated with Equation (29) along with a few experimental data and
allowed for the easy determination of c and d from two known D◦AB-values.
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Figure 9. Diffusion coefficients DAB in a binary system of benzene (A)-ethanol (B) at 25 ◦C with
experimental (•) [35] and calculated (—) values with Equation (28), and at 40 ◦C with experimental
(�) [35] and calculated ( . . . ) values with Equation (28).

In Table 4 the experimental D◦AB values for 6 compounds in decane are compared
with the predicted values with Equation (29).

Table 4. Comparison of the D◦AB-values for compounds with the relative molecular mass MA,
calculated with Equation (29) with experimental data from [10]. Solvent n-decane, MB = 142 at 25 ◦C.

Compound MA D◦AB·105 cm2s−1 (a) e%

Benzene 78.112 2.16 −0.02

Toluene 92.138 1.93 1.81

Ethylbenzene 106.165 1.79 1.03

Naphthalene 128.174 1.65 −2.0

Pyrene 202.25 1.23 −0.07

Perylene 252.309 1.08 0.08

ϕB = 0.385 + 0.073·wA,e; (a) [10]; e% = 100 (DL,calc − DL,exp)/DL,exp.

With ϕB,alk = −0.63 + 0.17·wB,e + (0.306 − 0.039·wB,e)·wA,e for n-alkanes, the AAD%
values for the D◦AB values calculated with Equation (29) for the six solutes in Table 4
at 25 ◦C in n-hexane, n-heptane, n-octane, and n-decane were 2.3, 2.9, 2.1, and 0.84,
respectively, in comparison to the experimental values [10].

In Table 5 the D◦AB values for 26 compounds in water and the errors from comparison
with predicted values obtained with Equation (29) are listed.
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Table 5. D◦AB-values in water. Compounds with relative molecular mass MA, experimental D◦AB-
values [10] at temperature T, and percent errors of the predicted D◦AB-values.

Compound MA D◦AB·105 cm2s−1 T (◦C) e%

Acetic acid 60.05 1.29 25 −7.8

Acetone 58 1.28 25 −5.7

Allyl alcohol 58.08 0.90 15 4.3

Aniline 93.13 0.92 20 −7.4

DL-Arabinose 150.13 0.69 20 −1.0

Benzene 78 1.02 20 −9.1

Caprolactam 113.16 0.87 25 5.5

Cyclohexane 84 0.84 20 6.5

Diethylamine 73.14 0.97 20 −1.5

1,2-Ethanediol 62 1.16 25 1.2

Ethanol 46 1.24 25 7.4

Ethanolamin 61.08 1.08 25 9.4

Ethylbenzene 106.1 0.81 20 −1.1

Ethyl carbamate 89.09 0.80 15 −6.8

Glycerol 92.09 1.06 25 −5.9

Glycine 75 1.05 25 3.3

D-Lactose 342.3 0.38 15 0.43

D-Mannitol 182.17 0.50 15 2.1

Methanol 32 1.28 15 0.26

3-Methyl-1-butanol 88 0.69 10 −7.3

Methylcyclopentane 84 0.85 20 5.3

Phenol 94 0.89 20 −4.7

1-Propanol 60 0.87 15 6.0

Propene 42 1.44 25 −3.9

Raffinose 504.42 0.33 15 0.07

Toluene 92 0.85 20 0.82
ϕB = 0.43 + 0.073wA,e; e% = 100(DL,calc − DL,exp)/DL,exp. AAD% = 4.4 (N = 26).

4.8. Modeling Viscosities of Liquids Using the Interaction Function

There is no satisfactory theoretical basis available yet for the estimation of liquid
viscosities [3]. However, a strong connection between viscosity and liquid diffusion co-
efficients exists [1]. In this model, the following equation for the prediction of the liquid
viscosity coefficient ηL is proposed:

ηL = ηr·exp

[
−wn,e + (wn,e·w)

1
2 ·

wn,e
w ·416

T
· fη

]
(30)

where:
ηr =

1
108DL,r

= 4.3621 × 10−4 Pa s and wn,e = (1 + 2π/n)n/e, where n = (Mn − 2)/14.
The viscosity reference factor ηr results from the inverse value of the self-diffusion

reference factor DL,r in Equation (26).
In the following, empirical factors fη = aη + bηT in Equation (30) obtained from fitting

experimental data for a series of compounds and homologous series are given and the
calculated viscosity coefficients are compared to the literature data [10] in the temperature
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range of −25 < t < 100 ◦C. Only the relative molecular mass M for n = (M − 2)/14 and the
temperature T were needed.

