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Abstract: An advanced numerical model is presented for the simulation of wave-induced free-surface
flow, utilizing an efficient hybrid parallel implementation. The model is based on the solution of
the Navier-Stokes equations using large-eddy simulation of large-scale coastal free-surface flows.
The three-dimensional immersed boundary method was used for the enforcement of the no-slip
boundary condition on the bed surface. The water-air interface was tracked using the level-set
method. The numerical model was effectively validated against laboratory measurements involving
wave propagation over a flatbed with an elliptical shoal, whose presence induces combined wave
refraction and diffraction phenomena. The parallel implementation of the model enabled the efficient
simulation of depth-resolved, wave-induced, three-dimensional, free-surface flow; the model parallel
efficiency and strong scaling are quantitatively demonstrated.

Keywords: Navier-Stokes equations; MPI; OpenMP; large-eddy simulation; immersed boundary
method; level-set method; coastal bed shoal; wave refraction and diffraction

1. Introduction

During the last decades, the development of computer technology has advanced, and,
consequently, the computing power has increased significantly. As a result, numerical
modeling has become increasingly popular in coastal research. More specifically, computa-
tional fluid dynamics (CFD) is one of the branches of fluid mechanics with the potential to
fully exploit modern computer technologies. Moreover, taking into consideration the effect
of climate change and the increased wave heights, coastal environments are becoming
more and more vulnerable to erosion and flooding phenomena. Thus, the use of numerical
models is more than ever mandatory to achieve realistic simulations of the wave field and
understand in more detail the hydrodynamics in coastal zones.

Many numerical models have been developed to study nearshore wave processes.
Depth-integrated models utilizing the Boussinesq-type equations are quite popular for the
numerical modeling of waves [1,2]. Boussinesg-type models (BTMs) provide an effective
way to compute the free-surface flow in cases of a nearly uniform vertical distribution
of flow variables. However, BTMs contain high-order, partial-derivative terms whose
accurate discretization is rather difficult and increases the computational cost. Moreover, in
phenomena with strong spatial variability of the flow field in the vertical direction, which
is the case in coastal zones, three-dimensional (3D) modeling is more appropriate than the
depth-averaged one [3].

Apart from the BTM, another popular approach is the development of one- or two-
layer depth-integrated non-hydrostatic wave models [4-7]. In this specific approach, the
vertical flow structures are indirectly resolved in the governing equations. However,
additional layers should be incorporated in the non-hydrostatic models to increase the
order of accuracy. Multilayer non-hydrostatic models can resolve more complex flow
structures over the water column, and they can represent more accurate coastal wave
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processes [8]. Nevertheless, to accurately capture the 3D effects of the coastal processes
that intertwine in the nearshore zone, fully 3D numerical models are needed.

Navier-Stokes equations can theoretically describe most fluid problems with reason-
able accuracy. The performance of direct numerical simulation (DNS) using the Navier—
Stokes equations is highly impractical for high Reynolds number problems, due to com-
puter power restrictions. There are two popular alternatives for simulating large-scale cases.
The first alternative is to use the Reynolds-averaged Navier-Stokes (RANS) equations,
and the second alternative is to use large-eddy simulation (LES). LES is a widely used
methodology for the numerical simulation of high Reynolds number turbulent flows. In
the LES approach, the flow structures are separated into large and small eddies. The large
eddies are explicitly solved for, while the small eddies are parametrized with the use of a
subgrid-scale (SGS) model [9].

