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Abstract: Subsurface multiphase flow in porous media simulation is extensively used in many disci-
plines. Large meshes with non-orthogonalities (e.g., corner point geometries) and full tensor highly
anisotropy ratios are usually required for subsurface flow applications. Nonetheless, simulations
using two-point flux approximations (TPFA) fail to accurately calculate fluxes in these types of
meshes. Several simulators account for non-orthogonal meshes, but their discretization method is
usually non-conservative. In this work, we propose a semi-implicit procedure for general composi-
tional flow simulation in highly anisotropic porous media as an extension of TPFA. This procedure
accounts for non-orthogonalities by adding corrections to residual in the Newton-Raphson method.
Our semi-implicit formulation poses the guideline for FlowTraM (Flow and Transport Modeller )
implementation for research and industry subsurface purposes. We validated FlowTraM with a
non-orthogonal variation of the Third SPE Comparative Solution Project case. Our model is used to
successfully simulating a real Colombian oil field.

Keywords: finite volume method; porous media; flow transport; non-orthogonality; compositional
simulation; multiphase flow

1. Introduction

Subsurface flow in porous media remains an important area in many biological,
industrial and scientific applications. Numerical simulations of coupled multiphase-
multicomponent flow in porous media, using continuum mechanics approach [1], have
been extensively applied in various fields including, hydrology [2,3], soil remediation [4,5],
CO2 storage [6], oil and gas, composite materials manufacturing [7,8]. One important appli-
cation is enhanced oil recovery (EOR) in which various multicomponent phenomena arise,
e.g., foam transport and generation [9,10], chemical flooding [11,12], in-situ upgrading [13],
and asphaltene precipitation [14,15], flocculation, and remediation [16,17]. Due to this high
number of applications, and the continuous development of new techniques for EOR based
on chemical and thermal processes, robust and flexible numerical simulation frameworks
are required to evaluate and optimize the field deployment of such technologies.

The solution of the partial differential equations (PDE) originated from flow and trans-
port models in porous media, is approximated using conservative numerical methods such
as finite volume method (FVM) [18,19]. Subsurface spacial domains have complex geometries
that are usually modeled by unstructured or non-orthogonal grids (e.g., PEBI grids [20] or
corner-point geometries [21,22]). The advective term in FVM is often discretized following
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the two-point flux approximation (TPFA) [23]. The TPFA is the industry-standard method-
ology, in which the local K-orthogonality effect must be considered to achieve numerical
convergence [24]. Numerical meshes in many cases, have highly anisotropic ratios inducing
an additional source of error [25,26]. Consequently, several authors proposed methods for
computing numerical gradients at element surfaces to enable accurate solutions with TPFA
in non-orthogonal grids [27–32] , but most of these methods were developed primarily
for isotropic tensorial field applications. In most cases, those are limited to 2-dimensional
geometries or simple single-phase fluid problems for anisotropic porous media applica-
tions [33]. Thus, the numerical method formulation to be developed, must be general,
flexible, and easily adaptable to admit the various physical phenomena involved in many
environmental, industrial and biological applications in porous materials.

There are currently several simulators in development for multiphase transport in
porous media, mainly to subsurface applications. On the industry side, the leading com-
mercial simulators are ECLIPSE [34], GEM [35], and STARS [36], which are used in oil
and gas applications. The first uses a finite difference method (FDM); the second and
third use FVM with finite differences to approximate the numerical fluxes at the faces.
On the other hand, there are research purpose simulators like Finite Element Heat and
Mass Transfer Simulator (FEHM) [37] and OpenGeoSys [38]. These are based primarily on
the finite element method (FEM), which is also locally non-conservative for any fluid phases,
because of the imposed continuity of the solution through element faces [39]. Another more
elaborated academic simulators such as Stanford General Purpose Research Simulator
(GPRS) [40,41] uses FVM with a multi-point flux approximation (MPFA) technique instead of
TPFA to deal with non-orthogonality and full tensor effects in arbitrary polyhedral grids.
There are also parallel oriented simulation platforms like Integrated Parallel Accurate
Reservoir Simulators (IPARS) [42], which is a framework for developing parallel models of
subsurface flow and transport through porous media; and DuMux [43], a compositional
simulator built on top of DUNE [44,45], a modular toolbox for solving partial differential
equations. Besides, it is worthy of mention Open Porous Media simulator (OPM) [46] and
the MATLAB Reservoir Simulation Toolkit MRST [47], designed for rapid prototyping and
evaluation for reservoir simulation problems [48]. The last one uses a Mimetic finite difference
method (MFDM) to achieve very accurate solutions in unstructured geometries at the cost
of higher computational complexity. Moreover, the methodology developed in this paper
is the theoretical foundation of FlowTraM (Flow and Transport Modeller), a compositional
subsurface flow simulator developed at the National University of Colombia for research
purposes in developing and testing new EOR technologies.

In this work, we present an unstructured finite volume method (UFVM), with an
improved TPFA, which allows for managing mesh non-orthogonality with full tensor
permeability effect. Mesh skewness [49] is taken into account by a direct consequence of
our methodology formulation, which is a generalization to the 3-dimensional case of the
previous work of Loudyi [32], applied to non-linear multiphase flow. Besides, the loss
of convergence rate, due to the K-orthogonality effect, is compensated by introducing
additional corrective fluxes in Newton’s method formulation. These corrections, non-
orthogonality, and skewness, require gradient reconstruction techniques. This gradient
reconstruction is done efficiently by constructing preprocessed stencils in the weighted
least-squares sense (WLS). We use a generalized Crank Nicholson scheme [50] (also known
as implicit-explicit or IMEX method [51,52]) for time discretization. Furthermore, our semi-
implicit procedure serves to approximate the corrective fluxes, taking advantage of the
IMEX method formulation, the current time solution, and the internal iterations of New-
ton’s method for the resulting non-linear algebraic equations system. The discretization
presented here for the advective transport term employs the second-order anisotropic elliptic
operator [53,54], which enables a trivial extension of the proposed methodology to any
physical transport phenomena originated by a gradient law [55] in anisotropic tensorial
fields. Also, our methodology conception allows for naturally extending the functionality
of already implemented flow simulators based on FVM for cartesian meshes, increas-
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ing its functionality to non-orthogonal structured meshes, as is the case for corner point
geometries in a natural way.

