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Abstract: Continuous interest in space journeys opens the research fields, which might be useful in
non-terrestrial conditions. Due to the lack of the gravitational force, there will be a need to force the
flow for mixing or heat transfer. Strong magnetic field offers the conditions, which can help to obtain
the flow. In light of this origin, presented paper discusses the dually modified Graetz-Brinkman
problem. The modifications were related to the presence of the magnetic field influencing the flow
and asymmetrical thermal boundary condition. Dimensionless numerical analysis was performed,
and two dimensionless numbers (magnetic Grashof number and magnetic Richardson number)
were defined for paramagnetic fluid flow. The results revealed the heat transfer enhancement due
to the strong magnetic field influence accompanied by possible but not essential flow structure
modifications. On the other hand, the flow structure changes can be utilized to prevent the solid
particles’ sedimentation. The explanation of the heat transfer enhancement including energy budget
and vorticity distribution was presented.

Keywords: computational fluid dynamics; strong magnetic field; thermo-magnetic convection;
forced convection; Nusselt number; magnetic Richardson number

1. Introduction

The heat transfer enhancement methods are divided into passive and active ones. Utilization of
passive methods always requires interference with the existing system geometry or material properties.
However, this approach is usually justified economically because the costs are mostly carried at the
initial stage. On the other hand, active methods require an additional and regularly supplied energy
source in order to improve system performance, therefore they are less welcomed, but in the reasonable
cases, the operational costs do not matter.

Thermo-magnetic convection of weakly magnetic fluids is an example of active method application,
which requires an energy transported by electric current. The state-of-the-art dedicated solutions
still seem to be impaired by this fact and are practically excluded from the engineering applications.
However, the field that combines both the solution for large power supply problem and the need for
significant heat transfer enhancement, can be easily determined. In the time of space race restarted
again, the utilization of the strong magnetic field reveals itself as a useful approach.

The first papers considering the possibility of heat transfer enhancement for the natural
convection phenomenon of weakly magnetic (para- and dia-magnetic) fluids appeared in the early
1990s’ [1]. The numerical approach for dia- [2] and para-magnetic [3] materials’ thermo-magnetic
convection was presented about 10 years later. These two papers also contained the derivation
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of dimensionless conservation equations dedicated to the problem of thermo-magnetic convection.
After that, numerical and experimental comparisons were presented, i.e., in References [4–6].

The studies dedicated to the thermo-magnetic convection phenomena have expanded since then,
combined with different branches of science, and reached new methodologies. The combination of
active (magnetic field) and passive (addition of nanoparticles) heat transfer enhancement methods
was reported in References [7,8]. The studies considering thermo-magnetic convection in rectangular
cavities of various aspect ratios were presented in Reference [9]. In Reference [10], the application of the
Lattice-Boltzmann method for thermo-magnetic convection mathematical description was proposed.
The presentation of the passive magnetic heat transfer enhancement method, thermo-magnetic
convection under no gravity conditions and the magnetic damping effect on the sloshing of liquid
paramagnetic substances were studied in References [11–13] and Reference [14]. The issue of resonant
enhancement in an enclosure filled with paramagnetic fluid due to the time-periodic magnetizing force
was presented in Reference [15]. The authors of Reference [16] presented the application example of
the cooling system driven by waste heat and permanent magnets only.

An overview of the investigations mentioned in the previous paragraph leads to the conclusion
that the researchers focused mostly on the topic of thermo-magnetic convection in the closed cavities,
with no artificially driven flow. The topic of forced convection of paramagnetic fluid under the
influence of a strong magnetic field was firstly presented by Ozoe [17]. He was followed by the authors,
who undertook his work, in References [18,19].

The presented paper is dedicated to the modified Graetz-Brinkman (G-B) problem [20] and
provides further information considering heat transfer and flow structure modifications due to the
strong magnetic field in forced convection of paramagnetic fluid. The dimensionless mathematical
model of the defined problem was discussed. Its construction led to a formulation of two dimensionless
numbers (namely magnetic Grashof number and magnetic Richardson number) for paramagnetic fluid
flow. These parameters play an essential role in the description of the discussed phenomena. The studies
are aimed not only at the heat transfer intensification, but also possible interference in the flow structure.
That is why the asymmetrical boundary conditions were applied. In reality, the non-symmetrical
flow structure can prevent sedimentation of some solid particles carried by the flow, for example
when considering the nanofluid flow. The explanation of the heat transfer enhancement occurrence is
presented with the usage of energy budget and distribution of the magnetically modified vorticity.

