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Abstract: In this work, thermal conductivity, viscosity, isobaric heat capacity, and density of stable
carbon-based nanofluids are presented. The nanofluids under study are composed of 1,2-ethanediol
(ethylene glycol, EG) and long multi-walled carbon nanotubes (MWCNTs), so-called ‘in-house 16h’
(synthesized in our laboratory via catalytic chemical vapor deposition during 16 h with a diameter of
60–80 nm and length of 770 µm). Poly(N-vinylpyrrolidone) (PVP) was used to increase the stability
of nanofluids. The nanofluids were prepared via an ultrasonication-assisted, three-step method
while their key thermophysical characteristics were obtained using the hot-wire technique and rotary
viscometer. As a result, the addition of MWCNTs significantly improved the thermal conductivity
of nanofluids by 31.5% for the highest 1.0 wt% (0.498 vol%) long MWCNT content, leaving the
Newtonian character of the nanofluids practically intact.
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1. Introduction

The unceasing advance of thermal power plants, solar collectors/plants, thermal instrumentations,
machines, and evolving miniaturization of electronic devices generates a continuously growing
demand for high-performance heat transfer nanofluids (NFs) [1]. Among nanoparticles dispersible in
1,2-ethanediol (ethylene glycol, EG)—as the large-scale and economic chemical compound [2]—carbon
nano-allotropes are of the highest importance and scaling-up potential. Those nanoparticles are
nano-diamonds [3], graphene [4], quantum dots [5], and carbon nanotubes (CNTs) [6]. Particularly
CNTs, as quasi-one-dimensional nanoparticles, emerge as the most promising solids dispersible in
numerous continuous phases from water through organic solvents to ionic liquids [6].

Although the enhancement in numerous critical thermophysical properties—compared to the
base fluids—is rather undeniable, the level of augmentation of the overall performance and versatility
of the pre-designable nanofluids derives from numerous variables. This is particularly evident since
the influence of CNTs on the key characteristics of nanofluids is difficult to track [7]. Indeed, CNTs—as
large macromolecules—differ individually even at the molecular level by purity (content of amorphous
carbon and metallic/non-metallic particles as a catalyst residue), morphology (shape, degree of
entanglement, aspect ratio, way of nanotube closure), and surface physico-chemistry (number of
crystallographic defects, deviations from C-sp2 hybridization, and functionalization) [8]. There is, hence,
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high demand for comprehensive characteristics of CNTs, base fluids, and all additives (surfactants,
other nanoparticles, etc.), which eventually would yield synergetic nanofluids.

Up to now, several attempts to enhance the characteristics of EG-based nanofluids as heat transfer
media using CNTs were reported. Xie et al. [9] prepared nanofluids containing pristine and oxidized
multi-walled carbon nanotubes (MWCNTs) and found a 27.5% increase in thermal conductivity for the
ball-milled pristine MWCNTs (diameter d = 30 nm, length l = 60µm) at 0.01 vol%. Liu et al. [10] recorded
a 12.4% increase in thermal conductivity for EG-based nanofluids containing 1.0 vol% MWCNTs
(d = 20–30 nm, l = few µm). Kumar et al. [11] employed MWCNTs (d = 30–50 nm, l = 10–20 µm) in the
commercial solar liquid obtaining nanofluid of 30.6% enhancement in thermal conductivity at 0.6 vol%
MWCNT concentration. In our recent approach [12], we found that 1,2-propanediol-based (propylene
glycol, PG) nanofluid, containing 0.53 vol% of curly ultra-long MWCNTs, had a 39% higher thermal
conductivity than PG itself. Nevertheless, the Newtonian character of nanofluids under various shear
rates and their stability at high MWCNT concentration was not cross-verified.

Herein, we present a study on the thermophysical properties of nanofluids composed of EG
and long MWCNTs with the addition of poly(N-vinylpyrrolidone) (PVP) as the stabilizing agent.
The elaborated protocol allowed us to obtain nanofluids with a significant enhancement in thermal
conductivity, accompanied by practically purely Newtonian behavior, which, in the further perspective,
emerges as an excellent premise for heat transfer applications.