This paper is organized as follows: First, we present the mathematical model, em-
phasizing the physical principles of transport phenomena, using a continuum mechanics
approach. In this context, the conservation equations for an arbitrary number of com-
ponents are presented. Subsequently, we show our UFVM formulation, including some
remarks about our implementation (FlowTraM). Furthermore, we present three numerical
examples, validating our method and verifying the effectiveness of corrective fluxes. Fi-
nally, we demonstrate the robustness and flexibility of this numerical approach simulating
an actual Colombian reservoir under EOR operation.

2. Mathematical Model
2.1. Transport Models

The total flux of transport of species k in phase p is expressed in terms of pressure,
molecular diffusion, mechanical dispersion, and other factors as [55]:

Jk,p = JA
k,p︸︷︷︸

Advection

+ JM
k,p + JD

k,p︸ ︷︷ ︸
Hydrodynamic dispersion

+ ∑
O

JO
k,p︸ ︷︷ ︸

Other factors

, (1)

The transport of components in a fluid medium can occur due to the effect of various
internal forces [56], which, in general, are a consequence of the presence of gradients,
either from pressure, concentration, or temperature [57]. Advection and hydrodynamic
dispersion are the main mechanisms dominating transport in porous media [55]. However,
other types of effects may be relevant depending on the case study, such as the Soret effect
induced by temperature gradients [58,59] or the chemotaxis phenomenon, in which certain
types of microorganisms move through the porous medium due to the presence of nutrient
concentration gradients [60–62]. However, although this work is limited to the modeling of
advection transport, the discretization presented here can be extended to any phenomenon
expressed by a gradient law. Thus, the transport of species by advection is given by:

JA
k,p = wk,pρpup, (2)

where wk,p is the molar fraction of the component k in the phase p, and up the velocity of
each phase given by the Darcy equation for multiphase flow, which establishes a relationship
of proportionality with the phase potential Φp(x, t) as:

up = −
Kkr,p

µp
∇Φp, (3)

and K(x, t) is the symmetric positive definite tensor of absolute permeability, kr,p(Sp) the
relative permeability of the phase p and µp(x, t) the phase viscosity. The ratio λp := kr,p/µp
is known as the mobility of the phase p. Additionally, the potential is defined in terms of
pressure as:

Φp(x, t) =
∫ Pp

P0
p

dPp

ρp
+ g(z− z0), (4)

2.2. Compositional System of Equations

Let Ω ⊂ R3 an open bounded set and Θ := (t0, t f ) ⊂ R. The system of continuity
equations, for nk number of components, distributed in np phases is

∂

∂t
Nk(x, t) + div(Fk(x, t)) + q̇k(x, t) = 0, ∀k ∈ K, (x, t) ∈ Ω×Θ, (5)

where K := {1, 2, . . . , nk} is the family of indices for each component , Fk = ∑p JA
k,p is the

molar flux by advection, and Nk is the number of moles per unit of volume. Additionally,
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let ΓN, ΓD ⊂ ∂Ω be open sets such that ΓN ∩ ΓD = ∅ and ΓN ∪ ΓD = ∂Ω, the Neumann,
and Dirichlet type boundaries respectively. Equation (5) satisfies the following bound-
ary conditions 

−
kr,p

µp

〈
K∇Pp, n

〉
= g0

p,N, on ΓN,

Pp = g0
p,D, on ΓD,

Sp = g0
s,D, on ΓD.

(6)

Usually, to indicate that the domain is physically closed, in a portion of the boundary,
g0

p,N = 0 is set, indicating that ∇Φp = 0 or that the permeability at the border is zero
i.e., K = 03×3. Since Equation (5), subject to boundary conditions (6), models the evolution
of the system in time interval Θ, an initial configuration of the variables is required, which is

Pp(x, t0) = P0
p(x), ∀p ∈ P ,

Sp(x, t0) = S0
p(x), ∀p ∈ P ,

wk,p(x, t0) = w0
k,p(x), ∀(p, k) ∈ P ×K,

(7)

where P is the family of phase indexes. The functions P0
p(x), S0

p(x), and w0
k,p must satisfy

the compatibility equations shown in the next section.
The main unknowns of the problem are the pressure functions for each of the phases

Pp, the saturations Sp, and the molar fractions wk,p of the components distributed in the
phases. Including this, the total number of unknowns is nIN := 2np + npnk, of which 2np
term corresponds to the phase, pressure and saturation unknowns, and npnk is the number
of unknowns corresponding to the molar fractions.

2.3. Compatibility Equations

Properly speaking, the gradient laws for transport phenomena are compatibility
equations, because they satisfy the material objectivity axioms [63]. Nevertheless, they
are assumed here as part of the governing equations, and the constitutive relations or
compatibility equations are stated as follows:

2.3.1. Thermodynamic Equilibrium

Transport equation terms and particularly their non-linearities are highly related to
the thermodynamic state and properties of the existing phases in a specific space-time
location. Nowadays, most of the models working with local thermodynamic equilibrium
assumption are capable of reproducing a wide range of compositional phenomena in oil
and gas reservoirs [64]. This assumption holds as long as exists an appropriate equation of
state calibration for the PVT fluid behavior. Adding flexibility to our model, and making it
more general for Black-oil type and fully-compositional fluids, the problem of thermody-
namic properties determination was decoupled from the conservation equations, being
solved sequentially after determination of primary variables. As a general description,
thermodynamic equilibrium can be defined mathematically as the equality of fugacities,
f̂k,p, of each component k in a mixture for all np phases [65].

f̂k,1 = f̂k,2 = . . . = f̂k,p = · · · = f̂k,np

∀(p, k) ∈ P ×K.
(8)

Fugacity is solved by one of the several equations of state available for hydrocarbon
modeling, attached to the following inner constraints:

nk

∑
k=1

wk,p = 1;
np

∑
p=1

Fp = 1;
nk

∑
i=1

zk = 1 (9)
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where Fp is the molar fraction of phase p in a point, and zk is the global molar fraction of
component k in that particular spatial location.

This set of equations is internally solved at each instant and space location, applying
the Peng & Robinson [66] equation of state. The solution of such a system is then sequen-
tially coupled to the transport equations, assuring a precise calculation of the involved
thermodynamic properties. Considering three pseudo-components gas, oil, and water for
an extended black-oil model, a modified version of the Wang [67] approach was used to
translate the tabulated PVT information to the compositional formulation.