2. Materials and Methods

2.1. Mathematical Model

2.1.1. Important Dimensionless Parameters

The following formula describes Reynolds (Re) number:

Re =
u0dp

ν
(1)

where: u0—reference velocity (average inlet velocity) (m/s), dp—pipe diameter (m), and ν—kinematic
viscosity (m2/s).

The Prandtl number was represented by the following expression:

Pr =
ν
α

(2)

where: α—thermal diffusivity (m2/s).
The Grashof number definition took the form:

Gr =
gβ(TH − TC)dp

3

ν2 (3)



Fluids 2020, 5, 246 3 of 19

where: g—gravitational acceleration (m/s2), β—thermal expansion coefficient (1/K), TH—heated wall
temperature (K), and TC—inlet fluid temperature (K).

The magnetic Grashof number (for which derivation is presented later on) was defined as:

Grm =
1
ρ0

(
1 +

1
βT0

)
χ0

2µv

bcenter
2

dp

β(TH − TC)dp
3

ν2 (4)

where: ρ0—reference density (kg/m3), T0—reference temperature (T0 = (TH + TC)/2) (K),
χ0—reference volumetric magnetic susceptibility (-), bcenter—magnetic induction in the center of
the coil (bcenter = (µvi)/dcoil) (T), i—electrical current (A), dcoil—coil diameter (m), and µv—magnetic
permeability of the vacuum (H/m).

The Richardson number formula was utilized in the following form:

Ri =
Gr

Re2 (5)

The magnetic Richardson number formula could be written as:

Rim =
Grm

Re2 (6)

The following definition described the Nusselt number:

Nu =
hdp

k
(7)

where: h—convective heat transfer coefficient (h = q/(TH − Tb)) (W/(m2K)), q—area weighted value
of the heat flux over heated wall small axial subsection (W/m2), Tb—fluid bulk temperature (K),
and k—thermal conductivity (W/(mK)).

The process of local heat transfer coefficient calculation value was as follows: (1) Calculation
of the bulk fluid temperature (Tb) over cross-section at the XY plane (perpendicular to pipe axis),
(2) calculation of the heat flux value (q) over corresponding heated wall small axial subsection, and (3) its
substitution into h = q/(TH − Tb). In practice, the area where the heat flux was calculated was the thin
half-rings located around the subsequent XY cross-sections.

2.1.2. Dimensionless Conservation Equations

The following assumptions were included in the mathematical model:

- Stationary flow,
- Three-dimensional flow,
- Laminar flow,
- Incompressible flow,
- No additional mass or energy sources,
- The thermo-magnetic force was treated as the body force,
- Constant values of thermo-physical properties,
- Paramagnetic and electrically non-conductive fluid.

Taking into account the above-mentioned assumptions, the dimensionless mass conservation
equation could be presented as follows:

∇·U = 0 (8)
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The following equation presents the dimensional momentum conservation equation for the
studied phenomena:

(u·∇)u = −
1
ρ f
∇p + ν∇2u− β(T − T0)g +

1
ρ0

(
1 +

1
βT0

)
χ0

2µv
β(T − T0)∇b2 (9)

The necessary dimensionless variables are presented as follows:

U = u/u0; P = p/p0; Θ = (T−T0)/(TH − TC); B = b/bcenter; ∇ = ∇/dp; Φ =
ρ f

ρ0
;

N = ν/ν0; Γ = β/β0; G = g/g0

where: U—dimensionless flow velocity vector (-), P—dimensionless pressure (-), Θ—dimensionless
temperature (-), Φ—dimensionless density (-), B—dimensionless magnetic induction vector (-),
u—flow velocity vector (m/s), u0—reference velocity (u0 = (Reν0)/dp) (m/s), p—pressure (Pa),
p0—reference pressure (p0 = ρ0u0

2) (Pa), ρ f —fluid density (kg/m3), b—magnetic induction vector (T),
Φ—dimensionless density (-), N—dimensionless kinematic viscosity (-), ν0—reference kinematic
viscosity (m2/s), Γ—dimensionless thermal expansion coefficient (-), β0—reference thermal expansion
coefficient (1/K), G—dimensionless gravitational acceleration (-), and g0—reference gravitational
acceleration (m/s2).