2. Materials and Methods

2.1. Materials

1,2-Ethanediol (0.998 mass fraction purity) was purchased from Oleon GmBH (Wiesbaden,
Germany). The EG was dried using 4 Å molecular sieves (Merck, Darmstadt, Germany). The water
content was measured using the Karl-Fischer method (870KF Titrino Plus, Metrohm AG, Herisau,
Switzerland) and reached a value of 270 ppm. A brief specification of the EG is presented in Table 1.
In-house multi-walled carbon nanotubes (in-house 16h MWCNTs) were prepared using the 16-h
catalytic chemical vapor deposition (c-CVD) process described in detail previously [13]. A brief
specification of the in-house 16h MWCNTs is presented in Table 2. SEM images obtained by JSM-634OF
FEG (JEOL, Akishima, Tokyo, Japan) at 5 kV and TEM micrographs acquired using 200 CX (JEOL,
Akishima, Tokyo, Japan) at 200 kV of in-house MWCNTs used in this study are presented in Figure 1.
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Figure 1. (a) SEM image—side view of the vertically aligned multi-walled carbon nanotube 
(MWCNT) array. (b) TEM image of an individual, representative of MWCNT. 

2.2. Sample preparation 

The NFs (Figure 2) were prepared via a three-step method. Firstly, PVP was dissolved in EG as 
a stabilizer to maintain high-quality, i.e., homogenous dispersion of in-house 16h MWCNTs. Then 
the desired weight of carbon nanoparticles (0.25, 0.5, 0.75, and 1.0 wt%) was added and mixed by 
a magnetic stirrer MS11 (Wigo, Poland) at 500 rpm for 15 min. Finally, the samples were sonicated 
using a 200 W UP200Ht homogenizer (Hielscher, Germany) with a sonotrode diameter of 15 mm. To 
prevent overheating of the dispersions, the ice bath was used. During the sonication procedure, the 
energy supplied to each sample was 0.2 Wh/g. 
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Figure 1. (a) SEM image—side view of the vertically aligned multi-walled carbon nanotube (MWCNT)
array. (b) TEM image of an individual, representative of MWCNT.
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Table 1. Density, ρ, viscosity, η, and thermal conductivity, λ, of ethylene glycol (EG) at 298.15 K
compared with the literature data.

Physicochemical Property This Work Literature

ρ (kg·m−3) 1109.84 ± 0.05 1109.60 [14], 1109.89 [15], 1109.79 [16], 1109.82 [17],
1109.88 [18], 1109.88 [19], 1109.91 [20], 1110.09 [21]

η (mPa·s) 17.1 ± 3.0 16.95 [18], 17.14 [22], 17.25 [23], 17.7 [24]
λ (W·m−1

·K−1) 0.247 ± 5% 0.245 [24], 0.2433 [25]

Table 2. Characteristics of long multi-walled carbon nanotubes (MWCNTs) used in this study.

Name
Average
Length
(µm)

Average
Diameter

(nm)

Aspect
Ratio

(−)

Specific
Surface Area

(m2
·g−1)

Density
(g·cm−3)

Carbon
Purity

(%)

in-house 16h
MWCNTs 770 60–80 11,000 22 2.1 98

2.2. Sample Preparation

The NFs (Figure 2) were prepared via a three-step method. Firstly, PVP was dissolved in EG as a
stabilizer to maintain high-quality, i.e., homogenous dispersion of in-house 16h MWCNTs. Then the
desired weight of carbon nanoparticles (0.25, 0.5, 0.75, and 1.0 wt%) was added and mixed by a
magnetic stirrer MS11 (Wigo, Poland) at 500 rpm for 15 min. Finally, the samples were sonicated using
a 200 W UP200Ht homogenizer (Hielscher, Germany) with a sonotrode diameter of 15 mm. To prevent
overheating of the dispersions, the ice bath was used. During the sonication procedure, the energy
supplied to each sample was 0.2 Wh/g.
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Figure 2. (a) Schematic overview of nanofluid composed from Poly(N-vinylpyrrolidone) (PVP)-
stabilized long MWCNTs in ethylene glycol, (b) scheme of preparation of nanofluids, and (c) photographs
of nanofluids at MWCNT concentration of 0.25, 0.5, 0.75, and 1 wt%, respectively.
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2.3. Thermal Conductivity Measurements

