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Abstract: The determination of the flow regime of liquid and gas in power plants is the most
important design task. Performing the calculations based on modern calculation methods requires a
priori knowledge of the initial and boundary conditions, which significantly affect the final results.
The purpose of the article is to present the solution for the critical Reynolds number for the flow
near a rotating disk on the basis of the theory of stochastic equations of continuum laws and
equivalence of measures between random and deterministic motions. The determination of the
analytical dependence for the critical Reynolds number is essential for the study of flow regimes
and the thermal state of disks and blades in the design of gas and steam turbines. The result of the
calculation with using the new formula shows that for the flow near a wall of rotating disk, the critical
Reynolds number is 325,000, when the turbulent Reynolds is 5 ÷ 10 and the degree of turbulence is
0.01 ÷ 0.02. Therefore, the result of solution shows a satisfactory correspondence of the obtained
analytical dependence for the critical Reynolds number with the experimental data.

Keywords: stochastic equations; equivalence of measures; nature of turbulence; critical Reynolds number

1. Introduction

The development of new physical and mathematical theories for phenomena occurring
in the nature and technical devices requires the constant application of the theory for
observed varieties of this phenomenon. Therefore, each application of the theory to a
specific process also requires the theoretical comparison between the existing fundamental
methods instead of only the mathematical solutions. It makes possible for scientists and
specialists in various fields to understand the evolution of theoretical ideas as well as the
difference, the essence, and the advantage of the new scientific methodology.

The theories on the nature of the turbulence were formulated in [1–10]. The main
principles of the theory of measures of random stationary processes are described in the
publications of Kolmogorov and Khinchin. These works underlie the statistical theory of
turbulence. On the basis of statistical theory, Obukhov and, later, Heisenberg proposed
the statistical theory for the process of generation of the turbulent field. It is also worth
to mention the publications of J. Taylor in which one first tried to determine the critical
Reynolds number in the function of initial parameters of the fluctuation. However, J. Taylor
determined this dependence semi-empirically for one type of flow. The linear theory of
turbulence led to a certain success. This is especially true for the Orr–Sommerfeld equation,
which allowed calculating only the critical Reynolds numbers. A special place is occupied
by the Landau theory, which has a qualitative character when describing the turbulence as
a quasi-periodic process. However, even in this case, it is impossible to calculate the flow
characteristics despite the qualitative description of the turbulence. Klimontovich inves-
tigated the Leontovich and Sato equations and presented the mathematical formulation
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of the entropy change, when the turbulence occurs. However, this theory only enables us
to represent the turbulence process qualitatively without calculating the characteristics of
the phenomenon.

The development of the theory of strange attractors and mathematical methods for
obtaining a strict solution of the Navier–Stokes equation are presented in [11–32]. It is
known that the theory of strange attractors is based on the measure theory, which allows
one deducing the Kolmogorov–Sinai entropy. Somewhat later, a more general formula for
the Renyi entropy made it possible to extend the application of attractor theory. However,
this theory allows determining only the increase in the number of degrees of freedom in
time. This theory does not allow explaining the spatial change in increasing number of
degrees of freedom.

The theory of solitons was also considered to be useful for certain time for explaining
the origin of the turbulence [10–12]. However, the results of the investigation of solutions
to the Korteweg–de Vries equation provide no basis for determining and calculating the
characteristics of the turbulence phenomenon.

The statistical and stochastic equations and the numerical methods for investigating
the turbulent processes are presented in [33–53]. The above fundamentals of statistical
hydrodynamics and the development of computer technology and numerical methods
enabled us to implement the solution of moment equations for second- and higher-order
correlations using the RANS method [39–50], and later the LES method [39–43].

The most powerful numerical method called DNS is represented by three methodolo-
gies that are fundamentally different from each other. Therefore, the study of the origin of
turbulence by each of the methods has several features that require explanation. However,
all DNS methods are very sensitive to the initial and boundary conditions for each type of
the hydrodynamic flow.