Substituting into Equation (9) gives:

u0
2

dp
(U·∇)U = − 1

Φρ0

p0
dp
∇P + Nν0

u0
dp2∇

2U− Γβ0(TH − TC)Gg0Θ

+ 1
ρ0

(
1 + 1

Γβ0T0

)
χ

2µv
Γβ0(TH − TC)

bcenter
2

dp
∇ΘB2

(10)

After basic transformations:

(U·∇)U = − 1
Φ∇P + 1

Re N∇2U− 1
Re2

g0β0(TH−TC)dp
3

ν02 GΓΘ

+ 1
Re2

1
ρ0

(
1 + 1

Γβ0T0

)
χ

2µv

bcenter
2

dp

β0(TH−TC)dp
3

ν02 ΘΓ∇B2
(11)

(U·∇)U = − 1
Φ∇P + 1

Re N∇2U− Gr
Re2 GΓΘ

+Grm
Re2 ΘΓ∇B2

(12)

The dimensionless momentum conservation equation took the form of:

(U·∇)U = −
1
Φ
∇P +

1
Re

N∇2U + RiGΓΘ+ RimΘΓ∇B2 (13)

Taking into consideration constant values of viscosity, thermal expansion coefficient, gravitational
acceleration, and density, the final form of the dimensionless conservation equation is presented
as follows:

(U·∇)U = −∇P +
1

Re
∇

2U + RiΘ+ RimΘ∇B2 (14)

Considering the low value of pyromagnetic coefficient and the previous assumptions,
the dimensionless energy conservation equation was formulated as:

U∇Θ =
1

RePr
∇

2Θ (15)
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2.1.3. Biot-Savart Law

In order to calculate dimensionless magnetic induction distribution, the Biot-Savart law in the
following form was utilized [21]:

B =

µvi
4π

∮
c

ds× r∣∣∣r3
∣∣∣

/bcenter (16)

where: ds—infinitely small element of the coil (m), and r—position vector (m).

2.1.4. Energy Budget

According to Equation (15), the energy budget included two terms: convective and diffusive ones.
The convective term equation was as follows:

Conv = U∇Θ, (17)

while the diffusive term could be presented as follows:

Di f f =
1

RePr
∇

2Θ (18)

2.2. The Studied Case

The dually modified G-B problem was the subject of the presented work. The studied case
schematic view is presented in Figure 1. The geometry consisted of a straight circular channel oriented
horizontally. Its wall was divided in halves, creating the inlet adiabatic zone and outlet isothermally
heated zone. The wall of the second zone was also divided, creating the top heating wall and bottom
heating wall. Division of the isothermally heated wall provided the possibility of applying the
asymmetrical thermal boundary condition, which was the first classical G-B problem modification.
The second modification referred to the presence of a single circular magnetic coil located around the
junction between adiabatic and heated parts. The coil generated the magnetic field for the studied
system. The flow was considered as laminar and fully developed at the inlet.
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Figure 1. The studied case with characteristic dimensionless parameters.

The following boundary conditions were applied:

At the inlet: Umax = 2U0 = 2; Θ = −0.5,
At the outlet: P = 0, At the heated wall: U = 0; Θ = 0.5,
At the adiabatic wall: U = 0; ∇nΘ = 0,
In the center of the magnetic coil: Bcenter = 1.

Six cases of various material properties (represented by Prandtl number) and heating configuration
(top, bottom) were studied. The flow characteristic was considered as laminar at Re = 200. The fluid was
characterized by Pr = 0.7 (Prandtl number value for air), Pr = 10 (Prandtl number value for water with
addition of the paramagnetic salt), and Pr = 100 (Prandtl number value for engine oil). Fluid magnetic
properties and magnetic field strength were determined by Rim (Rim = 5). The gravitational buoyancy
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effect was considered low and represented by Ri (Ri = 0.025). The exemplary dimensional system and
fluid properties are listed in Table 1.

Table 1. Exemplary dimensional system and fluid properties for Pr = 0.7 (air) and Rim = 5.