Several numerical studies for coastal flow simulation have been presented in recent
years utilizing high-performance computing (HPC). Onder and Yuan [10] performed DNS
of oscillatory flow over a rippled bottom in order to study in detail the 3D features of
the flow in fully turbulent regimes. They used the message passage interface (MPI) for
the parallel implementation of their code. Very fine grid resolution was employed, with
grid spacing in the order of the Kolmogorov scale. Thus, they were able to fully resolve
all flow features and the wave boundary layer, concluding that the flow is characterized
by the formation of two dominant large-scale vortices. Oyarzun et al. [11] presented a
3D numerical model using the LES approach, implemented to run in both CPU and GPU
systems. An MPI + OpenACC strategy was followed in order to increase the computational
performance. The oscillatory flow was simulated over a fixed rippled bed for large-scale
Reynolds numbers (Re = 2 x 10°). They concluded that for accurate prediction of flow
parameters in coastal flows, the numerical simulations should be performed at Reynolds
numbers as close as possible to the original ones. Jin et al. [12] performed 3D LES in order to
simulate oscillatory flow over fixed ripples. The MPI protocol was utilized for the parallel
implementation of the code. Due to the use of HPC, they performed high-resolution
numerical simulations, and they managed to visualize the evolution of rib patterns during
a flow cycle.

Using the projection method for the numerical solution of the Navier-Stokes equations,
the most time-consuming part of the algorithm is the numerical solution of the Poisson
equation for pressure. For one-fluid cases, the matrix of the linear system resulting from the
spatial discretization of the Poisson equation has constant coefficients; therefore, efficient
fast direct solvers (FDSs) are used, which take advantage of fast Fourier transforms (FFT).
For flows with an air-water interface, the Poisson equation matrix has varying coefficients
in space and time because the density field varies spatially and temporarily in the vicinity
of the interface; therefore, the direct application of an FDS is not possible. Recently, Frantzis
and Grigoriadis [13] and De Vita et al. [14] used the indirect FDS approach in Dodd and
Ferrante [15] to simulate free-surface flows induced by the interaction of waves with
stationary or moving solid bodies. Another alternative for the variable-coefficient matrix
issue is the use of iterative solvers but they are usually much slower than the indirect FDS.
To overcome this drawback, in the present work, a fast iterative solver was developed
utilizing parallel architectures and HPC systems.

To summarize, the constant improvement of computer power during the last decade
allowed the researchers to simulate 3D coastal processes close to bed at prototype exper-
imental or physical scales, using HPC. However, to the authors” knowledge, the use of
3D LES to resolve the whole water column, from the bed to the free surface, during wave
propagation, is still limited. Considering that the numerical solution of the incompressible
Navier-Stokes equations provides an accurate prediction of hydrodynamics, the scope
of the present study is the development and validation of a fully 3D numerical model to
simulate flow processes induced by wave refraction and diffraction. This will enable us to
study, apart from the wave transformation that a BIM or a depth-averaged non-hydrostatic
model can simulate, the complete 3D flow field. In order to use the specific approach
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for realistic-scale situations at high Reynolds numbers, very fine spatial discretization is
needed, which leads to extremely high computational costs. For the above-mentioned
reasons, the present numerical model is utilizing HPC. A hybrid parallel methodology
is proposed, which includes an MPI + OpenMP implementation that can efficiently take
advantage of modern supercomputing capabilities.

2. Materials and Methods
2.1. Methodology

In the present numerical model, the flow in the water and the air was modeled
as one-fluid flow governed by the 3D incompressible Navier-Stokes equations in non-

dimensional form.
aui

ol (1)

ou; d 1 ap aTz] 11 0 ou; au] di3

5 o) = g e (55 50 ) R A @
where u; are the velocity components, x; are the Cartesian coordinates (x; is the streamwise,
Xy is the spanwise, and x3 is the vertical coordinate opposite to gravity), ¢ is the time, p
is the one-fluid density normalized by the water density, p is the total pressure, 7;; are
the SGS stresses related to LES, Re is the Reynolds number, i is the one-fluid dynamic
viscosity normalized by the water dynamic viscosity, ¢ is the Kronecker’s delta, Fr is the
Froude number, and f; is a source term associated with the implementation of the immersed
boundary (IB) method. In the present work, the 3D implementation of the IB method [16]
was utilized for the enforcement of the no-slip boundary condition on the bed surface. The
SGS stresses were modelled by the standard eddy-viscosity Smagorinsky model [9]. In
Equation (2), lengths are non-dimensionalized by a characteristic depth, d, and velocities by
(gd)l/ 2. therefore, Re = d(gd)l/ 2 /vy, and, Fr = 1, where vy, is the water kinematic viscosity.