In certain cases, the instantaneous Navier–Stokes equations undergo the artificial
“stochasticization” by adding the left-side additional term. In this case, we need to do
the same in the continuity and energy equations. However, it is necessary to be aware
that if it is done for the instantaneous equations, then an open thermodynamic system is
obtained. However, these methods failed in determining the unified physics and cause of
the turbulence process [33–35].

The special attention was focused on the theoretical solutions for the critical Reynolds
number. It should be noted that the most well-known ratio based on the theory of di-
mension was, as is known, determined with using the experimental data [37–42,52,53].
Therefore, on the basis of these experimental formulas, it was impossible to obtain the new
theory for determining analytically the dependences for the critical Reynolds number of
turbulence in different flows.

At the same time, it is known that in an arbitrary hydrodynamic flow, there are initial
disturbances generated by various causes, both technical and natural. Therefore, it is
obvious that whether or not the particular disturbance, which arises, exists and develops,
depends on the interaction of the main undisturbed motion with this initial disturbance.

The stochastic theory of turbulence based on the stochastic equations and the theory of
equivalent measures make it possible deriving the analytical dependences for the first and
second critical Reynolds numbers in the cases of the isothermal and non-isothermal flows
on the smooth flat plate and in the round tube [54–59]. The progress of this theory gives
a new method for determining the analytical dependences for the profiles of averaged
velocity and the temperature fields [60,61], the friction and heat transfer coefficients [62–64],
the second-order correlations [58,65,66], the correlation dimension of the attractor in the
boundary layer [67–70], the theoretical solutions for the spectral function of the turbulent
medium [71–73], and the formula for the Reynolds analogy [74–76].

It should also be noted that from the results obtained on the basis of the theory of
stochastic equations and the theory of equivalent measures, it was possible for the first
time to investigate the analytical relations for calculating the spatial distribution of the
number of degrees of freedom of a strange attractor. Such distributions of the attractor
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correlation dimension were calculated for the flow in a tube, on a flat plate, and in the
Earth’s atmosphere.

Also, as a result, it was determined that the spectrum E(k)j depends on the wave
numbers k for the interval of generation of turbulence in the form E(k)j ~ kn, n = 1.2 ÷ 1.5.
This formula was named the ratio of uncertainty in turbulence generation [62].

The uncertainty relation derived analytically determines the fact that in the turbulence
generation region, there is the family of perturbations—the vortices, which have a space–
energy similarity (E·L−a) = constant, and each of the perturbations of this family can
interact with the main flow, which leads to the origin and development of turbulence [62].
Moreover, for each type of flow, whether or not it is the flow in a pipe or along a flat plate,
the spatial–energy similarity has its own value of the indicator “a”. Therefore, there is
an uncertainty in both the geometric and energy parameters of the perturbation when
determining the interaction with the main motion.

In accordance with [49–51], the essence of the discovery of the theory of equivalence
of measures in the stochastic process determines the beginning of the interaction between
the deterministic and random field. It is found that this interaction begins when the mass
shift, the momentum shift, and the energy shift of the main undisturbed flow is equal to
the mass fluctuation, momentum, and energy of the random field in the space edge, which
is commensurate with the linear measure of the perturbation at a fixed time. As a result,
the equivalence of substantial time derivatives is observed in the interaction domain.

It should be noted that the main part of publications [54–76] is devoted to such types
of fluid flows as the flow in a round tube and the flow along a smooth flat plate for which
there is a considerable experimental material, which allows calculating the parameters
with using new formulas. Therefore, it is interesting to consider other types of fluid flows,
which are also important for both theory and practice. In this connection, we presented
here the solution for the critical Reynolds number for the motion near a rotating disk.