2.3.2. Capillary Pressure

Capillary pressure equations state a pressure discontinuity between two competing
phases, a wetting phase Pw, and a non-wetting phase Pnw [68–70]. Capillary pressure
relationship is expressed as a general functional as follows for two arbitrary wetting and
non-wetting phases:

Pc = Lα(Pnw, Pw) (10)

where, np − 1 capillary pressure equations, one per binary system α, are required in a
system of multiple np phases. The pressure difference between phases is considered for the
transport equations but is assumed to be insignificant for thermodynamic equilibrium cal-
culations.

2.3.3. Volume Constraint

The volume constraint equation states that the sum of the volume occupied for each
phase Vp is equal to the porous space. Volume constraint equation is as follows:

∑
p∈P

Vp

VT
− φ = 0 (11)

2.4. Second-Order Anisotropic Elliptic Operator

Most of the transport models can be written in terms of the second-order anisotropic
elliptic operator defined as D(Λ, Ψ) := div(Λ∇Ψ), where Λ(x, t) is a tensorial property and
Ψ(x, t) the scalar function of interest. For an advective model, Λ = −λpK and Ψ = Φp.

3. Numerical Model

In this section, we present the discretization for the continuity Equation (5) for advec-
tion, using an unstructured finite volume method (UFVM) maintaining the second order of
convergence, considering the correction for anisotropy non-orthogonality and skewness.

3.1. Time Discretization and Mesh Definition

For computing an approximation of the solution in time, a discretization of the simu-
lation interval Θ is required first. Let Tt :=

{
t0, t1, . . . , t f

}
a partition of Θ. Each temporal

element or simulation interval is defined as ∆tn := (tn, tn+1), for n ∈ {0, 1, . . . , k− 1}.
For spatial discretization, let Ω ∈ R3 the physical domain of interest and Ωj ⊂ Ω,

with j ∈ F := {1, 2, . . . , NΩ}, open, bounded and simply connected subsets in R3, such
that Ωi ∩Ωj = ∅, for all i 6= j and also

NΩ⋃
j=1

Ωj = Ωh −→
NΩ→∞

Ω, (12)

where Ωh is the discrete domain, which approximate Ω [71]. The subsets of the parti-
tion Ωj are denoted as elements or cells [72]. Note that in the context of this definition,
when considering the notion of an open set and its closure, is implicitly distinguishing
between the interior of the elements Ωj and their respective boundaries ∂Ωj, which are
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divided in a finite number of simply connected faces whose boundaries are also known as
edges [44,45,73]. Two cells Ωj and Ωl are neighboring or adjacent if both share a face f , that
is, Ωj ∩Ωj = f 6= ∅.

3.2. Finite Volume Integral Formulation

The integral form of the continuity equations, in terms of the second-order anisotropic
elliptic operator, for advection transport, is obtained by integrating Equation (5) over an
arbitrary element Ωj and time interval ∆tn as:

∫
∆tn

∫
Ωj

∂Nk
∂t

dVdt︸ ︷︷ ︸
Accumulation term.

+
np

∑
p=1

∫
∆tn

∫
Ωj

D
(

wk,pλpK, Φp

)
dVdt︸ ︷︷ ︸

Transport term

+
∫

∆tn

∫
Ωj

q̇kdVdt︸ ︷︷ ︸
Source/sink term.

= 0, ∀k ∈ {1, 2, . . . , Nk} (13)

The discretization of each of the terms of Equation (13) is done separately, resulting in
the system of nonlinear algebraic equations, which is solved by the Newton method.

Accumulation Term

For the discretization of time derivative is assumed that each element geometry
remains constant along with the simulation, and the fluid properties are homogeneous
over each element [74]. By applying the Fubini theorem and the fundamental theorem of
calculus, the discretization form of the accumulation term is obtained as:∫

∆tn

∫
Ωj

∂Nk,j

∂t
dVdt =

∫
Ωj

(∫
∆tn

dNk,j

)
dV = Nk,j

∣∣∣
∆tn

∣∣Ωj
∣∣, (14)

where
∣∣Ωj
∣∣ is the measure of Ωj.

3.3. Advective Term

This work focuses mainly on the discretization of this term, considering full perme-
ability tensors and irregular polyhedral elements. The first step is to apply the Green-Gauss
theorem to the elliptic operator as follows:

∫
Ωj

D
(

wk,pλpK, Φp

)
dV =

∫
∂Ωj

λpwk,p

〈
∇Φp,K>n

〉
dS

=
∫

∂Ωj

λpwk,p
∂Φp

∂w
dS, (15)

where 〈·, ·〉 denotes the inner product in Rn, n = n(x) is the unit vector normal to surface
∂Ωj, and w f is the co-normal vector defined as w f = K>f n f in which the anisotropy effects
reside. To deal with potential field discontinuity due to heterogeneity, the permeability
tensor in f is computed in harmonic sense as [32]:

K f =

∣∣∣xi
f − xi

j

∣∣∣+ ∣∣∣xi
f − xi

l

∣∣∣∣∣∣xi
f−xi

j

∣∣∣
Ki

j
+

∣∣∣xi
f−xi

l

∣∣∣
Ki

l

, (16)

where i = 1, 2, 3, is the coordinate system direction.
The surface integral in Equation (15) can be interpreted as the net flux of moles

of component k, in phase p, across the boundary of the element. Then, as the control
volume is a polyhedron defined by a finite number of faces, the surface integral also can
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be decomposed in a sum over his faces, and the flux en each one is approximated with a
second-order midpoint rule [75] as:

∫
∂Ωj

λpwk,p
∂Φp

∂w
dS = ∑

f
λp, f wk,p, f

∂Φp, f

∂w f
A f , (17)

where A f is the face area, and in general, the subscript f indicates that the property,
whether scalar or vector, is evaluated at the face centroid x f . For obtaining the system of
algebraic equations, it is necessary to find an approximation of the directional derivative
∂Φp, f
∂w f

, in terms of the potentials evaluated in the cell centroids.