For the n-alkanes:

fη = 0.38 + 0.0518·wn,e + (1.049 × 10−3 +6.364 × 10−7·M)·T. (31)

For the homologous series of 1-alcohols with n > 3 (propanol):

fη = 2.685 − 0.18·wn,e + (0.0004·wn,e − 0.0031)T.

For the homologous series of carboxylic acids with n > 2 (acetic acid):

fη = 0.5 + 0.1·wn,e + (1.309 × 10−3 − 4.286 × 10−6 M)·T.

The AAD% values of the viscosities for liquid n-alkanes with n carbon atoms from
hexane to hexadecane, calculated with Equations (30) and (31) in the temperature range of
−25 < t ◦C < 100, were < 4. For pentane AAD% = 12.6 and for octadecane, AAD% = 9.

The AAD% values for the alcohols between −25 and 100 ◦C were 1.7–12 (mean 5.3).
The AAD% values for the carboxylic acids between 0 and 100 ◦C were 1.7–12.2

(mean 5.7).
The corresponding factors fη = aη + bη ·T for several other compounds are shown in

Table 6.

Table 6. The aη and bη values for the compounds with relative molecular masses M and the AAD%
from a comparison of the calculated viscosity coefficients to the literature data [10] for N measure-
ments in the temperature range of −25 < t < 100 ◦C.

Compound aη bη·103 AAD% N M

Cyclohexane 1.0402 0.51 5.0 4 84.161

Benzene 0.932 0.663 2.5 3 78.112

Toluene 0.736 1.112 0.3 6 92.138

Ethylbenzene 0.667 1.302 2.0 4 106.165

Butylbenzene 0.681 1.284 0.1 4 134.218

Acetone 0.794 0.8147 1.9 5 58.079

2-Butanone 0.746 1.031 6.4 5 72.106

2-Pentanone 0.721 1.105 4.2 12 86.132

2-Hexanone 0.763 0.9768 0.1 3 100.159

2-Heptanone 1.07 0.064 0.4 4 114.185

Ethylacetate 0.7123 1.033 1.4 8 88.106

Formic acid 1.82 −0.5867 2.0 8 46.026

Acetic acid 1.134 0.8133 4.1 21 60.052

Methanol 1.875 −1.51 0.2 3 32.042

Ethanol 1.89 −1.28 0.6 5 46.068

1-Propanol 2.025 −1.625 1.0 5 60.095

Water 4.38 −7.725 5.1 5 18.015

The fη values for alkylbenzenes, 2-ketones, and ethyl acetate between 25–50 ◦C were
between 1.05 and 1.15. An increase in the aη-values and decrease in the bη-values resulted
in increasing polarities of the compounds (Figure 10). This behavior is similar to that of the
self-diffusion coefficients (Figure 7).
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An important relation between the self-diffusion coefficient and the viscosity coeffi-
cient in a liquid is the product Θ:

Θ = DL·ηL·108. (32)

The Θ-values lie near 1 and for many organic compounds one mean value Θ = 1.25
can be used. A few examples of the AAD% values for DL estimated with Equation (32)
using the corresponding ηL data are shown in Table 7.

Table 7. Comparison of self-diffusion coefficients DL,Θ = 1.25/ηL·108, DL,c calculated with
Equation (25) and experimental values, and DL,ex for 4 organic compounds with different polar-
ities from N data in the temperature range ∆T. For water, 21 data with DL,Θ = 2.2/ηL·108 are given.

Compound DL,Θ − DL,ex (AAD%) DL,c − DL,ex (AAD%) N ∆T (◦C)

n-heptane 9.8 8.3 5 −46–104

ethylacetate 5.9 1.9 5 15–55

benzene 12 4.6 7 7–65

methanol 7.5 1.8 8 −5–55

H2O 10.2 4.1 21 0–100

There are many experimental data for ηL values available in the literature for different
structural groups [12]. From such collections the corresponding terms aη and bη can
be easily determined. From aη and bη values for different structures, as exemplified in
the above tables, estimates of DL-values are possible using Equation (32), for which no
experimental data are available.