2. Conservation Equations for Stochastic Process

The equations derived in [54–59] take the form:
The equation of mass (continuity)

d(ρ)colst

dτ
= − (ρ)st

τcor
− d(ρ)st

dτ
, (1)

the momentum equation

d
(

ρ
→
U
)

colst

dτ
=div(τi,j)colst

+div(τi,j)st −
(ρ
→
U)st

τcor
− d(ρ

→
U)st

dτ
+ Fcolst + Fst (2)

and the energy equation

dEcolst
dτ =div(λ ∂T

∂xj
+ uiτi,j)

colst
+div(λ ∂T

∂xj
+ uiτi,j)

st

−
(

Est
τcor

)
−
(

dEst
dτ

)
+ (uiF)colst

+ (uiF)st

(3)

Here, E, ρ,
→
U, ui, uj, ul , µ, τ, τi,j are the energy, the density, the velocity vector, and

the velocity components in the directions xi, xj, xl (i, j, l = 1, 2, 3); the dynamic viscosity, the
time, and the stress tensor τi,j = P + σi,j, δij = 1 if i = j, δij = 0 for i 6= j. P is the pressure of liquid
or gas; λ is the thermal conductivity; cp and cv are the specific heat at constant pressure

and volume, respectively; F is the external force, and σi,j = µ
(

∂ui
∂xj

+
∂uj
∂xi

)
− δij

(
ξ − 2

3 µ
) ∂ul

∂xl
,

(τcor) =
L(

(Est)U,P
/ρ
)1\2 .

Furthermore, L = LU,P = LU is the scale of turbulence. The subscripts (U,P) and (U) refer
to the velocity field and the subscript (T) refers to the temperature field. Ly on x2 = y, or Lx,
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x1 = x. Here, x1 and x2 are the coordinates along the wall and normal to it. The subscript
“colst” refers to the components, which are actually the deterministic. The subscript “st”
refers to the component, which are actually the stochastic. As a result, using the law of
the equivalency of measures between the random and deterministic process at the critical
point, we obtained the sets of stochastic equations of mass, momentum, and energy for the
next space–time areas: (1) the onset of generation (subscript 1, 0, or 1); (2) the generation of
turbulence (subscript 1,1); (3) the diffusion (1,1,1) or 1; (1,1), and (4) the dissipation of the
turbulent fields.

The resulting set of equations can be described by a correlator, which can be written for
each of the four space–time domains (N, M). This correlator also determines the probability
of the fractal origin of this interaction instead of only determining the set of equations for the
interaction of the random and deterministic fields. Therefore, in accordance with [54–59],
this correlator in space–time is

lim
mi→mc ;ri→rc ;∆τi→τc

(DN,M(mi; ri; ∆τi)) = 0 (4)

DN,M(mc; rc; τc) = ∑
i

lim
mi→mc

lim
ri→rc

lim
∆τi→τc

{
m
(

TMZ∗ ∩ TNY∗
)
− R1TM Z∗TN Y∗

m
(

TMZ∗
)}

(5)

The subscript j denotes the parameters mcj (j = 3 means the mass, the momentum, and the
energy). For the case of the binary intersections, it was written that X = Y + Z + W. Subsets Y,
Z, and W are called extended in X as {Y*, Z*, W*} if the measures m(Y), m(Z), and m(W) have the
properties [54–59]:

m(Y) = m(Y∗) = m(TnY) +
k=n−1
∪

k=0
m(Tk(Gn−k

1 ))and wandering subsets
k=n−1
∪

k=0
m(Tk(Gn−k

1 )) ⊂ Y;

m(Z) = m(Z∗) = m(TnZ∗) +
k=n−1
∪

k=0
m
(

Tk
(

Gn−k
2

))
and wandering subsets

k=n−1
∪

k=0
m(Tk(Gn−k

2 )) ⊂ Z;

m(W) = m(W∗) = m(TnW) +
k=n−1
∪

k=0
m
(

Tk
(

Gn−k
3

))
and wandering subsets

k=n−1
∪

k=0
m(Tk(Gn−k

3 )) ⊂W.