The spatial discretization of all equations is performed using 2" order central finite
differences on a Cartesian grid, an advantage that is afforded using the IB method for the
imposition of the no-slip boundary condition since the bed does not have to coincide with
the numerical grid. Not using boundary conforming grids results in a substantial increase
in the performance and efficiency of the HPC tools.

The temporal discretization is based on the time-splitting projection method where
all terms of Equation (2), except the pressure term, are treated explicitly using a 2"¢ order
Adams-Bashforth scheme for the computation of an intermediate velocity u;"+?. The
final velocity field u;"*! is obtained by the pressure gradient as follows:

A
m+1 _ uim+l/2 _ ?tvpm-‘rl (3)

uj

The present approach, in terms of the application of the projection method, is highly
encountered in the literature for the solution of the incompressible Navier-Stokes equations.
In Equation (3), the pressure is computed by the numerical solution of the corresponding
Poisson equation

1 1
Zvypmtl) — m+1/2 4
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at each numerical time step.

The evolution of the free surface is based on the level-set method [17], following the

advection equation, expressed as

2
Lt u;- Vg =0 5)

where ¢ is a signed distance function, defined to be equal to zero at the level of the free
surface.



Fluids 2021, 6, 350

4 of 14

The incident waves are generated at the left boundary of the computational domain
by resembling numerically the action of a piston-type wavemaker on the left boundary. To
achieve that, the horizontal velocity was imposed there, following the relationship [18]

1 H3 <3cosh(kd0) 259
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where Hy is the wave height, k = 27t/ A is the wavenumber, A is the wavelength, dj is the
water depth at the wavemaker, and Sy is the stroke of the wavemaker, given by

sinh(2kdy) + 2kd
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To avoid undesired wave reflections from the boundaries of the computational domain,
sponge layer regions have been implemented in both streamwise boundaries, following
the method proposed in Jacobsen et al. [19]. For further details on the methodology
implementation, the interested reader is referred to Dimas and Koutrouveli [18] and
Koutrouveli and Dimas [20]. The structure of the whole algorithm is presented in Table 1.

Table 1. The main stages of the algorithm.

Computation of the intermediate velocity field;
Implementation of the IB method (no-slip condition);
Computation of the pressure field—Equation (4);

Computation of the final velocity field—Equation (3);
Computation of the evolution of the free surface—Equation (5).

G W=

2.2. Parallel Implementation

The parallelization of the numerical code utilizes a hybrid MPI + OpenMP approach.
This parallel implementation relies on dividing the computational domain into N non-
overlapping and equally distributed subdomains. Each MPI process performs calculations
only on the cells of its associated subdomain. Additionally, an external layer of cells,
so-called halo cells, must be attached to each subdomain. These cells are replica values
of the neighboring cells coupled with the subdomain. The purpose of these cells is to
maintain the coherence of the numerical results among the whole domain. Therefore,
MPI communications must update the halo cells when their values change on their origin
subdomain. These MPI commands are point-to-point communications (MPI_Isend and
MPI_Irecv) since they only link neighboring subdomains. The number of halo layers
required to perform the local calculations depends on the discretization scheme. In our
implementation, stages from 1 to 4 (Table 1) are based on a second-order discretization
that only requires one layer of halo cells. However, the interface tracking utilized in stage
5 (Table 1) requires three layers of halo cells, thus increasing the communication cost of
updating the unknowns associated with that operation. Figure 1 exemplifies the halo layer
on a two-dimensional (2D) subdomain of 6 x 6 cells. At the left side of Figure 1, a sketch of
a single halo layer required for a second-order discretization is presented; at the right side
of Figure 1, a sketch of three halo layers necessary for the interface tracking is presented.
This configuration is easily extrapolated to 3D formulations. More details can be found in
Oyarzun et al. [11].
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[] Local Cells
Halo Cells

Figure 1. Example of one halo layer (left) and three halo layers (right) for a 6 x 6 2D subdomain.