Let Ωj and Ωl adjacent elements through the face f with centroids xj and xl respec-
tively and the vector that connects these centroids, defined as d f := xl − xj. Then, vectors
d f and w f are expressed as a linear combination of the elements of the face orthonormal

basis B f :=
{

n f , T f , T′f
}

as

d f =
〈

d f , n f

〉
n f +

〈
d f , T f

〉
T f +

〈
d f , T′ f

〉
T′ f (18)

w f =
〈

w f , n f

〉
n f +

〈
w f , T f

〉
T f +

〈
w f , T′ f

〉
T′ f (19)

where T f and T′f are unit vectors tangential to the face such that T f ⊥ T′f . The geometrical
elements defined here are shown schematically in Figure 1. Getting an expression for the
normal vector from (18) and replacing it on (19), a vector equation for w f is obtained in
terms of T f , T′f and d f as

w f = α f d f + β f T f + β′f T′ f , (20)

where the coefficients are

α f =

〈
w f , n f

〉
〈

d f , n f

〉 , (21)

and

β f = −α f

〈
d f , T f

〉
+
〈

w f , T f

〉
, (22)

β′f = −α f

〈
d f , T′ f

〉
+
〈

w f , T′ f
〉

. (23)

Tf

T′
f

nf

wf

x

z

y

xj

xl

df

Ωj
Ωl

f

Figure 1. Scheme of the geometric elements involved in the discretization of the advective term.
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Besides, the product α f A f is known as shape factor in classical reservoir simulation
literature, and it coincides with the formulation of Islam [74], Abou-Kassem [68] and
Aziz [69], for rectilinear orthogonal grids. Thus, applying the vector decomposition (20) to
the directional derivative at (17) gives the following expression for the advective term:

∫
Ωj

D
(

wk,pλpK, Φp

)
dV = ∑

f
λp, f wk,p, f α f

∂Φp, f

∂d f
A f︸ ︷︷ ︸

Orthogonal flux

+ ∑
f

λp, f wk,p, f

(
β f

∂Φp, f

∂T f
+ β′f

∂Φp, f

∂T′f

)
A f︸ ︷︷ ︸

Tangential flux

. (24)

The tangential component takes account of skewness distortion error, as shown below:
First, using a Taylor series expansion for the potential centered at the face centroid,

evaluated at xj and xl , yield to expressions for Φp,j and Φp,l respectively, in terms of
potential partial derivatives as

Φp,j =
m

∑
k=0

1
k!

〈
d f j,∇

〉k
Φp(x f ) + R f j, (25)

Φp,l =
m

∑
k=0

1
k!

〈
d f l ,∇

〉k
Φp(x f ) + R f l , (26)

where R f j and R f l are the residual truncation errors for the Taylor series, and the face-to-cell
director vectors are defined as d f j := x f − xj and d f l := x f − xl . Now, subtracting the
expressions (25) and (26) result in:

Φp,j −Φp,l =
〈

d f ,∇Φp, f

〉
+

m

∑
k=2

1
k!

{〈
d f j,∇

〉k
−
〈

d f j,∇
〉k
}

Φp, f + R f l , (27)

where R f l = R f j − R f l , and therefore

∂Φp, f

∂d f
=
(

Φp,l −Φp,j

)
− δ

(m)
p, f +O

(
hm+1

)
, (28)

in which

δ
(m)
p, f =

m

∑
k=2

1
k!

{〈
d f j,∇

〉k
−
〈

d f l ,∇
〉k
}

Φp, f . (29)

This work is limited to the case m = 2 in which the operator 〈d,∇〉2 is expressed as

〈d,∇〉2 =

(
d

∑
i=1

di
∂

∂xi

)2

=
d

∑
k=1

d2
k

∂2

∂x2
k
+ 2

d

∑
j=1

j−1

∑
i=1

didj
∂2

∂xi∂xj
. (30)

Finally, the advective term discretization is

∫
Ωj

D
(

wk,pλpK, Φp

)
dV = ∑

f
λp, f wk,p, f α f

(
Φp,l −Φp,j

)
A f

+ ∑
f

QNO
p, f −∑

f
Qskew

p, f . (31)
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where

QNO
p, f = λp, f wk,p, f

(
β f

∂Φp, f

∂T f
+ β′f

∂Φp, f

∂T′f

)
A f , (32)

Qskew
p, f = λp, f wk,p, f α f δ

(2)
p, f A f . (33)

3.4. Source/Sink Term

This term is directly associated with the production/injection rate of the component
k in the domain. The production rate q̇k can be understood as a function, of space and
time, whose second-order discretization consists only of the application of the mean value
theorem [74] as follows: ∫

∆tn

∫
Ωj

q̇kdΩdt ≈ |∆tn|
∣∣Ωj
∣∣q̇k(xj, t) (34)

However, in engineering applications, an approach of type (34) is not practical in
most cases, mainly because this term is used for including injection/production well
modeling, implying the function q̇k is highly discontinuous on the domain. Additionally,
component k can be produced in different phases and is associated with the volumetric
rates of each phase Qp,j, through the molar fraction wk,p. In this case, additional equations
are required [76]. Peaceman extended well model [77] is used in this work. In this way,
the source/sink term is thoroughly characterized as:

∫
Ωj

q̇kdV = WIj

np

∑
p=1

wk,p,jρp,jλp,j

(
Pp,j − Pwf,j

)
. (35)

where Pwf,j := Pwf,w + γw
(
zj − zw

)
is the bottom hole well pressure and WIj is the well

index upscaling factor of element Ωj defined as

WIj :=
2πhj

√
Kj,1Kj,2

ln(re/r0) + Sj
. (36)

The coefficient Sj is the skin factor [78], which allows for considering permeability reduc-
tions in well-bore damage. The geometrical elements used here are shown schematically
in Figure 2.

Reference level

zw Ω1

Ω2

Ω3

z1

z2

z3

Pwf,w Qp,w

Well w

Figure 2. Schematization of the geometric elements involved in the discretization of well model.
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Also, it is worth mentioning that the variable Qp,j is usually the determining variable
for EOR economic models. For this reason, this variable is essential in the validation of the
method (see numerical example Section 6.1).

Time Integration

For the time integrals, a generalized Crank Nicholson scheme [50], also known as
implicit-explicit or IMEX method [51,52], is used. This scheme can be seen as a weighted
trapezoidal rule [79] applied on a continuous function F as∫

∆tn
Fdt = [ϑF(tn) + (1− ϑ)F(tn+1)]|∆tn|, (37)

where |∆tn| is the length of the time interval. The classical implicit and explicit schemes
can be obtained directly by setting the parameter ϑ to 0 or 1, respectively. To simplify the
notation, write F(tn) := Fn.

4. Weighted Least Squares
4.1. General Formulation

Let S := {xi}i∈Fs
a family of nodes in space, where Fs is the index collection. Ne-

glecting the truncation error, consider Taylor series centered at a point of interest xλ which
produces the following overdetermined system of linear equations obtained by evaluating
for each xi: 

φ(x1) = φ(xλ) + ∑m
k=1

1
k! 〈x1 − xλ,∇〉kφ(xλ),

φ(x2) = φ(xλ) + ∑m
k=1

1
k! 〈x2 − xλ,∇〉kφ(xλ),

...
...