(6)

Here Gn
1 is the wandering subset of the expanded subset Y* ⊂ X, Gn

2 is the wandering subset of
the expanded subset Z* ⊂ X, Gn

3 is the wandering subset of the expanded subset W*.
Here subscripts “cr” or “c” refer to the critical point r(xcr, τcr) or rc: the space–time point

of the onset of the interaction between the deterministic field and the random field, which leads
to the turbulence. In addition, subsets Y, Z, W are called extended in X. For the transfer of the
substantial quantity Φ (mass (density ρ), momentum (ρU), energy (E)) of the deterministic (lam-
inar) motion into the random (turbulent) one, for domain 1 of the start of turbulence generation,
the pair (N, M) = (1, 0) with the equivalence of measures is written

(
dΦcolst

)
1,0 = −R1,0(Φst) and(

d(Φ)colst
dτ

)
1,0

= −R1,0

(
Φst
τcor

)
. Applying the correlation DN,M(mc; rc; τc) = D1,1(mc; rc; τc) derived

in [39–44], the equivalence relation for pair (N,M) = (1,1) was defined as
(
dΦcolst

)
1,1 = −R1,1(dΦst),(

d(Φ)colst
dτ

)
1,1

= −R1,1

(
dΦst
dτ

)
, where R1,0 and R1,1 are the fractal coefficients, Φcolst is the part of

the field of Φ, exactly, its deterministic component (subscript colst) is the stochastic component,
the measure of which is zero; Φst is the part of Φ, exactly, the proper stochastic component (subscript
st). It should be noted that the stochastic equations (1)–(3) derived in [54–59] include free terms of
gradient and non-gradient structures on their right-hand side.

3. Sets of Stochastic Equations
The flow near a rotating disk, as well as the previous ones, has an important scientific and

applied significance as the three-dimensional motion of a fluid on a solid surface, but the forced
motion is caused here by the rotational motion of the body. Then, taking into account the previously
presented set of stochastic equations of the considered theory of equivalent measures in the case of a
continuous isothermal medium, we write set (1)–(3) of equations of mass, momentum, and energy in
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accordance with [54–59]. For the area (1) —the onset of generation (subscript 1, 0, or 1) referring the
pair (N, M) = (1,0) is: ( d(ρ)col,st

dτ

)
1,0

= − ρst
τcor

;
(

d(ρ
→
U)col,st
dτ

)
1,0

= −
(

(ρ
→
U)st

τcor

)
;

div(τi,j)col,st1 =
(ρ
→
U)st

τcor
( d(E)col,st

dτ

)
1,0

= −
(
(E)st
τcor

)
1,0

;

div(λ ∂T
∂xj

+ uiτi,j)
col,st1

=
(
(E)st
τcor

)
1,0

(7)

Set (1)–(3) of equations for the area (2)—the area of generation of turbulence (subscript 1,1)
referring to the pair (N, M) = (1,1) is written as:( d(ρ)col,st

dτ

)
1,1

= −
(

dρst
dτcor

)
;

(
d(ρ

→
U)col,st
dτ

)
1,1

= −
(

d(ρ
→
U)st

dτ

)
;

div(τi,j)col,st2 =
d(ρ

→
U)st

dτ
( d(E)col,st

dτ

)
1,1

= −
(

d(E)st
dτ

)
1,1

;

div(λ ∂T
∂xj

+ uiτi,j)
col,st2

=
(

d(E)st
dτ

)
1,1.

(8)

Set (1)–(3) of equations for the area (3) is the diffusion of the turbulence referring to the pair
(N = p, M = k, l) = (1,1,0) was written as

d(ρ)st
dτ = − (ρ)st

τcor
; dρst

dτ =
(

dρst
dτ

)
1,0

+
(

dρst
dτ

)
1,1

;

d(ρ
→
U)st

dτ = − (ρ
→
U)st

τcor
; d(ρ

→
U)st

dτ =

(
d(ρ

→
U)st

dτ

)
1,0

+

(
d(ρ

→
U)st

dτ

)
1,1∣∣∣ (dEst)

dτ

∣∣∣
1;(1,0)

= (RzTz)1;(1,0)

∣∣∣∣ (Est)j
δτ

∣∣∣∣
1,(1,0)

;
∣∣∣ (dEst)

dτ

∣∣∣ = ∣∣∣ (dEst)1
dτ

∣∣∣+ ∣∣∣ (dEst)2
dτ

∣∣∣
(9)

Therefore, for the area (3) of diffusion, we have two fractal equations. The first equation is
written as

d(Est)j

dτ
= −(RzTz)(1,1,1)

(Est)j

τcor1
(10)

Here, (Est) is the field-energy component, which is actually the stochastic one (subscript ‘st’),
the subscript j = 1 refers to the space–time area of the diffusion of turbulence 3).