The operations within the local domains are represented with three nested loops that
sweep the three directions of the local Cartesian domain (x3, X3, and x3). The iterations
performed within these loops are independent of each other. This feature favors the
utilization of loop-based shared memory parallelization, such as OpenMP. In our case, each
MPI process launches many OpenMP threads that perform the calculations in parallel. The
MPI process is associated with a CPU socket, and the OpenMP threads are linked with
each core of that socket.

2.3. Parallelization of the Pressure Solution

Regarding the computation of the pressure field, iterative methods are the only plau-
sible choice for solving such large-scale linear systems. Krylov subspace methods are
the most commonly used solvers for calculating the pressure field from the linear sys-
tem [21,22]. Two-phase simulations generate a Poisson equation (Equation (4)) that its
matrix is asymmetric and with coefficients that change after each time integration step due
to the temporal variation of the flow density as a function of the free-surface movement.
Therefore, the biconjugate gradient method (BiCG) is the most suitable for its solution. The
BiCG algorithm is composed of the sparse matrix—vector product (SpMV) and vectorial
operations. The implementation of these linear algebra operations consists of a loop over
the matrix rows or vector components. The loop independence on these operations makes
them compatible with our OpenMP parallelization. Additionally, the SpMV requires a
halo update before being applied, thus requiring point-to-point MPI communications
(MPL_Isend and MPI_IRecv) of one layer of cells. The dot product is the only vector opera-
tion that involves communications. First, each subdomain calculates its local dot product,
and then a collective all-to-all communication (MPI_Allreduce) is needed to perform the
global sum and to store the result on each process. Within the iterative loop of the solver,
the SpMV is called twice while the dot product is computed five times. The solver per-
forms hundreds of iterations to converge; therefore, these two operations determine the
simulation scalability.

The previous solution of the pressure is utilized as the starting point of the iterative
process. However, since the coefficients of the matrix and the right-hand side of Equation (4)
change after each time integration step, the iterative process is rarely stabilized within few
iterations. A Jacobi preconditioner reduces the iterations at a low cost since its application
is equivalent to a vectorial operation. Moreover, this preconditioner is suitable for the MPI
+ OpenMP implementation since it is loop based and does not demand communications.

3. Results
3.1. Waves Propagation over an Elliptical Shoal

Experimental measurements of regular and irregular waves propagation over a sub-
merged elliptical shoal were presented in Briggs [23] and Vincent and Briggs [24]. To
validate the present numerical model, two benchmark cases of regular waves were selected
to demonstrate the ability of the model to simulate complex 3D wave transformations due
to the simultaneous effects of wave refraction and diffraction. This experiment has also
been reproduced by 2D depth-integrated, non-hydrostatic models for the simulation of
coastal waves over varying bathymetries [25-27]. It should be noted that the performance
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of the above mentioned models was good, but they underestimated the wave height behind
the shoal. Additionally, a simulation using a 2D fully non-linear BTM was performed by
Viviano et al. [28] with similar accuracy. Depth-averaged models can handle very efficiently
several nearshore phenomena, such as wave refraction and diffraction. However, when
aiming at modeling the nearshore flow field, their weakest point is their inability to resolve
the velocity and pressure fields along the depth. To face this problem, numerical simula-
tions of the 3D Navier-Stokes equations should be performed as in Ha et al. [29]. A more
recent study was also presented by Raoult et al. [30] after solving the 3D Euler-Zakharov
equations. However, in both studies, only free-surface elevation results were presented but
no velocity or vorticity ones. To the authors’ best knowledge based on the recent literature,
the present article is the first to present and discuss the results of the 3D velocity field for
the experiments in Briggs [23] and Vincent and Briggs [24].