Property Symbol Unit Value

Pipe diameter dp m 0.01
Coil diameter dcoil m 0.02

Density ρ0 kg/m3 1.225
Kinematic viscosity ν0 m2/s 1.461 × 10−5

Specific heat cp J/(kg·K) 1006.43
Thermal conductivity k0 W/(m·K) 2.42 × 10−2

Thermal expansion coefficient β0 K−1 3.33 × 10−3

Volumetric magnetic susceptibility χ0 (-) 3.77 × 10−7

Magnetic permeability of the vacuum µv H/m 4π × 10−7

Electric current i A 159,155
Magnetic induction in the center of the system bcenter T 10

2.3. Numerical Approach

A structured grid (Figure 2) containing 380,250 hexahedral cells was constructed. The minimum
cell volume was set to 8.242648× 10−7 m3, while the maximum value was 9.190577× 10−5 m3, which gave
the mean cell volume equal to 4.122598 × 10−5 m3. A two-step validation method was utilized in order
to perform a grid sensitivity study. At the first step, several grid setups varying in radial division
were compared to the analytical solution for a developed laminar flow velocity profile. The initial
mesh for the second validation step was chosen on this basis. The second step was performed for the
grids divided radially into 66 (basic grid from the previous step), 106, and 131 elements, and based on
the comparison between velocity profiles obtained in the strong magnetic field environment. Finally,
the grid divided radially into 106 elements was chosen as the further grid concentration, provided there
were no significant changes in the velocity distribution (<<1%).

Fluids 2020, 5, x 6 of 20 

Thermal conductivity k0 W/(m·K) 2.42 × 10−2 
Thermal expansion coefficient β0 K−1 3.33 × 10−3 

Volumetric magnetic susceptibility χ0 (-) 3.77 × 10−7 
Magnetic permeability of the vacuum μv H/m 4π × 10−7 

Electric current i A 159,155 
Magnetic induction in the center of the system bcenter T 10 

2.3. Numerical Approach 

A structured grid (Figure 2) containing 380,250 hexahedral cells was constructed. The minimum 
cell volume was set to 8.242648 × 10−7 m3, while the maximum value was 9.190577 × 10−5 m3, which 
gave the mean cell volume equal to 4.122598 × 10−5 m3. A two-step validation method was utilized in 
order to perform a grid sensitivity study. At the first step, several grid setups varying in radial 
division were compared to the analytical solution for a developed laminar flow velocity profile. The 
initial mesh for the second validation step was chosen on this basis. The second step was performed 
for the grids divided radially into 66 (basic grid from the previous step), 106, and 131 elements, and 
based on the comparison between velocity profiles obtained in the strong magnetic field 
environment. Finally, the grid divided radially into 106 elements was chosen as the further grid 
concentration, provided there were no significant changes in the velocity distribution (<<1%). 

 
Figure 2. The details of constructed mesh: (a) axial cross-section, (b) radial cross-section, (c) close-up 
of the pipe center. 

The numerical computations were performed with the utilization of Ansys Fluent software 
(ACK Cyfronet AGH, Krakow, Poland). The solver was set to pressure-based segregated algorithm. 
The momentum and energy equations were solved with the usage of second-order upwind 
discretization schemes. The second-order scheme was utilized to solve the pressure equation. The 
built-in solver abilities were supplemented with number of user-defined functions and functionalities 
to obtain, i.e., dimensionless approach, magnetic force distribution, energy budget, or Nusselt 
number distribution (Figure 3). 
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the pipe center.

The numerical computations were performed with the utilization of Ansys Fluent software
(ACK Cyfronet AGH, Krakow, Poland). The solver was set to pressure-based segregated algorithm.
The momentum and energy equations were solved with the usage of second-order upwind discretization
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schemes. The second-order scheme was utilized to solve the pressure equation. The built-in
solver abilities were supplemented with number of user-defined functions and functionalities to
obtain, i.e., dimensionless approach, magnetic force distribution, energy budget, or Nusselt number
distribution (Figure 3).
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3. Results and Discussion

Figure 4 presents dimensionless temperature distribution in the axial cross-section of the studied
geometry. On each diagram, information about the fluid, heating zone configuration, presence of
magnetic force, and value of Richardson number is shown. Additionally, four cross-sections, namely:
0.3, 0.7, 1.2, and 1.9, are indicated. They will be described later on. The difference between the results
obtained for a case with the strong magnetic field influence and without it can be clearly seen only for
a fluid characterized by Prandtl number value Pr = 0.7 (Figure 4a,b). The results obtained for the rest
of the studied parameters (Figure 4c–f) characterized by Prandtl number values Pr = 10 and Pr = 100
showed no differences.
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Figure 4. Dimensionless temperature distribution in the axial cross-section for bottom configuration:
(a) Pr = 0.7 and Rim = 0, (b) Pr = 0.7 and Rim = 5, (c) Pr = 10 and Rim = 0, (d) Pr = 10 and Rim = 5,
(e) Pr = 100 and Rim = 0, (f) Pr = 100 and Rim = 5.