4. Equations for Critical Reynolds Number
The solution for the velocity field (u, v, and w are the components of the velocity in the radial “r”,

circumferential “φ”, and axial “z” directions) of the deterministic (laminar) motion is presented in [39–
41]. According to this solution, the velocity components are expressed as the dependences in the
radial, circumferential, and axial directions, respectively: u = rωF(ξ), vϕ = rωG(ξ), w =

√
νωH(ξ).

The values F(ξ), G(ξ), H(ξ), and their derivatives in the function ξ = z
√

ω/ν, are also given in [41].
In this case, the flow-motion mode is represented as a function of the coefficient of the moment of
resistance of the disk.

CM =
2M

0.5·ρ·ω2·R5 (11)

Here, M = −2π
R∫
0

r2τzϕdr, Re = R2ω
ν is the Reynolds number and ω, R, are the rotational

velocity and the radius of the disc. Taking into account that the velocity vϕ = rωG(ξ), the value of
the stress τzϕ is written as

τzϕ = µ
dvϕ

dz
= ρrν1/2ω3/2G′(ξ) (12)

Here vϕ = rωG(ξ) is the velocity in the circumferential direction, for z = 0, G(ξ) = 1, for the

current value of z near the critical point G(ξ) ≈ 1 − Kz
(

Ly
z

)√
ω
ν and δ is the thickness of the
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boundary layer, in accordance with [41], δ−1 ≈ K
√

ω
ν . Lx is the scale of the disturbance along the

radial direction (along the current radius “r”), and Ly is the scale of the disturbance along the axial
direction “z”. Then, according to the equivalence of measures of deterministic and random motion,
we write that

div(uiτi,j)col,st1 =

(
(E)st
τcor

)
1,0

(13)

In the first approximation, the left-hand side of the equation takes the form:

div(uiτi,j) ≈ div(vφτzφ) ≈ G′(ξ)ρων1/2ω3/2G(ξ) d
dz r2 = 2G′(ξ)]ρων1/2ω3/2G(ξ)r Lx

Ly
≈

2G′(ξ)ρων1/2ω3/2 Lx
Ly

r
(

1− Kz
(

Ly
z

)√
ω
ν

)
= 2 ∗ 0.616ρων1/2ω3/2 Lx

Ly
r
(

1− Kz
(

Ly
z

)√
ω
ν

)
G′(ξ) = 0.616,

(14)

see [41].
Then, we have the expression

1.232 ρωRν1/2ω1/2 Lx

Ly

r
R

(
1− Kz

(
Ly

z

)√
ω

ν

)
=

Est

τ0
cor

(15)

From the obtained expression, we can determine the dependence for a dimensionless number
at which there is an equivalence of measures between deterministic and random motion called in the
hydrodynamics the critical Reynolds number for the flow in the boundary layer near the disk surface
corresponding to the values of the correlation times

(
τ0

cor
)

1,
(
τ0

cor
)

2,
(
τ0

cor
)

3, τmotion = [ω]−1. Thus,
for the case of the correlation time

(
τ0

cor
)

1 = L√
Est/ρ

, we write

1.232
(

Lx
R

)( r
R
)(

ω2R2

Est/ρ

)
νω

Est/ρ
R2ω
R2ω

√
Est/ρ

νω

(
1− Kz

(
Ly
z

)√
ω
ν

)
= 1 (16)

1.232
(

Lx

R

)( r
R

)(ω2R2

Est/ρ

)
R2ω2

Est/ρ

ν

R2ω

√
Est/ρ

νω

(
1− Kz

(
Ly

z

)√
ω

ν

)
= 1 (17)

1.232
(

Lx

R

)( r
R

)(ω2R2

Est/ρ

)2
ν

R2ω

√
Est/ρ

νω

R2ω

R2ω

(
1− Kz

(
Ly

z

)√
ω

ν

)
= 1 (18)