The experiments were conducted in a directional wave basin with width, 35 m, and
length, 29 m. The measurements were obtained in an area 6.10 m wide and 15.24 m long
around the shoal. The elliptical shoal was designed based on the work in Berkhoff et al. [31],
with a major radius of 3.96 m and a minor radius of 3.05 m. The perimeter of the shoal

boundary was defined as
X\, (Y
(3_05> + (s_%) =1 (8)

where X and Y are the axes of a local coordinate system positioned at the center of the
elliptical shoal. The bed level outside the shoal area was flat, at a constant water depth of
d = 0.4572 m (18”), while the shoal surface level, ds, was defined by the following expression:

d. = —0.4572 + 0.7620 [1 _ () _ ( )

3.81 495 ©)

Obviously, the minimum water depth was above the center of the submerged shoal,
and it was equal to 0.1524 m (6”). The incident waves were generated using a directional
spectral wave generator.

A total number of 20 experimental cases were examined and surface elevation time
series were collected along 9 different transects, 5 parallel and 4 perpendicular to the wave
generator; of these cases, 17 were presented in Vincent and Briggs [24]. In the present work,
two test cases of regular waves, M1 in Vincent and Briggs [24], hereafter called C1, and
M1l in Briggs [23], hereafter called C2, were simulated numerically for the validation of
the numerical model. The wave input parameters of these cases are presented in Table 2.

Table 2. Incident wave characteristics of the two simulated cases.

Wave Height, Wave Period,
Test Case Hy (cm) T (s
C1 5.50 1.3
C2 7.75 1.3

The computational domain, used for the simulations, is presented in Figure 2. The
length of the domain in dimensional units was 27.5 m, its width was 12.5 m, and its
height was 0.85 m. After trial and error, it was found that these shorter dimensions of the
computational domain, in comparison with the experimental wave basin, give the same
flow field while keeping the computational cost at low levels. Note that the computational
domain bottom does not coincide with the flatbed to facilitate the implementation of the
IB method for the imposition of the no-slip condition on the flatbed and the shoal surface.
Furthermore, the computational domain height includes both the water and air layers, with
the water layer being about 55% of the total height. Comparisons with the measurements
were performed on four transects parallel to the wave generator; their positions are also
shown in Figure 2.



Fluids 2021, 6, 350

7 of 14

Air layer

Water layer
x, (m)

Wave generation
boundary

\

W

20 Sponge layer

10 15 region

X, (m) 5 10 X, (m)

5
G Sponge layer z () [IIREETTTTT T T T T

region 0 006 012 018 024 03

Figure 2. The computational domain used for the numerical simulation of wave propagation over an
elliptical shoal. Planes T1-T4 indicate the position of the measurement transects that were used for
the numerical model validation.

Before reaching the shoal, the waves propagated over a flatbed for a distance of about
two wavelengths so that fully developed wave conditions were established. To avoid
wave reflections from the wave generation and wave exit boundaries of the domain, two
absorption zones (sponge layer regions in Figure 2) were implemented at the streamwise
(x1) boundaries, following the method proposed in Jacobsen et al. [19]. A sponge layer
region equal to one wavelength was implemented just after the wave generation boundary,
where the wavemaker is located, while a sponge layer region equal to four wavelengths
was implemented just before the wave exit boundary. Periodic wave boundary conditions
were implemented at the spanwise boundaries.

The boundary condition imposed for pressure was zero Neumann on the compu-
tational bottom and the streamwise boundaries. At the top boundary, a Dirichlet-type
condition p = pgn was implemented, where 7 is the water surface elevation. For the velocity
field, the boundary conditions were zero Neumann on the computational bottom and wave
exit boundary. Concerning the wave generation boundary, a Dirichlet-type condition was
implemented for the horizontal velocity in order to be consistent with the harmonic wave
generation. Periodic boundary conditions were enforced in the spanwise direction for both
pressure and velocity field.

After grid independency trials, the grid spacing in the horizontal directions was
selected uniform with Ax;/d = 0.075, Ax,/d = 0.1, whereas in the vertical direction, Axs/d
was non-uniform, with values 0.006 in the water and 0.015 in the air. This resulted in a grid
with 800 cells in the streamwise direction, 256 cells in the spanwise direction and 240 cells
in the vertical direction. Note that, in the vertical direction, the fine resolution area of the
grid reaches an elevation higher than the maximum wave crest level (Figure 3).