The thermal conductivity was measured via the hot-wire technique using KD2 Pro Thermal
Properties Analyzer (Decagon Devices Inc., Pullman, WA, USA) with a single needle KS-1 sensor,
pre-calibrated by a glycerin verification standard. The measurement uncertainty was equal to ±5% [26].
The research was conducted in triplicate at 298.15 K, 303.15 K, and 308.15 K. The temperature stability
was ensured within ±0.1 K by an Open Bath Circulator ED-5 (Julabo GmbH, Seelbach, Germany)
containing EG as a working liquid.

2.4. Viscosity Measurements

The viscosity was measured using rotary viscometer LV DV2T (Brookfield Engineering,
Middleboro, MA, USA) with Small Sample Adapter and SC4–18 spindle. The influence of temperature
on the viscosity was tested in the range from 283.15 K to 333.15 K (at 13.2 s−1), while the effect of
the shear rate on the viscosity was investigated in the range from 1.32 s−1 to 105.6 s−1 (at 298.15 K).
The temperatures were maintained with a Low Profile Refrigerated Circulator MX7LR-20 (PolyScience,
Niles, IL, USA) containing EG-water coolant. The temperature stability was ±0.07 K. The uncertainty
of viscosity measurements reached a value of ±3 mPas.

2.5. Density Measurements

The density of EG and nanofluids was measured in the range from 283.15 K to 333.15 K using
vibrating-tube densimeters Anton Paar DMA 5000M and Anton Paar DMA 5000 (Anton Paar, Graz,
Austria), respectively. The devices were calibrated with dry air and re-distilled water (with electrolytic
conductivity of 1 × 10−4 S·m−1 at 298.15 K) using an extended calibration procedure. The viscosity
corrections were made automatically. Expanded uncertainties of the density measurements were
±0.1 kg·m−3 and ±0.3 kg·m−3, respectively. The temperature was determined within the expanded
uncertainty of ±0.02 K.

2.6. Isobaric Heat Capacity Measurements

The isobaric heat capacity was measured in the range from 283.15 K to 333.15 K, using a differential
temperature-scanning (DSC) microcalorimeter µSC–2c (SETARAM Instrumentation, Caluire, France).
The apparatus was calibrated on the Joule effect. The reference standard was 1-butanol (Sigma Aldrich,
SureSeal, anhydrous, mass fraction purity of 0.998). The apparatus was tested using n-hexane (POCH,
Poland, mass fraction purity of 0.999) and benzene (Sigma Aldrich, mass fraction purity of 0.998).
The expanded uncertainty of the isobaric heat capacity measurements was equal to ±2%.

3. Results

3.1. Thermal Conductivity

The thermal conductivity of EG and NFs was measured in triplicate in the temperature range from
298.15 K to 308.15 K in 5 K steps. The obtained results are listed in Table 3 and presented in Figure 3.
As can be seen, the thermal conductivity increases almost linearly with the concentration of in-house
16h MWCNTs and decreases very slightly with the temperature. Although the influence of temperature
on the thermal conductivity of NF is much smaller, it clearly increases with the concentration of
nanotubes. The maximum enhancement in thermal conductivity compared to the base liquid is 31.5%
for NF containing 1 wt% in-house 16h MWCNTs.
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Table 3. Thermal conductivity of EG and NFs in the temperature range from 298.15 K to 308.15 K.