...
φ(xi) = φ(xλ) + ∑m

k=1
1
k! 〈xi − xλ,∇〉kφ(xλ),

...
...

...
φ(xns) = φ(xλ) + ∑m

k=1
1
k! 〈xns − xλ,∇〉kφ(xλ).

(38)

where the number of nodes ns, are greater than the number of unknown partial derivatives
until order m of the scalar function φ at xλ. Moreover, the equation system (38) can be
written in matrix form as

Mns×nI Φ̇nI×1 = bns×1, (39)

where nI is the number of unknowns. The weighted least squares [80,81] problem (WLS) for
this formulation is: Find Φ̇h, approximated solution of (39), such that

Φ̇h = min
Φ̇∈RnI

{∥∥r(w, b, Φ̇)
∥∥

2

}
= min

Φ̇∈RnI

{
ns

∑
i=1

√
wir2

i

}
= min

Φ̇∈RnI

{
ns

∑
i=1

wir2
i

}
. (40)

where
wi =

1
‖xi − xλ‖p . (41)

Some authors take the p power equal to 1 or 2 [30,32,82].

WLS Solution

There are two equivalent alternatives to solve the WLS problems [83]. The first is to
solve the linear system of normal equations

(
MTWM

)
Φ̇ = MTWb, where the solution is

given by:
Φ̇h = M†

wb, (42)
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where the matrix M†
w ∈ Rn×m, is the Moore-Penrose weighted pseudo-inverse of M, defined as:

M†
w =

(
MTWM

)−1
MTW. (43)

The second alternative is to find an orthogonal projector P ∈ Rns×ns , on the range of
M such that Pb = MΦ.

4.2. Stencil Definition

Depending on the selection of the point of interest xλ, there are two possible definitions
of the stencil for WLS application in a grid: cell stencils, where xλ = xj, and face stencils with
xλ = x f .

4.2.1. Cell Stencils

Let Sj the set of nodes for stencil definition of an arbitrary cell Ωj. The most natural
way to select these nodes is to take advantage of the connectivity of the cell through their
faces, choosing the nodes of the neighboring elements, defining what is called a compact
stencil [84]. Also, the stencil can be extended considering, not only the elements neighboring
through the faces but those that have common nodes. For example, see Figure 3, in which
the compact stencil is Sj = {xs1 , xs2 , . . . , xs6}, and the extended stencil is given by Sj ∪
{xs7 , xs8}.

xs1

xs6

xs5

xs4

xs3

xs2

xj

f1

f2

f3 f4

f5

f6

xs7

xs8Ωj

Compact stencil nodes

Additional extended
stencil nodes

Figure 3. Compact and extended cell stencils.
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4.2.2. Face Stencils

Let Sj and Sl nodes for either compact or extended stencils of neighboring cells Ωj
and Ωl . The nodes for the face stencil are defined as

S f = Sj ∪ Sl ∪
{

xj, xl
}

. (44)

The typical definition of the face stencil is illustrated in Figure 4, in which S f ={
xj, xl , xs1 , xs2 , . . . , xs10

}
.

xf

xs1

xl

xs5

xs4

xs3

xs2

xs6

xs7

xj

xs8
xs9

xs10

Ωj

Ωl

Compact stencil nodes

Additional extended
stencil nodes

Figure 4. Compact and extended face stencils.

This stencil construction, in terms of the connectivity of both cells, has its raison d’être;
it guarantees a single stencil per face. This fact corrects a possible source of error in the for-
mulation of Loudyi [32] in which the face stencil is relative to each cell. This source of error
causes numerical instabilities in Newton’s method when solving the resultant algebraic
system from finite volume discretization, mainly because of the difference between fluxes
at each cell residual, which can lead to non-convergence when the algebraic equations
system is ill-conditioned; a condition that is not unusual in the modeling of multiphase
flow in porous media [85].

4.2.3. Stencils at Boundaries

If the point of interest xλ lies in a boundary cell with Neumann or Dirichlet faces, then
some Φ̇h information is known depending on its boundary type. This information allows
for simplifying the overdetermined system (38) by adding the boundary face nodes to the
stencil, as is shown schematically in Figure 5.
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xs1

xs5

xs4 xs3

xs2

xs6

xs7

xs8

xs9

xs10

Ωj

Ωl

Compact stencil nodes

Additional extended
stencil nodes

ΓN

ΓD

xf

xl

xj

Dirichlet nodes

Neumann nodes

Figure 5. Face stencils with boundary nodes.

4.3. Gradient Reconstruction

The application of (38) to approximate the gradient derivatives for the potential at
time n, in the point of interest xλ is

1 ∆x1 ∆y1 ∆z1
1 ∆x2 ∆y2 ∆z2
...

...
...

...
1 ∆xi ∆yi ∆zi
...

...
...

...
1 ∆xns ∆yns ∆zns




Φ(xλ)

∂Φ
∂x (xλ)

∂Φ
∂y (xλ)

∂Φ
∂z (xλ)

 =



Φ(x1)
Φ(x2)

...
Φ(xi)

...
Φ(xns)


(45)

where the coefficients ∆xi, ∆yi, and ∆zi are the components of the vector xi − xλ. It is essen-
tial to take account of the sign of each coefficient because it considers the orientation of the
Taylor series radius. If a cell stencil is used, the procedure requires an additional interpola-
tion [86,87] in order to obtain the gradient at the face required by (24). The most common
way to do this is the linear interpolation between the gradient values at neighboring cell
centroids, given by

∇Φn
p

(
x f

)
= fx∇Φn

p(xl) + (1− fx)∇Φn
p
(
xj
)
, (46)
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where

fx =

∥∥∥xj − x f

∥∥∥∥∥xj − xl
∥∥ . (47)

In this case, to guarantee the second-order convergence when (46) is used, an addi-
tional correction for skewness is required [88,89].

4.4. Hessian Reconstruction

The application of (38) to approximate the Hessian for the flow potential at time n,
in the point of interest xλ, required for computing the skewness flow correction (33), is:

1 ∆x1 . . . 1
2 ∆x2

1 . . . ∆y1∆z1

1 ∆x2 . . . 1
2 ∆x2

2 . . . ∆y2∆z2

...
...

...
...