To avoid numerical instabilities, the computational time-step, At, was selected so that
it satisfied both the convective (CFL) and the diffusive (VSL) criteria according to the limits:
CFL < 0.1 and VSL < 0.001, where
u; - At At

dVSL= —— 10
Ax; Re - Ax? (10

CFL; =

The numerical simulation started with the fluid at rest, 5-10 wave periods were
required for the waves to reach fully developed conditions, and another 10 wave periods
were used for sampling. The average CPU time for each wave period was 12 h and 45 min
in both test cases. The simulations were executed on a petascale supercomputer at the
Aris HPC Infrastructure of the Greek Research and Technology Network (GRNET) using
1600 cores.
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Figure 3. (a) Instantaneous free-surface snapshot, after the propagation of 10 waves over the sub-
merged elliptical shoal, for case C2. The computational domain with the Cartesian grid is shown
every 4th node. The ratio of the horizontal axes scale to the vertical one is 0.2; (b) the corresponding
spanwise velocity contours on the free surface over and downstream of the shoal.

First, an instantaneous 3D snapshot of waves propagating over the elliptical shoal
(Figure 3) and the corresponding velocity field at the cross section of the domain centerline
(Figure 4) are presented for case C2, to demonstrate the complex 3D wave transformation
due to the combined wave refraction and diffraction downstream of the shoal. It is worth
noting that for clarity, in both figures, the horizontal axes are not in scale with the vertical
ones. From Figure 3, it can be inferred that the presence of the shoal causes a wave
focusing behavior just downstream of the shoal. This is also demonstrated in more detail in
Figure 3b, in which spanwise velocity contours on the free surface are presented. Starting
from the crest of the shoal and for three wavelengths, the wave crests are converging
toward the domain centerline. Downstream of this point, the phenomenon is reversed,
with the wave crests diverging. The wave convergence was first mentioned by Choi
etal. [32], who observed the development of wave focusing after the shoal. They concluded
that for non-breaking waves, which is also the case here, the converging wave rays cause
a wave height increase in this region (see Figure 3 and T3-T4 in Figures 5 and 6). A
similar observation was also reported by Raoult et al. [30], who stated that the wave height
increases downstream of the shoal with free-surface patterns of strong variation in both
horizontal directions. They concluded that this formation reminisces a wake. Finally, in
Figure 3a, it is also clear that the sponge layer just before the wave exit boundary diminishes
smoothly the incoming free-surface undulations.
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Figure 4. Instantaneous flow field, at the cross section of the domain centerline, for case C2: velocity

(vectors) and spanwise vorticity, wy, (contours). The ratio of the horizontal axis scale to the vertical
one is 0.2.
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Figure 5. Comparison between present numerical results (red lines), experimental measurements

(black squares), and numerical results in the literature (blue line and black dashed line) for the
normalized wave height H/H, along the four transects shown in Figure 2, for case C1.
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Figure 6. Comparison between numerical results (red lines) and experimental measurements (black
squares), for the normalized wave height H/H)j, along the four transects shown in Figure 2, for
case C2.

In Figure 4, as the wave approaches the shoal, the positive streamwise velocity in-
creases, leading to the increase in the wave height, as was previously described. Down-
stream of the shoal, complex wave transformation is observed, with large wave height
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variation and high velocities in absolute value. In addition, positive and negative spanwise
vorticity is generated below the wave crests and troughs, respectively. Due to the smooth
bottom transition that is created by this specific shoal and the non-breaking nature of
the waves, no flow separation areas are observed on the shoal surface, and no vortex
shedding develops.

The numerical results for the normalized wave height, H/H), are presented in Figure 5,
for test case C1, and in Figure 6, for test case C2, along the four transects of Figure 2.
Upstream of the shoal (transect T1), low variations of the incident wave height are observed
for both cases. At the shoal crest (T2), the wave is about 50% higher than the incident
wave, whereas close to the spanwise boundaries, the wave height is practically unaffected.
Downstream of the shoal (T3 and T4), the wave height presents a maximum along the
domain centerline, which is more than twice the incident wave height. At spanwise
distances from the centerline, strong wave height variations can be seen, and, locally, the
wave height acquires values even lower than the incident one.