4.9. Modeling of Diffusion in Polymers Using the Interaction Function

The diffusion behavior of organic compounds solved in polymers lies between that of
liquids and solids. As a consequence, the models for diffusion coefficient estimation are
based on ideas drawn from diffusion in both liquids and solids [6].
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The literature contains a very large amount of information on the diffusion of molecules
in polymers [38]. The considerable interest and the academic and industrial research ef-
forts in the study of diffusion in polymers arises from the fact that important practical
applications for these materials depend to a great extent on diffusion phenomena.

In addition to microscopic molecular or free-volume models, atomistic computational
approaches based on molecular dynamics play important roles. However, the many
adjustable parameters needed for predictions of unknown diffusion coefficients are not
known in many cases and it is often questionable whether such models are helpful for
practicable applications.

With the aim to deliver an additional tool to assist in making material safety regulation
decisions in the USA Food and Drug Administration (FDA) and in the European Union
(EU), simple empirical models for the estimation of diffusion coefficients DP were proposed.
In a first approximation, DP was correlated with the relative molecular mass M of the
migrant and a matrix-specific (polymer) parameter AP at temperature T [39]. A similar
approach was undertaken by the FDA [40].

Despite the fact that many sophisticated models for the prediction of diffusion coeffi-
cients in polymers are known, only the very simplified models as published in [39,40] were
finally useful for regulation decisions. Further development of this simplified empirical
approach delivered a useful tool for regulatory decisions by the FDA and EU [41].

Since 2000, a series of improvements on the model have been made [6]. From these
developments the following model for the diffusion of organic molecules in polymers is
now proposed.

Based on Equation (24) for solids and Equation (25) for liquids, the following general
equation for diffusion constants Dp of a compound with the interaction function wn,e in a
polymer, represented with the matrix value w, is proposed:

DP = Duexp
(

wn,e − ww
2
3
n,e

RTP,∞

RT
fP

)
(33)

Polymethylene represents a reference polymer with the matrix value w and melting
point TP,∞ = Tm,∞ = 416 K and fP = 1; wn = (1 + 2π/n)n/e, where n = (M − 2)/14 and the M is
the relative molecular mass of the diffusing molecule.

For the general case, the empirical polymer specific constant fP takes into account the
structure of the matrix and its variation with the temperature T in K. In contrast to the
solid state, as for metals, the polymer matrix shows different degrees of rigidity. Between a
glassy state at low temperatures and a thermoplastic state, the interaction with the diffusing
particle changes. The consequence is a variable activation energy:

ED = ww
2
3
n,eRTP ∞ fP, (34)

From the great variety of polymers, two well-known, extremely different types were
selected: high-density polyethylene (HDPE) with a well-known melting temperature
TP = 408 K (135 ◦C) and polyethylene terephthalate (PET) with TP = 528 K (255 ◦C). HDPE
is thermoplastic in the temperature range for most applications, whereas PET is glassy at
t < 70 ◦C.

Both polymers are very well studied and deliver reliable values needed for modeling.
From experimental data for the diffusion coefficients of compounds up to M = 1500 in
the temperature range of 23 < t < 100 ◦C for HDPE and 23 < t < 175 ◦C for PET, the
corresponding fP-values for Equations (33) and (34) were determined. They show a linear
behavior and are represented by the two following functions. For HDPE:

fHDPE = 1.164− 0.001·T for HDPE
fg,PET = 1.008 + 0.000667 ·T for glassy PET

ft,PET = 1.67− 0.001392 ·T for thermoplastic PET
(35)
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With these values the activation energies for diffusion in HDPE and PET are repre-
sented in Figure 11a as functions of M and in Figure 11b as functions of 1/T.
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Figure 11. (a) Activation energy of diffusion in polymers as a function of the relative molecular
mass M. (—) ED in HDPE with fHDPE; (. . .) ED in thermoplastic PET; (- - -) ED in glassy PET
with the corresponding fP-values from Equation (35). (b) The product TP,∞·fP from Equation (34) as
function of 1/T. (—) TP,∞·1; (3) TP,∞· fHDPE from Equation (35); (1) TP,∞· ft,PET ; (2) TP,∞· fg,PET from
Equation (35).
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The behavior of the activation energy of diffusion in PET in conformity with
Equations (34) and (35) is in good agreement with the experimental data from [42,43].