Figures 5 and 6 present velocity fields under the strong magnetic field influence obtained for the
bottom and top heating configurations. The flow in the first case (Pr = 0.7) visibly responded to the
additional magnetic force effect. The flow structure lost its symmetry (Figures 5 and 6a,d) and was
attracted to the heated side of the wall. The small acceleration zone was observed between z = 0.7 and
z = 1.2, in the vicinity of the heated area. However, the value of this acceleration is local in nature and
did not exceed the maximal initial flow velocity. The magnetic force presented in the discussed results
acted as a slowing down force. The low-velocity area near the adiabatic part of the wall was enlarged
due to the fluid stream shifting towards the heated part. However, the flow asymmetrical structure was
limited to the vertical direction. The horizontal cross-sections (Figures 5 and 6b,c) showed symmetry
of the velocity field with respect to the YZ plane. What is more, the structures obtained for the
cross-section located in the XZ (horizontal) (Figures 5 and 6b) plane and for the cross-section parallel
and below to this plane (Figures 5 and 6b) were similar to the M-shaped flow structure presented
in References [17,19].
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at given z.

Increasing the value of the Prandtl number up to Pr = 10 led to a significant reduction of visible
magnetic field interference with the flow structure (Figures 7 and 8). The fluid stream was slightly
shifted towards the heated wall, which can be seen on the axial cross-sections (Figures 7 and 8a).
Additionally, a narrowing of the hydrodynamic boundary layer might be observed between the
cross-sections z = 0.3 and z = 1.2 (Figures 7 and 8b–d).
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Figures 9 and 10 show results obtained for the fluid characterized by Pr = 100. The velocity
field seemed to be intact by the presence of the magnetic field and preserved its paraboloid shape.
Nevertheless, the heat transfer in this case was influenced, which will be discussed further.
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Velocity fields, obtained for each Prandtl number value considering bottom and top configurations,
mirrored each other with respect to the XZ plane with the slight discrepancies between them.
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These discrepancies (Figures 5 and 6a) are considered to be an effect of gravitational buoyancy
force impact.

An influence of the strong magnetic field on the heat transfer and its enhancement is exhibited
in Figure 11. For every studied case, a local increase of Nusselt number value was observed for the
flows in the magnetic field with respect to the flows without it. The area affected by this influence
was always located between approximately z = 0 and z = 2. From the global point of view, this local
change led to an increase in the heat transfer rate. Table 2 presents the percentage increase in average
Nusselt number value for the corresponding cases (with and without the magnetic field). The values
obtained for bottom and top configurations were slightly different for Pr = 0.7 and Pr = 10, but without
a clear tendency. This subject requires further studies. Increase in the Nusselt number value varied
from about 24% for Pr = 0.7 to 9% for Pr = 100.Fluids 2020, 5, x 13 of 20 
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Figure 11. Nusselt number distribution for the cases without and with the magnetic field influence for:
(a) Pr = 0.7, (b) Pr = 10, (c) Pr = 100.

Table 2. Percentage increase in average Nusselt number value for the studied cases.

Pr
(Nu–Nu0)/Nu0 (%)

Bottom Top

0.7 24.48 24.73
10 14.94 14.91

100 9.82 9.82
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Energy budget calculated for the four cross-sections perpendicular to the flow axis (corresponding
with the cross-sections shown in Figures 5–10) is presented in Figure 12. The budget was reduced to
distribution of the convective term as it is equal to the diffusive term (see Equations (15), (17), and (18)).
Distribution of the convective term influenced by the magnetic field was wider than distribution
obtained for the case without the magnetic field. This tendency was observed for every studied case.
However, increasing the distance from the magnetic field source (located at z = 0) reduced these
disproportions. Difference between the maximum energy term values (obtained for Pr = 0.7) for the
cases with and without magnetic field at the subsequent cross-sections are: 103% at z = 0.3 (Figure 12a),
72% at z = 0.7 (Figure 12b), 28% at z = 1.2 (Figure 12c), and 4% at z = 1.9 (Figure 12d). Energy budget
explains the increase in Nusselt number for the flows under an influence of the strong magnetic field
through increasing convective term value. This increment is strictly connected to the velocity and
temperature field maldistribution due to the magnetic field effect (Equation (17)).Fluids 2020, 5, x 14 of 20 
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Figures 13–18 present the dimensionless vorticity magnitude (Ω) distribution for the studied cases
in the cross-sections discussed previously (Figures 5–10). The possible explanation for the increase in
Nusselt number value despite the lack of interference of the magnetizing force with flow structure
(Figures 9 and 10) for Prandtl number value Pr = 100 is presented in Figures 17 and 18, where the local
change in vorticity near the heated wall can be observed. In all of the studied cases, the magnetic field
might be considered as a vortex generator, which leads to the heat transfer enhancement. The vorticity
distribution strongly depends on the Prandtl number value, similar to the velocity distribution.
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4. Conclusions