The quantitative agreement between the present numerical results and the experimen-
tal measurements in Vincent and Briggs [24] and Briggs [23] is also good. For C1 (Figure 5),
the numerical results almost perfectly match the experimental data. For C2 (Figure 6),
the model reproduces the experimental data in transects T1 and T2 with satisfactory ac-
curacy, while in T3 and T4, which are located downstream of the shoal (Figure 2) and are
considered the most demanding ones due to the strong non-linear effect of the combined
wave refraction and diffraction (Figure 3), a reasonable agreement is observed, showing
the ability of the model to capture the complex wave transformation.

In Figure 5, the present results are also compared with the results in Vasarmidis et al. [27],
who replicated the same experiment using the non-hydrostatic wave model SWASH, and
the numerical results in Raoult et al. [30], who drew a comparison only in Transect T4. The
numerical results of both models seem to predict the experimental measurements quite
satisfactorily; however, the present study’s results seem to be even more accurate especially
in transects T2 and T3. This is attributed to the present fully 3D LES approach.

The root-mean-square error (RMSE) of the numerical results with respect to the
experimental measurements was calculated, and is presented in Table 3 at all four transects
for both cases C1 and C2. For C1, the RMSE is between 5 and 10% in all transects, while for
C2, the RMSE is below 10% in transects T1 and T2, and its value reaches up to 22.6% in T3
and T4, in which the experimental uncertainty is also larger due to the stronger free-surface
non-linearity of the higher wave case C2. In addition, as mentioned previously, the most
demanding flow field region to resolve is downstream of the shoal where complex wave
patterns are formed. All in all, the predicted wave behavior is well predicted qualitatively
even in this area, for case C2, and the overall agreement between the numerical results and
the experimental measurements is good.

Table 3. RMSE (%) of the present numerical results with respect to the experimental measurements
in Vincent and Briggs [24] and Briggs [23] for cases C1 and C2.

RMSE (%) Test Case C1 Test Case C2
T1 9.76 6.73
T2 5.28 8.04
T3 7.44 22.6
T4 941 20.2

3.2. Performance Analysis of the Presented Code
3.2.1. Profiling

For the simulation profiling, the execution time of the different stages described in
Table 1 was measured, and their relative temporal weight within the computation was
calculated. The subroutines MPI_Wtime and MPI_Allreduce were used to measure the
local times and obtain the global maximum time among all the processes. The times
correspond to the average of over 1000 time-integration steps from a simulation that started
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at an advanced wave period. The exact configuration of the production run was considered,
i.e., waves propagating over the submerged elliptical shoal using a mesh of 800 x 256 x
240 cells, running on one thousand processes. Table 4 shows the relative temporal weight
of each stage of the algorithm.

Table 4. Relative temporal weight of the main operations involved in the simulation of the wave
propagating over the submerged elliptical shoal using 49.152 million cells.

Stage of the Algorithm Relative Weight
1. Computation of the intermediate velocity field; 0.73%
2. Implementation of the IB method (no-slip condition); 0.37%
3. Computation of the pressure field—Equation (4); 98.19%
4. Computation of the final velocity field—Equation (3); 0.17%
5. Computation of the evolution of the free surface—Equation (5). 0.54%

The most computation-intensive operation is the computation of the pressure field
(Equation (4)) that takes 98.19% of the execution time. The iterative solver (Section 2.3)
required 775 iterations on average to converge to the pressure solution. Therefore, the
SpMV and the vector operations involved in the solver are called thousands of times
during each time integration step. Since the solver dominates the execution time, its
parallel performance reflects the parallel performance of the whole algorithm.