1 ∆xi . . . 1
2 ∆x2

i . . . ∆yi∆zi

...
...

...
...

1 ∆xns . . . 1
2 ∆x2

ns . . . ∆yns ∆zns





Φn(xλ)
∂Φ
∂x (xλ)
∂Φ
∂y (xλ)
∂Φ
∂z (xλ)

∂2Φ
∂x2 (xλ)
∂2Φ
∂y2 (xλ)

∂2Φ
∂z2 (xλ)
∂2Φ
∂x∂x (xλ)
∂2Φ
∂x∂z (xλ)
∂2Φ
∂y∂z (xλ)



=



Φ(x1)

Φ(x2)

...

Φ(xi)

...

Φ(xns)



(48)

5. Semi-Implicit Implementation

The formulation above is the guideline for FlowTraM semi-implicit implementation,
which uses the Newton-Raphson method for algebraic equations linearization. This im-
plementation is presented in Algorithm 1. The core steps in the algorithm, which allow
for managing non-orthogonal geometries, are cell stencils and potential stencils calcula-
tion, required for multipoint flux approximation (MPFA); TPFA and MPFA calculation,
and residual correction.

In cell stencil calculations, the matrix operator is created, which depends on its
geometrical information, like ∆x, ∆y, ∆z. This process is done once per simulation unless
changes exist in geometry through time. If absolute permeability remains constant, alpha
and beta shape factors can be calculated to this stage.

Subsequently, in potential stencil calculations, gradients per cell are reconstructed by
solving the overdetermined linear system given by cell-matrix operators and time k poten-
tials (Φk

Ω). Later, face gradients are obtained via interpolation using the centroid distance
between two neighboring cells. MPFA calculation refers to non-orthogonal flux calculation.

Finally, a correction for residual is obtained by accumulating non-orthogonal fluxes
for each face of a cell. The resulting correction is added to residual in Newton iteration,
and a corrected solution is obtained by applying a preconditioned iterative solver like
GMRES with ILU to Newton’s linear system.

The proposal above is called semi-implicit because, for MPFA calculation in gradient
reconstruction, time k potentials are used (Φk

Ω). Nonetheless, these fluxes are omitted in
Jacobian matrix calculation but added as a correction to TPFA residual. It is worth noting
that, with this approach, the sparse nature of the Jacobian matrix is maintained.
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Algorithm 1 Semi-Implicit approach Pseudocode
Input: Mesh, φ, K, Fluid Data (EoS), Initial conditions, Rock-Fluid (kr, Pcow, Pcgo),

Well data
Output: System pressure Po and component moles Nk in Ω×Θ

1 Initial conditions (t = 0) // Properties initialization for overall mesh
2 Calculate cell stencils // Geometrical data, calculated once
// Time iteration

3 while t < tend do
4 Calculate current time properties // Time n
5 Initialize Unknowns’ array // ~xk

Ω =~xn
Ω, Newton First guess

// Newton method iteration
6 while not converging do
7 Calculate Properties for~xk

Ω
8 Calculate Potentials (Φ) stencil // Cell stencils applied to potentials for

each cell
9 Approximate wk,p, λp for each face // Molar fractions and phase mobility

upwind approximation
10 Calculate TPFA // Orthogonal Flux
11 Calculate MPFA // Non-orthogonal flux correction

12 Calculate ~Rk
Ω // TPFA residual

13 Calculate ~Rk
Ω,corr // MPFA correction

14 Calculate~Jk // Jacobian matrix

15 Solve~Jk∆~xk+1 = −(~Rk
Ω + ~Rk

Ω,corr) // Solving the linear system

16 ~xk+1
Ω =~xk

Ω + ∆~xk+1

17 if Error < Tolerance then
18 if Global balance < Criterium // Molar/Mass balance
19 then
20 converging = true

21 else
22 exit() // Error, refine physical model and return to line 1

23 else if~xk
Ω is Consistent then

24 Update Unknowns’ array // ~xk
Ω =~xk+1

Ω

25 else
26 Reduce ∆t and return to line 5

27 Update unknowns for next time interval // ~xn
Ω =~xk+1

Ω

28 t = t + ∆t

6. Numerical Experiments and Discussion

The proposed methodology was proven successful in Colciencias 273-2017, 272-2017,
064-2018 projects. These were aimed at the development of technologies for EOR processes,
to maximize usages of oil reserves in Colombia, thus, demonstrating our model versatility.
Nevertheless, in this work, three numerical experiments are presented. The first one is for
validating the methodology; the second one presents a pseudo-compositional implementa-
tion to reproduce a Black-oil study case, and the third one is for demonstrating practical
usage and applying it to a field case.

The first experiment is an adaptation of the Third Comparative Solution Project
(SPE3) [90], simulated on a mesh with high non-orthogonalities. The obtained results allow
for validating the formulation and help to illustrate the improvement when corrective
fluxes are introduced clearly. The second numerical experiment is a three-phase conning
study in a radial mesh, which is used to compare multiple commercial simulators and
validate newer ones. The third experiment is a history matching of parameters for a
Colombian oil field at the llanos basin, located at Piedemonte llanero, a realistic simulation.
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6.1. SPE Comparative Solution Project 3

This simulation problem consists of a gas re-circulation, for pressure maintenance, in a
heterogeneous reservoir of condensate gas. Dry gas is injected at 4.7 MMSCF/day in the
upper area of the reservoir and sustained for ten years, while the lower area of the reservoir
has a producing well conditioned to 6.2 MMSCF/day. Fluid properties are listed in Table 1.