The dimensionless mathematical model for the given problem was proposed. It included
formulation of two dimensionless parameters (namely magnetic Grashof and magnetic Richardson
number), which are crucial for the simplification of the presented considerations and proper
classification of magnetically altered flow of paramagnetic fluids in the future.

The presented results confirmed the magnetic field ability to enhance heat transfer also for
the forced convection problems with asymmetrical thermal boundary condition. Magnetic field
influence increased the Nusselt number value by the percentage of 9–24% (Table 2) depending on the
fluid properties represented by the Prandtl number (0.7, 10, 100). For lower Prandtl number values,
the higher ratio between the average Nusselt number for the cases with and without magnetic field
was obtained. However, even for the Pr = 100, the heat transfer enhancement must be considered as at
least interesting. The presented energy budget (Figure 12) explained the heat transfer enhancement
with the increased value of convective term in the energy equation for the cases subjected to the strong
magnetic field. What is more, the magnetic field enhanced the heat transfer despite the small (Pr = 10,
Figures 7 and 8) or even not clearly visible (Pr = 100, Figures 9 and 10) interference with the flow
structure, which can be explained by the still observed change in vorticity distribution (Figures 13–18).
This last conclusion seems to be useful in terms of heat transfer enhancement, while preserving the
existing flow structure. However, when considering the reduction of sedimentation, only the flow
with low Prandtl number value can be taken into account. In such case, the asymmetrical conditions
might be helpful for nanofluid flow, where sediments can gather and throttle the flow.
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Nomenclature

Latin symbols
B dimensionless magnetic induction vector (B = b/bcenter, bcenter = (µ0i)/dcoil) (-)
b magnetic induction vector (T)
Conv convective term of energy equation (-)
D dimensionless diameter (-)
d diameter (m)
Diff diffusive term of energy equation (-)
ds infinitely small element of the coil (m)
G dimensionless gravitational acceleration (-)
g gravitational acceleration (m/s2)
Gr Grashof number (-)
h convective heat transfer coefficient (W/(m2K))
i electrical current (A)
k thermal conductivity (W/(mK))
L dimensionless pipe length (L = l/dp) (-)
l pipe length (m)
Nu Nusselt number (-)
P dimensionless pressure (P =

p
p0

, p0 = ρ0u0
2) (-)

p pressure (Pa)
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Pr Prandtl number (-)
q heat flux magnitude (W/m2)
r position vector (m)
Re Reynolds number (-)
Ri Richardson number (-)
T temperature (K)
U dimensionless flow velocity vector (U = u/u0, u0 = (Reν)/dp) (-)
u flow velocity vector (m/s)
u velocity magnitude (m/s)
y dimensionless radial distance (y-coordinate) (-)
z dimensionless axial distance (z-coordinate) (-)
Greek symbols
α thermal diffusivity (m2/s)
β thermal expansion coefficient (1/K)
Γ dimensionless thermal expansion coefficient (-)
Θ dimensionless temperature (Θ = (T− T0)/(TH − TC)) (-)
N dimensionless kinematic viscosity (-)
µ magnetic permeability (H/m)
ν fluid kinematic viscosity (m2/s)
ρ density (kg/m3)
Φ dimensionless density (Φ = ρ f /ρ0) (-)
χ volumetric magnetic susceptibility (-)
Ω dimensionless vorticity magnitude (Ω = ωdp/u0) (-)
ω vorticity magnitude (1/s)
Subscripts
0 reference value
b bulk
C cold (inlet) fluid
center center
coil coil
f fluid
H heated (hot) wall
m magnetic
max maximal
n normal
p pipe
v vacuum
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