As an example, for diffusion modeling in HDPE in conformity with Equation (33),
eight compounds with different structures used as additives in plastics with 100 < M < 1200
are listed in Table 8. Their diffusion coefficients DP in HDPE at 60 ◦C are shown in Figure 12.

Table 8. Additives with relative molecular masses M used in HDPE and their diffusion coefficients
represented in Figure 12 [44].

Migrant M

4-tert-Butylphenol 150.22

2,4-Di-tert-butylphenol 206.17

2,6-Di-tert-butyl-4-methylphenol 220.6

3,5-Di-tert-butyl-4-hydroxybenzaldehyde 234.16

3-(3,5-Di-tert-butyl-4-hydroxypheyl)-methylpropionate 292.42

Octaethyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate 530.88

1,3,5-Trimethyl-2,4,6-tris(3,5-di-tert-utyl-4-hydroxybenzyl)benzene 775.22

Pentaerythritol tetrakis[3-(3,5-i-tert-butyl-4-hydroxyphenyl)propionate] 1177.67
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Figure 12. Diffusion coefficients in HDPE at 60 ◦C. (•) Compounds from Table 8 [44]; (H) n-alkanes
with 20, 27, 32 and 40 carbon atoms [6]; (�) water [5].

For an unknown thermoplastic matrix, two experimental diffusion values for a com-
pound with known M at two temperatures are needed for the determination of the linear
function fP. For a glassy matrix in the interested temperature range, two additional mea-
sured diffusion values are needed in the glassy region.

The advantage of Equation (33) is the possibility of an easy prediction of diffusion
coefficients over the whole mass and temperature range for a polymer, based on just two
measured points for one compound with known M at two temperatures T.

To maintain the validity of Equation (33), the total concentrations of the diffusing
components should remain below ≈5% in order to avoid softening the matrix, resulting
in changes (increasing) to the diffusion rate. The same precaution must be taken for the
contact media used when measuring the diffusion coefficient to avoid swelling of the
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polymer matrix. In order to take into account such influences, an additional parameter AP
can be introduced into Equation (33), which must be determined experimentally with an
additional measurement [6].

5. Conclusions

The interaction function in Equation (3) for liquid particles is based on the fundamen-
tal properties of natural numbers. This function acts as a bridge between properties of
elementary particles and emergent properties of macroscopic systems. The atomic mass
unit and an internal molar kinetic energy term for a system with optimal molar entropy
are derived as two examples. This leads to a temperature T0 = 2.98 K in a macrosystem of
particles with the atomic mass unit u and the molar entropy Sm = 108.85 JK−1mol−1. The
same entropy value results for the system at a reference temperature Tr = 298.15 K and a
pressure of 105 Pa. In such an environment, the maximum of structure variety, including
life, is possible.

Even one organic molecule can be treated as a system of i interacting subparticles in
conformity with the interaction function defined in Equation (3). The non polar Methylene
group -CH2- with two strong covalent bonded H-atoms is such a subparticle, with a certain
individuality along the i carbon atoms in a chain. The property of chain formation is
characteristic for organic compounds and the n-alkanes are therefore the reference series
for all organic compounds.

A variety of physical properties of liquids is described on the basis of the interaction
function. All corresponding specific values for constants are based on Equation (3).

The important conclusion is the possibility to predict values for specific properties of
liquids, starting from an uniform point of view, with the interaction function wn,e using
a minimum of empirical constants as simple, essentially linear temperature functions in
addition to the molecular mass M.

The correlation of the power sequence in Equation (3) with the homologous series
of n-alkanes as a reference for all organic compounds is one main basis. All specific
structure properties can be covered with additional empirical increments with the same
dimensionless units as M. This allows, in theory, for the creation of corresponding maps of
such structure increments for all important functional groups, similar to charts of infrared
spectra, as an example. Such data can then be easily used by introducing them directly into
the prediction equations.

The correlation of emergent properties of fluid systems with the interaction function
in Equation (3) provides a reliable basis for applications with a minimum of empirical data
and computational effort. That way it offers an attractive alternative to many sophisticated
prediction methods. Practical applications for diffusion modeling in plastic materials for
food and pharmaceutical packaging and for modeling interactions with the environment
are typical examples of the usefulness of such simple approaches. The interaction function
represents the real basic phenomenon of the liquid state, in contrast to all models starting
alone from pair interactions.
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