T (K) λ (W·m−1·K−1)

Series 1 Series 2 Series 3 Mean Series 1 Series 2 Series 3 Mean

EG EG + 0.25 wt% in-house 16h MWCNTs

298.15 0.247 0.246 0.247 0.247 0.270 0.269 0.269 0.269
303.15 0.246 0.246 0.245 0.246 0.269 0.268 0.268 0.268
308.15 0.247 0.245 0.243 0.245 0.265 0.262 0.264 0.264

EG + 0.5 wt% in-house 16h MWCNTs EG + 0.75 wt% in-house 16h MWCNTs

298.15 0.286 0.285 0.286 0.286 0.300 0.304 0.306 0.303
303.15 0.285 0.284 0.284 0.284 0.300 0.302 0.304 0.302
308.15 0.278 0.282 0.284 0.281 0.297 0.302 0.303 0.301

EG + 1 wt% in-house 16h MWCNTs

298.15 0.325 0.324 0.325 0.324
303.15 0.317 0.319 0.320 0.318
308.15 0.310 0.312 0.314 0.312
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3.2. Viscosity

The viscosity of EG and NFs under the test was measured at a shear rate of 13.2 s−1 within the
temperature range from 283.15 K to 333.15 K. Additionally, a viscosity curve for NF with the highest
concentration of MWCNTs was determined at 298.15 K in the shear rate range from 1.32 s−1 to 105.6 s−1.
The obtained results are presented in Figure 4.

As it turned out, the viscosity of EG and NFs decreases significantly with temperature due to the
weakening of intermolecular interactions (Figure 4a). This decline is from 80.3% to 84.8% and slightly
increases with a decreasing concentration of MWCNTs. Moreover, the NF containing 1 wt% in-house
16h MWCNTs appears to be a Newtonian fluid with a constant (absolute) viscosity of 30.9 ± 3.0 mPa·s
(Figure 4b). It can be, hence, assumed that more diluted NFs with a lower concentration of MWCNTs
will also exhibit Newtonian behavior.
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curve of NF containing EG and 1 wt% in-house 16h MWCNTs at 298.15 K. Solid lines—cubic trends (a)
and linear trend (b).

3.3. Density and Isobaric Thermal Expansion Coefficient

The density of EG and nanofluids was measured in the temperature range from 283.15 K to 333.15 K
in 5 K steps. The obtained results are listed in Table 4 and presented in Figure 5. The temperature
dependence of density was described by the second-order polynomial.

ρ =
2∑

i=0

ai(T − 283.15)i (1)

Table 4. Density of EG and NFs in the temperature range from 283.15 K to 333.15 K.

T (K) ρ (kg·m−3) T (K) ρ (kg·m−3) T (K) ρ (kg·m−3)

EG EG + 0.25 wt%
in-house 16h MWCNTs

EG + 0.5 wt% in-house
16h MWCNTs

283.15 1120.25 283.15 1121.83 283.15 1123.68
288.15 1116.78 288.15 1118.36 288.15 1120.22
293.15 1113.29 293.15 1114.87 293.15 1116.73
298.15 1109.84 298.15 1111.38 298.15 1113.24
303.15 1106.29 303.15 1107.87 303.15 1109.73
308.15 1102.77 308.15 1104.35 308.15 1106.21
313.15 1099.23 313.15 1100.81 313.15 1102.68
318.15 1095.68 318.15 1097.26 318.15 1099.13
323.15 1092.11 323.15 1093.69 323.15 1095.56
328.15 1088.52 328.15 1090.10 328.15 1091.97
333.15 1084.90 333.15 1086.48 333.15 1088.36

EG + 0.75 wt%
in-house 16h MWCNTs

EG + 1 wt% in-house
16h MWCNTs

283.15 1125.30 283.15 1127.18
288.15 1121.84 288.15 1123.73
293.15 1118.36 293.15 1120.26
298.15 1114.88 298.15 1116.77
303.15 1111.38 303.15 1113.27
308.15 1107.86 308.15 1109.76
313.15 1104.34 313.15 1106.24
318.15 1100.79 318.15 1102.69
323.15 1097.22 323.15 1099.13
328.15 1093.63 328.15 1095.54
333.15 1090.02 333.15 1091.93
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The polynomial coefficients (ai) were calculated by the least-squares method. The backward
stepwise rejection procedure was used to reduce the number of non-zero coefficients. The coefficients
and the mean deviations from the regression lines are given in Table 5.