Table 1. Properties of condensate gas evaluated in the third SPE comparative project [90].

k Acentric
Factor

Pc
(psi)

Tc
(◦R) wmol

Vcr
(ft3/lbm)

C1 0.0130 588.0 350.00 16.04 0.0988
C2 0.0986 708.5 549.77 30.07 0.0788
C3 0.1524 617.5 665.82 44.10 0.0727
C4 0.2010 550.8 765.36 58.12 0.0703
C5 0.2539 489.7 845.28 72.15 0.0690
C6 0.3007 439.8 914.22 86.18 0.0684

C7−9 0.3613 385.9 1032.21 114.43 0.0652
C10−11 0.4501 340.8 1148.02 144.83 0.0630
C12−14 0.5339 293.8 1234.35 177.78 0.0622
C15+ 0.7244 184.5 1347.00 253.63 0.0610

The orthogonal and the adapted non-orthogonal grids used to simulate this case are
shown in Figure 6. Moreover, Figure 6 shows the cell average of the K-orthogonality angle,
defined for each face by

cos θ f =

〈
d f , w f

〉
∥∥∥d f

∥∥∥∥∥∥w f

∥∥∥ . (49)

Figure 6. SPE 3 adapted test geometries: Non-orthogonal (top) and reference orthogonal (bottom).
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The pressure distribution for both geometries is presented in Figure 7 for different
time steps. Due to the pressure drop caused during gas production, condensate oil banks
continuously appear in the producing blocks. These banks become mobile when they
reach critical saturation, which in this case, is 16%. Thus, once formed, they can only
disappear by contact with very light gases or by an additional depressurization that causes
the gradual volatilization of its lighter components.

t = 0 t = 300

t = 800 t = 2000

3520 3550 3390 3430

3210 3250 2900 2930

3215 3224 3232 3247

3518 3527 3536 35543545 3388 3404 3413 3425

2901 2915 2923 2932

Pressure (psi) Pressure (psi)

Pressure (psi)Pressure (psi)

Figure 7. Pressure variation at different time steps in both, orthogonal an non-orthogonal grid (fully corrected).

The oil produced in this reservoir is governed by condensation of intermediate com-
ponents from the gas phase once it reaches the surface and oil mobilization once the critical
saturation is reached. Notice that the most significant variable in reservoir simulation is
the oil rate computed at the surface. Figure 8 shows surface oil production for the different
test geometries. The obtained results validate the implemented formulation in FlowTraM
and show the improvement in convergence obtained by introducing the proposed first and
second-order corrective flows.
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Figure 8. Oil rate at surface computed in orthogonal and non-orthogonal geometries.

Convergence Analysis

In order to validate the effect of the correction schemes, we performed a convergence
analysis using a significantly refined orthogonal mesh geometry as a reference solution,
in the absence of an analytical solution for this problem. The spatial discretization of the
reference mesh is represented by NX = 100, NY = 100, NZ = 40, whose result is shown
in Figure 9.

Figure 9. Orthogonal mesh used to compute the reference solution.

The analysis makes use of the normalized experimental error in norm L1, defined as

eL1

h =
‖Φref −Φh‖L1(Ω)

‖Φref‖L1(Ω)
, (50)

where Φref is the resolved potential in the reference mesh, and Φh is the solution in a
skewed non-orthogonal mesh of size h, which can be defined as

h = max
j∈F
|Ωj|. (51)
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These meshes were constructed analogously to the one shown in Figure 6. The results
are shown in Table 2, for which the order of convergence α has been calculated as

αi =
log(ehi

/ehi+1
)

log(hi/hi+1)
, (52)

The error behavior is depicted in Figure 10, where the logarithmic scales were chosen
strategically to represent the rate of convergence as the slope of the curves. These results
prove the effectiveness of the corrective fluxes as expected, reducing the magnitude of the
error and improving the rate of convergence with both first and second-order corrections.
In each case, corrective fluxes recover the order of convergence previously lost due to the
mesh non-orthogonality and skewness effects.

Table 2. Convergence analysis results (UC:Uncorrected; FOC:First Order Corrected; SOC: Second
Order Corrected).

h eL1

h UC αi UC eL1

h FOC αi FOC eL1

h SOC αi SOC

70.9514 26.6976 - 7.2053 - 5.3999 -
47.8249 15.6275 1.3577 3.7519 1.6543 2.5007 1.9517
36.1943 10.7943 1.3279 2.3784 1.6358 1.4547 1.9444
29.2541 8.1559 1.3166 1.6669 1.6700 0.9448 2.0273
23.7852 6.5166 1.0843 1.2480 1.3982 0.6631 1.7104
20.9633 5.4088 1.4755 0.9782 1.9287 0.4903 2.3901
18.2621 4.6133 1.1531 0.7934 1.5179 0.3781 1.8835
16.1160 4.0165 1.1081 0.6596 1.4781 0.2992 1.8739
14.6520 3.5535 1.2862 0.5592 1.7327 0.2431 2.1808
12.2806 2.8821 1.1860 0.4213 1.6040 0.1698 2.0322
10.7534 2.4213 1.3119 0.3315 1.8053 0.1252 2.2939

Uncorrected Solution
Corrected: First Order
Corrected: Second Order

−2−2.5−3−3.5−4−4.5
−3

−2

−1

0

1

2

3

4

Figure 10. Convergence analysis plot: αi is the slope at each curve interval.
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6.2. SPE Comparative Solution Project 2

The SPE second comparative solution project (SCSP) is a coning study of three phases
in a single-well radial cross-section with logarithmic distribution in the radial axis. This
simulation case consists of one production well having step variations in the production
rate, representing a numerical challenge, which serves for testing convergence and stability
capabilities [91].

The thermodynamic behavior of the fluid studied in the SCSP is represented by Black
Oil fluid model (see Table 3). Table 3 shows the densities (ρ), volumetric factors (B),
viscosities (µ), and gas-oil ratio (Rs), as a function of the fluid pressure. Black Oil PVT
data is converted into equilibrium relations, which serve for calculating thermodynamic
state, i.e., components and phases composition, and gas and oil molar fractions in oleic
and gaseous phases. FlowTraM uses this converted data for solving thermodynamic state,
molar balance, and volume conservation equations in a pseudo-compositional model.

Table 3. PVT Table for SCSP [91].

Pressure
(Psia)

Bo
(RB/STB)

ρo
(lbm/ f t3)

µo
(cp)

Rs
(scf/STB)

Bg
(Mcf/STB)

ρg
(lbm/ f t3)

µg
(cp)

Bw
(Mcf/STB)

ρw
(lbm/ f t3)

µw
(cp)

