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Abstract: Partitioning ocean flows into regions dynamically distinct from their surroundings
based on material transport can assist search-and-rescue planning by reducing the search domain.
The spectral clustering method partitions the domain by identifying fluid particle trajectories that
are similar. The partitioning validity depends on the accuracy of the ocean forecasting, which is
subject to several sources of uncertainty: model initialization, limited knowledge of the physical
processes, boundary conditions, and forcing terms. Instead of a single model output, multiple
realizations are produced spanning a range of potential outcomes, and trajectory clustering is used
to identify robust features and quantify the uncertainty of the ensemble-averaged results. First,
ensemble statistics are used to investigate the cluster sensitivity to the spectral clustering method
free-parameters and the forecast parameters for the analytic Bickley jet, a geostrophic flow model.
Then, we analyze an operational coastal ocean ensemble forecast and compare the clustering results
to drifter trajectories south of Martha’s Vineyard. This approach identifies regions of low uncertainty
where drifters released within a cluster predominantly remain there throughout the window of
analysis. Drifters released in regions of high uncertainty tend to either enter neighboring clusters or
deviate from all predicted outcomes.

Keywords: Lagrangian transport; spectral clustering; uncertainty quantification; parameter
sensitivity; ocean ensemble forecast; drifter data; search-and-rescue

1. Introduction

Fluid flows, even if unsteady and aperiodic, may admit persistent patterns generally referred to
as coherent structures that reveal flow characteristics related to the transport of fluid particles [1–3].
Coherent structures of the elliptic type [4–6] are portions of fluid that do not significantly mix with the
rest of the domain. From a Lagrangian perspective, the perimeter delimiting material within these
structures remains nearly constant as they move [7,8], and fluid can be transported over long distances
while surrounded by more vigorous mixing [2,9,10]. Eulerian methods compute coherent structures
directly from instantaneous velocity fields and may not highlight features that have a persistent impact
on transport. Additionally, these methods require full velocity fields, which may be unavailable or
hard to reconstruct from sparse sets of observed trajectories. Lagrangian methods, in turn, can identify
coherent structures based on the trajectories themselves and identify the dominant features over a
given time interval [2,7,10–12].

One approach for identifying these coherent structures uses cluster analysis. Clustering algorithms
reveal underlying structures in data sets by partitioning the data so that similar elements are assigned
to the same cluster, while dissimilar elements are assigned to different ones. These algorithms have
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been extensively studied and widely applied in image segmentation and anomaly detection, as well
as biological and physical processes [13,14]. For fluid transport analysis, clustering techniques can
efficiently identify elliptic structures when applied to fluid particle trajectories [5,15], which we refer
to as trajectory clustering.

Here, we analyze particle trajectories using the spectral clustering algorithm [16–19]. This method
has been used to identify coherent structures in analytic and simulated flows [15,20,21]. The clustering
performs a systematic partitioning of the trajectories into coherent and incoherent sets, providing a
conceptual simplification of the underlying dynamical system for a general flow. This method is also
frame-invariant, and hence the identified structures are the same in all frames that translate or rotate
relative to each other. One drawback of the spectral clustering method, however, is that there are a
number of free-parameters that the user has to select, which could impact the results [20].

While ocean drifter data can be clustered a posteriori to identify coherent structures, an a
priori analysis to predict coherent structures relies on trajectories obtained from a forecast model.
The clustering accuracy is limited by that of the trajectories, which, in turn, is limited by the accuracy
of the velocity model. In ocean modeling, however, several sources of uncertainties pose a challenge
to the Lagrangian approach [22,23]. To simplify ocean models and reduce computational expenses,
the governing equations are only resolved on a restricted range of spatial and temporal scales, and the
influence of scales outside this window is either parameterized or neglected. Uncertainties also
arise from the limited knowledge of processes within the scale window, which require approximate
representations or parameterizations. Moreover, measurements used for model initialization and
parameter estimation are limited in coverage and accuracy, leading to imprecise initial conditions
and model parameters. Finally, models of interactions between the ocean and the atmosphere are
approximate, and ocean boundary conditions are inexact. All of the above lead to differences between
the actual values and the modeled values of physical fields and properties.

To account for model uncertainties intrinsic to the modeling process, an effective option is to
perform ensemble statistics. Different sets of model parameter values generate an ensemble of possible
outcomes, which are then processed to provide probabilistic information about the variability on the
end results. Search-and-rescue planning, for instance, already considers ensemble statistics to produce
probability-distribution maps for the target’s location [24]. The vast uncertain parameter space together
with the continuous motion of floating objects driven by unsteady flows, however, can lead to error
accumulation in the predicted trajectories [25]. Coherent structures have been shown to depend less on
individual trajectories and are more robust to model parameter variations and noise, highlighting the
main structures in the flow even in the event of imperfect or scarce trajectories [23,26]. The robustness
of the clustering algorithm to perturbations in the individual trajectories via an ensemble set of
realizations has yet to be studied and could aid in quantifying uncertainty for the trajectory clusters.

The detection of robust clusters could then be used in the deployment of drifters to observe
such features in the ocean. Other Lagrangian methods have been used in the past in experiments
to interpret the observed behavior of drifters deployed in the ocean [27–33]. In these studies,
drifters were released, tracked, and their trajectories were compared to results from Lagrangian
analyses performed a posteriori using velocities from models, satellite altimetry, or radar measurements.
Few studies, however, have used Lagrangian methods to plan and execute field experiments [25,34,35].
The drifter-release experiment presented in [36], whose drifter data are used in this paper, is one of the
first experiments targeting coherent structures based on an a priori trajectory clustering obtained from
forecast simulations.