Table 5. Polynomial coefficients (ai) with standard deviations (SD) and mean deviations (δρ) from the
regression lines depending on NF concentration.

Concentration
(wt%)

a0
(kg·m−3)

SD
(kg·m−3)

a1
(kg·m−3·K−1)

SD
(kg·m−3·K−1)

a2·104

(kg·m−3·K−2)
SD·104

(kg·m−3·K−2)
δρ

(kg·m−3)

0 1120.25 0.0067 −0.69078 0.00062 −3.1935 0.12 0.0097
0.25 1121.82 0.0061 −0.69119 0.00056 −3.0816 0.11 0.0080
0.5 1123.68 0.0054 −0.69085 0.00050 −3.0583 0.10 0.0071

0.75 1125.29 0.0064 −0.68878 0.00059 −3.2914 0.11 0.0084
1 1127.18 0.0062 −0.68823 0.00057 −3.2960 0.11 0.0081

The isobaric thermal expansion coefficient, αp, is one of the most important fundamental material
constants. The αp was calculated by the definition below.

αp ≡ −

(
1
ρ

)(
∂ρ

∂T

)
p

(2)

The obtained results are listed in Table 6 and presented in Figure 6.Fluids 2020, 5, x 9 of 13 
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Table 6. Isobaric thermal expansion coefficient of EG and NFs in the temperature range from 283.15 K
to 333.15 K.

T (K) αp ·104 (K−1) T (K) αp ·104 (K−1) T (K) αp ·104 (K−1)

EG EG + 0.25 wt%
in-house 16h MWCNTs

EG + 0.5 wt% in-house
16h MWCNTs

283.15 6.166 283.15 6.161 283.15 6.148
288.15 6.214 288.15 6.208 288.15 6.194
293.15 6.262 293.15 6.255 293.15 6.241
298.15 6.310 298.15 6.303 298.15 6.288
303.15 6.359 303.15 6.350 303.15 6.335
308.15 6.409 308.15 6.399 308.15 6.383
313.15 6.458 313.15 6.447 313.15 6.431
318.15 6.508 318.15 6.496 318.15 6.480
323.15 6.559 323.15 6.545 323.15 6.529
328.15 6.610 328.15 6.595 328.15 6.579
333.15 6.661 333.15 6.646 333.15 6.628

EG + 0.75 wt%
in-house 16h MWCNTs

EG + 1 wt% in-house
16h MWCNTs

283.15 6.121 283.15 6.106
288.15 6.169 288.15 6.154
293.15 6.218 293.15 6.202
298.15 6.266 298.15 6.251
303.15 6.316 303.15 6.300
308.15 6.366 308.15 6.350
313.15 6.416 313.15 6.400
318.15 6.466 318.15 6.451
323.15 6.517 323.15 6.501
328.15 6.569 328.15 6.553
333.15 6.621 333.15 6.605

3.4. Isobaric Heat Capacity

The isobaric heat capacity of EG and nanofluids containing 0.5 wt% and 1.0 wt% of MWCNTs
was measured in the temperature range from 283.15 K to 333.15 K in 5 K steps. The obtained results
are listed in Table 7 and presented in Figure 7.

Table 7. Isobaric heat capacity of EG and NFs in the temperature range from 283.15 K to 333.15 K.

T (K) Cp (J·kg−1·K−1) T (K) Cp (J·kg−1·K−1) T (K) Cp (J·kg−1·K−1)

EG EG + 0.5 wt% in-house
16h MWCNTs

EG + 1 wt% in-house
16h MWCNTs

283.15 2387 283.15 2385 283.15 2365
288.15 2415 288.15 2410 288.15 2388
293.15 2442 293.15 2434 293.15 2411
298.15 2469 298.15 2459 298.15 2435
303.15 2495 303.15 2483 303.15 2458
308.15 2520 308.15 2506 308.15 2482
313.15 2544 313.15 2529 313.15 2506
318.15 2567 318.15 2552 318.15 2530
323.15 2590 323.15 2575 323.15 2554
328.15 2612 328.15 2597 328.15 2578
333.15 2633 333.15 2618 333.15 2602



Fluids 2020, 5, 241 9 of 12

Fluids 2020, 5, x 10 of 13 

 
Figure 7. The influence of temperature on the isobaric heat capacity of EG and EG-based NFs. Solid 
lines—linear trends. 