1.232
(

Lx

R

)( r
R

)(ω2R2

Est/ρ

)2
ν

R2ω

√
Est/ρ

R2ω2
R2ω

ν

(
1− Kz

(
Ly

z

)√
ω

ν

)
= 1 (19)√

R2ω

ν
= 1.232

(
Lx

R

)( r
R

)(ω2R2

Est/ρ

)3/2(
1− Kz

(
Ly

z

)√
ω

ν

)
(20)

Finally, we obtain

Re ≈ 1.5
(

Lx

R

)2( r
R

)2
(

ω2R2

Est/ρ

)3(
1− Kz

(
Ly

z

)√
ω

ν

)2

, (21)

Re ≈ 1.5
(

Lx
R

)2( r
R
)2
(

ω R√
Est/ρ

)6(
1− Kz

(
Ly
z

)√
ω
ν

)2

(22)

Correspondently, for the correlation time
(
τ0

cor
)

2 = L2

ν , we have

Re ≈
{

1.5
(

Lx
R

)2( r
R
)2
(

ω R√
Est/ρ

)6(
1− Kz

(
Ly
z

)√
ω
ν

)2
}

Re2
st (23)

or

Re ≈
{

1.5
(

Lx
R

)2( r
R
)2
(

ω R√
Est/ρ

)6(
1− Kz

(
Ly
z

)√
ω
ν

)2
}

Re2
st (24)

For the correlation time
(
τ0

cor
)

3 = ν
Est/ρ , we obtain the value

Re ≈
{

1.5
(

Lx
R

)2( r
R
)2
(

ω R√
Est/ρ

)6(
1− Kz

(
Ly
z

)√
ω
ν

)2
}

1
Re2

st
(25)
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or

Re ≈
{

1.5
(

Lx
R

)2( r
R
)2
(

ω R√
Est/ρ

)6(
1− Kz

(
Ly
z

)√
ω
ν

)2
}

1
Re2

st
(26)

5. The Equation for the Critical Point
Now let us determine the position of the critical point. The definition of the critical point is

found from the equation as
+∆V|2∫
−∆V|2

d
(
Ecolst

)
1;0 =

∫
X

dEst (27)

Here Est is the random energy component in the space X with the measure m(Est) < ∞

Est = Est(
→
xi, τi, mi) < ∞ (28)

In accordance with the ergodic theory [39,40]∫
X

dEst =
1

∆V

∫
V

Estδ((∆V)critic − ∆V)dV =
1

τ0
cor

∫
τ

Estδ(τ
0
cor − τ)dτ = (Est)critic (29)

(Est)critic is the energy of the stochastic field in the critical point,
or ∫

X

dEst =
1
L

∫
L

Estδ((xi)critic − xi)dL =
1

τ0
cor

∫
τ

Estδ(τ
0
cor − τ)dτ = (Est)critic (30)

L is the scale of the disturbance.
Then, taking into account the values of functions F(ξ), G(ξ), H(ξ), in the neighborhood

of critical point and using the equations for Formulas (11) and (12), we find
(
Ecolst

)
1;0 = 0.5ρν2

φ,
vφ = rωG(ξ) is the velocity in the circumferential direction, for z = 0, G(ξ) = 1, for the current value

of z near the critical point G(ξ) ≈ 1− Kz
(

Ly
z

)√
ω
ν .

Then, we may write that

+V|2∫
−V|2

d
(

Ecolst

)
1;0
≈

+L|2∫
−L|2

d
(

Ecolst

)
1;0
≈ 0.5ρω2

{[
(r + Lx /2)2

(
1− K(z + Ly /2

)2 ω
ν

]
−
[
(r− Lx /2)2

(
1− K(z− Ly/2

)2 ω
ν

]}
≈ 0.5ρω2rLx

[
1− K2z2

(
Ly
z

)
ω
ν

] (31)

So, we obtain
Lx

R
r
R

[
1−

(
Ly

z

)
K2z2 ω

ν

]
=

Est/ρ

(Rω)2 (32)

Then, for the Equation (32), we can write

(
Lx

R
r
R

)2
=

(
Est/ρ

(Rω)2

)2
1[

1− K2z2
(

Ly
z

)
ω
ν

]2 (33)