3.2.2. Parallel Efficiency of the Main Communication Patterns

The parallel efficiency of a model is the ratio between the acceleration of the code
and the expected speedup. Concerning the presented code, the two point-to-point and
one all-to-all communication operations scale at different rates and determine the parallel
efficiency of the whole code. Figure 7 shows the parallel efficiency of these three operations
for different configurations ranging from 300 CPU cores up to 4800 CPU cores for the waves
propagating over the submerged elliptical shoal using a mesh of 800 x 256 x 240 cells. The
scalability tests were performed at the MareNostrum4 supercomputer, where each node
consists of two Intel Xeon Platinum 8160 of 24 CPU cores. Each MPI process was linked
with 12 CPU cores, so 4 MPIs processes ran at each computer node. The acceleration of
the code is calculated with respect to the setup using 300 CPU cores. Using three layers
of halo cells attains a slightly better parallel efficiency than working only with one for the
point-to-point communications. This occurs because the communication process involves
gather and scatter operations before actually communicating the halo information. These
operations accelerated a bit faster when the quantity of data is more significant. Moreover,
part of the high network latency is hidden due to messages with more length. Even though
the three-halo point-to-point communication has a better scaling, it still runs on average
44% slower than the one halo point-to-point communication.

On the other hand, the parallel efficiency of the all-to-all communication is the worst.
The reason is that this communication pattern involves all the MPI processes with short
messages (only 8 bytes). However, the all-to-all operation runs up to 6.7 times faster than
the rest. The optimal number of cores for this test case is between 600 and 1200, achieving
a parallel efficiency of 80% in all operations.

3.2.3. Strong Scaling of the Presented Code

The strong scaling of a numerical model is obtained by maintaining a constant problem
size while increasing the number of computing resources utilized for its solution. Figure 8
depicts the strong scaling of the present simulation of propagating waves over a submerged
elliptical shoal on a mesh of 800 x 256 x 240 cells. The scaling reference (300 CPU cores)
was the minimal configuration in which the simulation runs due to memory demands. The
presented code has a nearly linear scaling when using up to 1200 CPU cores. Keep in mind
that the scaling of the code depends mainly on the linear solver (98%) that is composed
of communications patterns of point-to-point of one halo and all-to-all. The acceleration



Fluids 2021, 6, 350

12 of 14

of the code agrees with the individual analysis of those communications patterns. With
up to 2400 CPU cores, the model is still within the range of a good scaling, with a parallel
efficiency of 79%. Utilizing more CPU cores is not considered optimal since its parallel
efficiency decreases to 51% (4800 CPU cores). Understanding the parallel behavior of the
application is essential to use the computing resources efficiently.

Parallel efficiency (%)

—&— poin-to-point 1-halo

209 —o— poin-to-point 3-halo
—o— all-to-all
~=~ |deal
0 T T T
300 600 1200 2400 4800

Number of cores

Figure 7. Parallel efficiency of the three main communication patterns of the presented code on a
computational mesh of 800 x 256 x 240 cells.

16
—&— Strong speedup
—— Ideal
8 B
Q.
=
T 4
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)
2 4
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300 600 1200 2400 4800

Number of cores

Figure 8. Strong speedup of the presented code on a computational mesh of 800 x 256 x 240 cells.

4. Discussion and Concluding Remarks

An advanced numerical model was presented for the simulation of wave propagation
over a submerged elliptical shoal, utilizing an efficient hybrid parallel implementation.
The Navier-Stokes equations were solved using the LES approach. The 3D IB method
was utilized for the enforcement of the no-slip boundary condition on the bed surface,
whereas the tracking of the free-surface evolution was accomplished by the level-set
method. The model was validated against experimental measurements and the combined
wave refraction and diffraction patterns were accurately reproduced. Other than the wave
transformation, the hybrid parallel implementation of the model produced depth-resolved
flow results that the BTM or depth-averaged non-hydrostatic models cannot offer. In
particular, the 3D flow in the vicinity of the shoal was simulated and the corresponding
velocity and vorticity fields were presented. Finally, it was found that the optimal number
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of cores, for the simulation of cases C1 and C2, was 1200, achieving a parallel efficiency of
80% and an almost linear scaling.
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