3.5. Prandtl Number 

The Prandtl number (Pr) of EG and nanofluids containing 0.5 wt% and 1.0 wt% of MWCNTs at 
temperatures of 298.15 K, 303.15 K, and 308.15 K, was calculated based on Equation (3). The obtained 
results are listed in Table 8 and presented in Figure 8. 𝑃𝑟 = 𝐶௣𝜂𝜆  (3) 

Table 8. Prandtl number of EG and NFs in the temperature range from 298.15 K to 308.15 K. 

T (K) Pr (–) T (K) Pr (–) T (K) Pr (–) 
 

EG  EG + 0.5 wt% in-house 16 h 
MWCNTs 

 EG + 1 wt% in-house 16 h 
MWCNTs 

298.15 170.9 298.15 211.5 298.15 257.0 
303.15 141.0 303.15 178.4 303.15 222.6 

308.15 117.3 308.15 149.8 308.15 195.7 

 

 

Figure 7. The influence of temperature on the isobaric heat capacity of EG and EG-based NFs. Solid
lines—linear trends.

3.5. Prandtl Number
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λ
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4. Discussion and Conclusions

Referring back to Figure 1, pristine 760 µm-long MWCNTs (Figure 1)—serving as the
dispersed phase in nanofluids—were obtained via c-CVD. Macroscopically, MWCNT grew as
vertically aligned films (Figure 1a) composed of straight, low-defect, several-dozen-wall nanotubes
(Figure 1b). Importantly, all NFs–obtained via the elaborated three-stage protocol emerged as stable,
black dispersions. Notably, in the range from 0 to 1 wt.%, the relationship between MWCNT
concentration and thermal conductivity of NFs was fully linear. The maximum enhancement in thermal
conductivity compared to the base liquid was found equal to 31.5% for NF containing 1 wt% in-house
16h MWCNTs. Such an increase could be linked purely to the behavior of MWCNTs, which acted as
‘thermal bridges’ in the continuous EG-phase. The overall effect is, hence, the generation of preferential
paths enabling more efficient heat transfer. Additionally, as essential from the application point-of-view,
MWCNT-EG NFs—in the entire range of nanotube concentrations tested herein–emerged as Newtonian
fluids, enabling minimized pressure losses throughout the pumping. Being still in the application area,
an increase in the density of NFs with MWCNT concentration was at the minimum level. At the same
time, the isobaric thermal expansion coefficient of EG-based NFs as compared with base EG could
be treated as insignificant. Importantly, since Pr >> 1, the momentum diffusivity dominates over the
thermal diffusivity. Consequently, the thermal boundary layer is much thinner when compared to
the velocity boundary layer. Overall, the analysis of the above criteria proves that NFs based on long
MWCNTs—dispersed in EG in the presence of PVP as a stabilizer—constitute an excellent prognostic
for their prospective application as heat transfer media.
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Nomenclature

a0 polynomial coefficient in Equation (1) kg·m−3

a1 polynomial coefficient in Equation (1) kg·m−3
·K–1

a2 polynomial coefficient in Equation (1) kg·m−3
·K–2

Cp isobaric heat capacity J·kg–1
·K–1

d nanotube diameter nm
l nanotube length nm
Pr Prandtl number –
SD standard deviation of density kg·m−3

T temperature K
αp isobaric thermal expansion coefficient K–1

δρ mean deviation of density kg·m−3

η dynamic viscosity mPa·s
λ thermal conductivity W·m–1

·K–1

ρ density kg·m−3
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