400 1.0120 46.497 1.17 165 5.90 2.119 0.0130 1.01303 62.212 0.96
800 1.0255 48.100 1.14 335 2.95 4.238 0.0135 1.01182 62.286 0.96
1200 1.0380 49.372 1.11 500 1.96 6.397 0.0140 1.01061 62.360 0.96
1600 1.0510 50.726 1.08 665 1.47 8.506 0.0145 1.00940 62.436 0.96
2000 1.0630 52.072 1.06 828 1.18 10.596 0.0150 1.00820 62.510 0.96
2400 1.0750 53.318 1.03 985 0.98 12.758 0.0155 1.00700 62.585 0.96
2800 1.0870 54.399 1.00 1130 0.84 14.885 0.0160 1.00580 62.659 0.96
3200 1.0985 55.424 0.98 1270 0.74 16.896 0.0165 1.00460 62.734 0.96
3600 1.1100 56.203 0.95 1390 0.65 19.236 0.0170 1.00341 62.808 0.96
4000 1.1200 56.930 0.94 1500 0.59 21.192 0.0175 1.00222 62.883 0.96
4400 1.1300 57.534 0.92 1600 0.54 23.154 0.0180 1.00103 62.958 0.96
4800 1.1400 57.864 0.91 1676 0.49 25.517 0.0185 0.99985 63.032 0.96
5200 1.1480 58.267 0.90 1750 0.45 27.785 0.0190 0.99866 63.107 0.96
5600 1.1550 58.564 0.89 1810 0.42 29.769 0.0195 0.99749 63.181 0.96

SCSP reservoir is initially at gravitational and capillary equilibrium conditions. Thus,
fluids locate in specific zones, and pressure increases with depth. Figure 11a–c show gas,
oil, and water saturation, respectively, with their transition zones. Additionally, pressure
variation with depth is presented in Figure 11d.

We compared FlowTraM simulation results with the predictions of CMG IMEX, which
we obtained by running a pre-designed input file in CMG library; and with Shell simulator
results, which we took from SCSP paper results [91]. Borehole pressure, oil rate production,
and water cut at the production well are shown in Figures 12–14, respectively. It is worth
noting that both Shell, IMEX, and FlowTraM results are in accordance. Nonetheless, Gas-Oil
ratio (GOR) results on FlowTraM, presented in Figure 15, are significantly higher than IMEX
results. These results are due to physical model differences. However, FlowTraM GOR
results fit better with Shell results. Furthermore, FlowTraM results approximate to the
average between other simulators GOR reported in SCSP paper results [91].
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(a) Gas saturated zone.

(b) Oil saturated zone.

(c) Water saturated zone.

(d) Pressure distribution with depth.

Figure 11. Reservoir initial conditions t0, saturations and pressure distribution at gravitational and
capillary equilibrium.
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Figure 12. Comparison of Borehole pressure at production well.
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Figure 13. Comparison of oil production rate.
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6.3. Colombian Volatile Oil Field Case

The field study case is a sector model of a volatile oil field in the Colombian foothills,
Llanos basin. A heterogeneous simulation grid with 37,960 blocks was used to simulate
the recovery process at a reservoir scale, with permeability changes between 1 and 100 mD
and porosity between 1–6.7%. The mesh porosity and permeability distributions of an
intermediate layer are shown in Figures 16 and 17. The dynamic model was calibrated using
a history matching process in FlowTraM. The vertical dashed lines represent production
and injection wells.

Figure 16. Field porosity distribution.

Figure 17. Field permeability distribution.

Historical well information is the most sensitive information when making a history
matching. The dynamic model must be able to reproduce the historical pressure or produc-
tion data, depending on the operating condition imposed on it. That is, the simulator must
reproduce the historical production if it is fed with the flowing well pressure, or reproduce
the historical background pressure if it is fed with the production data. For the system
evaluated in this work, the simulator is fed with background pressure data for producing
wells (seeking to reproduce production) and with injection flow data for injection wells
(seeking to reproduce background pressure).

For initializing the simulation model, an initial pressure of 4500 psi is set at 12,000 ft.
Initial water saturation is 0.22, and the average oil saturation is 0.78. The distance between
wells is about 11,000 ft. Producing well is programmed to produce with an increasing
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bottom hole pressure from 3000 psi at the beginning, to 3500 psi at day 1110, then the well
continues producing at a constant pressure of 3500 psi. The injector well is programmed to
start injection with 45 MMSCF/day from day 1110.

For obtaining the history matching, the information supplied by an operator company
was directly introduced into the flow simulator. The production was evaluated, taking into
account the historical productivity and sensitivity of the flow correlation in pipes, aiming
to obtain well constraints that fitted its productivity.

Oil and gas production are presented respectively in Figures 18 and 19, where it is
shown that the model can reproduce the effects of recycle gas injection and the production
history of the reservoir. At a field scale, the simulation results showed a good agreement
with field measurements. Also, the gas saturation distribution is presented in Figure 20.
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Figure 18. Oil production. Symbols: field measurements; continuous line: baseline.
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Figure 19. Gas production. Symbols: field measurements; continuous line: baseline.

Once the historical matching has been verified, different gas injection is evaluated from
day 1423: CO2, Flue gas, and recycle gas at a fixed rate of 12 MMSCF/day. Figures 21 and 22
show the simulation results for oil and gas, respectively, with the different injection gases,
where it is observed that CO2 is the gas with the best productivity response.
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Figure 20. Gas saturation distribution in the reservoir (day 1770).
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Figure 21. Oil production after different gas injection. Symbols: field measurements; continuous
line: baseline.
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7. Conclusions and Future Work

This work serves as a basis for the construction of more robust numerical methods.
The goal is to account for significant problems regarding flow in highly anisotropic and
heterogeneous porous media, as in many applications in the oil industry, whose solu-
tions benefit from conservative numerical methods. In this sense, a new version of the
unstructured finite volume method is proposed, with an improved scheme of the tra-
ditional two-point flux approximation, allowing for dealing with the phenomenon of
non-orthogonality of the meshes and the effect of the full permeability tensor. Additionally,
a direct consequence of our formulation is the correction of errors due to the mesh skewness.
Moreover, the mathematical formulation based on the second-order anisotropic elliptic op-
erator allows the method to be applied in diverse engineering applications, like enhanced
oil recovery, at a low cost. Furthermore, we proposed a modification to Newton’s method
to efficiently apply the corrections, maintaining the sparse nature of the Jacobian matrix.

The comparisons done in several numerical examples, between FlowTraM, CMG-IMEX,
and Shell simulator, demonstrate that our results follow other commercial simulators’.
In the specific case of SCSP, our approximation to Gas-Oil ratio is closer to the average be-
tween GOR values reported by other simulators in SCSP paper results [91]. Moreover, on a
Colombian field history-matching, we present the capability of FlowTraM for reproducing
an actual field operation.

The next stage of this work is to analyze and to compare the performance of the
UFVM here presented with respect to the variational methods as DG and FEM. The cur-
rent development and implementation of UFVM are planned to be extended to chemical
transport and thermal recovery applications. Also, more elaborate models can be included
for unconventional wells [92] and elements of any geometries [93] in the source/sink term
discrete equations.
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