6. The Solution for the First Critical Reynolds Number
We substitute Equation (33) in expression (22) for the Reynolds number, then, for the correlation

time
(
τ0

cor
)

1 = L√
Est/ρ

, the critical Reynolds number is

Re ≈ 1.5
(

Lx
R

)2( r
R
)2
(

ω R√
Est/ρ

)6(
1− Kz

(
Ly
z

)√
ω
ν

)2
(34)

Then, we obtain

Re ≈ 1.5
(

ω2R2

Est/ρ

) (1− Kz
(

Ly
z

)√
ω
ν

)2

[
1− K2z2

(
Ly
z

)
ω
ν

]2 (35)
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or

Re ≈ 1.5

(
ωR√
Est/ρ

)2
(

1− Kz
(

Ly
z

)√
ω
ν

)2

[
1− K2z2

(
Ly
z

)
ω
ν

]2 (36)

For the correlation time
(
τ0

cor
)

2 = L2

ν , we have

Re ≈

1.5

(
ωR√
Est/ρ

)2
(

1− Kz
(

Ly
z

)√
ω
ν

)2

[
1− K2z2

(
Ly
z

)
ω
ν

]2

Re2
st (37)

Then, for the correlation time
(
τ0

cor
)

3 = ν
Est/ρ , we obtain

Re ≈

1.5

(
ωR√
Est/ρ

)2
(

1− Kz
(

Ly
z

)√
ω
ν

)2

[
1− K2z2

(
Ly
z

)
ω
ν

]2

 1
Re2

st
(38)

Substituting Equation (33) in expressions (36)—(38) for the Reynolds number and neglecting
the terms containing the value K2, we may write the estimate for the critical Reynolds number in the
flow near the rotating disk (K~0.5) as:

(Recritic)1 ≈

1.5

(
ωR√
Est/ρ

)2(
1− 2K

(
Ly

z

)
z
√

ω

ν

) Re2
st ≈ 1.5

(
ωR√
Est/ρ

)2(
1− 2

(
Ly

δ

))
Re2

st (39)

For the value of Ly/δ near the wall at the critical point in accordance with [41,49–59], we have(
Ly

δ

)
≈ 0.02÷ 0.04 (40)

Thus, finally, we have the theoretical solution for the critical Reynolds number for the motion
of the flow near the rotating disk

(Recritic)1 ≈ 1.3

(
ωR√
Est/ρ

)2

Rest
2 (41)

In accordance with [41,77,78], there are the following values for the degree of turbulence
observed in the laboratory and the turbulent Reynolds numbers Rest near the wall of the disk:(
ωR/

√
Est/ρ

)−1
= 0.01 ÷ 0.02 and Rest = 5 ÷ 10. As a result, using Equation (41), we have

Recritic = 325, 000, which agrees with the data [41]. In the case, when the turbulent Reynolds number
is Rest = 5 ÷ 15, we have 3.25 × 105 ≤ Recritic ≤ 7.3 × 106. Therefore, the defined range for the first
critical Reynolds number for the motion near a rotating disk is within the experimental values for the
transition mode 2.9 × 105 ≤ Recritic < 7 × 105 [41].

7. Conclusions
Analytical Formulas (39) and (41), for the critical Reynolds number for the motion of the flow

near a rotating disk based on the theory of stochastic equations of continuum laws and the equivalence
of measures between random and deterministic motion are presented. Also, analytical Formulas (32)
and (33) for the critical point in the case of the motion of the flow near a rotating disk are derived.
The results of solutions show the satisfactory correspondence between the values obtained with using
the analytical dependences for critical Reynolds number (39) and (41), and the experimental data [41].

For the degree of turbulence observed in the laboratory
(
ωR/

√
Est/ρ

)−1
= 0.01÷ 0.02 and the

turbulent Reynolds numbers Rest near the wall of the disk Rest = 5 ÷ 10, we have Recritic = 325, 000,
which agrees with the data [41]. It seems that the obtained dependences for the critical Reynolds
number can be useful for estimating of the flow regime in gas or steam turbines.
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