Our approach accounts for and quantifies uncertainty when clustering trajectories. We apply the
spectral clustering algorithm varying the method free-parameters to understand how the clustering
results are sensitive to the implementation, analyze ensemble simulations to understand how the
model parameters impact the resulting clusters, and finally apply the method to a forecast data set to
compare the clustering prediction to experimental drifter data. The method by Hadjighasem et al. [15]
is modified with a more broadly used similarity function and soft clustering membership probabilities,
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allowing for a probabilistic view of the clusters for each individual model realization. Two different
systems are analyzed with our approach: an analytic flow model and forecast simulations provided
by a coastal ocean model. First, the Bickley jet analytic flow [37,38] with model parameter variations
is used to mimic model uncertainty. Then, we analyze ensemble-forecasts generated by an ocean
model [39,40] of the coastal region of the Martha’s Vineyard island. Ensemble statistics of the resulting
clusters provide a probabilistic view of the coherent structures identified by the method. The forecast
clustering results are used to identify coherent structures in a drifter-release experiment, and the drifter
trajectories are compared to the forecast cluster behavior and associated uncertainty.

The paper is organized as follows. Section 2 presents the spectral clustering method used in this
work and how clustering results are processed to provide ensemble statistics. Section 3 introduces the
quasi-periodic Bickley jet system, performs ensemble statistics for a single set of particle trajectories
while varying the method free-parameters to quantify the sensitivity of the clustering results to the
implementation. Section 4 varies Bickley jet system model parameters to asses the robustness of the
identified coherent structures in a scenario of uncertainty in the velocity field. Section 5 presents the
clustering analysis used to target coherent structures in a drifter-release experiment south of Martha’s
Vineyard, and compares the forecast results to the observed drifter trajectories. Finally, conclusions are
presented in Section 6.

2. Method

This section presents the spectral clustering method and how uncertainty is measured. We adapt
the method of Hadjighasem et al. [15] to use soft clustering (fuzzy c-means) to assign a cluster
membership probability to each particle trajectory. Section 2.1 introduces the method along with
specifics of the similarity measure selected and the soft clustering approach. Section 2.2 presents
the general procedure we use to calculate statistics and quantify uncertainty when considering an
ensemble of possible clustering results.

2.1. Spectral Clustering Method with Soft Memberships for Trajectory Clustering

To analyze flows from a Lagrangian perspective, we consider massless fluid particles that move
with the velocity field u(t, x). The trajectory xi(t) of fluid particle i departing from xi(t0) at time
t = t0 is

xi(t) = xi(t0) +
∫ t

t0

u(τ, xi(τ))dτ. (1)

A total of N particles are initialized in a grid that uniformly covers the targeted domain at t0, and their
individual trajectories are numerically integrated and output at discrete time instances within the time
interval [t0, t f ].

We use the set of trajectories {xi(t)}1≤i≤N to partition the spatial domain into clusters. The spectral
clustering algorithm performs an eigenanalysis to project the trajectory set onto a subspace that
may yield clusters maximizing the within-cluster similarity and minimizing the between-clusters
similarity [41]. Particles clustered together should move as a compact group, with limited mixing
with particles outside of the cluster, while particles in different clusters should experience dissimilar
trajectories [5,15].

The spectral analysis requires the construction of a positive, weighted, undirected graph known
as the similarity graph. This graph quantifies the pairwise similarities between trajectories. Each graph
node represents a particle trajectory, and the graph edges are weighted by the similarity between the
nodes they connect [15,16,18]. To compute these weights, one must first define a measure for similarity
between trajectories. One possible metric for the dissimilarity between trajectories xi and xj is their
time-averaged distance

rij =
1

t f − t0

∫ t f

t0

dist(xi(τ), xj(τ))dτ, (2)
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where dist(·, ·) is the Euclidean distance. Then, a similarity measure for the edge weights wij =

w(rij) must be chosen as a function of the time-averaged distance. The only restriction on this
functional dependence is that the weight should be a monotonically decreasing function of the distance.
This choice of similarity function controls the graph edge weight distribution, and therefore can impact
the clustering results [18].

Hadjighasem et al. [15] use a similarity function that is the inverse of the time-averaged distance,
wij = lx/rij (a constant lx is included here to make the weight dimensionless and does not impact the
results). A more widely used function for graph partitioning is the Gaussian function [16–18]

wij = exp
(
−r2

ij/2σ2
)

, (3)

which we will use. The similarity radius σ > 0 is a method free-parameter that controls the spatial
width of the connected neighborhoods [16]. Note that wii = 1 and wij → 0 for rij � σ. The choice
of the Gaussian measure has a number of advantages over the lx/rij choice: first, it is bounded,
with 0 ≤ wij ≤ 1; second, no offset value is set in the diagonal entries [15]; and third, the sparsification
step can be skipped (or at least has a negligible impact on the results, see Supplementary Materials A),
as (3) goes to zero faster than the measure in [15] for large rij. The similarity radius σ in (3) determines
the rate of decay of wij to zero as rij increases, which is analogous to the graph sparsification in [15]
where wij = 0 for rij above a defined threshold. A direct comparison between these two similarity
functions and the impact of the σ-choice are presented in Sections 3.1 and 3.2, respectively.

The similarity matrix W ∈ RN×N stores the wij values, and the diagonal degree matrix D
is computed such that dii = ∑N

j=1 wij. The generalized eigenvectors q of the unnormalized graph
Laplacian L = D−W are computed from the generalized eigenproblem

Lq = λDq. (4)

The normalized vectors q1, q2, . . . , qN , corresponding to the generalized eigenvalues
0 ≤ λ1 ≤ . . . ≤ λN , differentiate properties in the graph and facilitate the clustering process [18].
While all of the eigenvectors provide information, the dominant eigenvectors, associated with
the smallest eigenvalues, reveal the most dynamically relevant characteristics. Each trajectory
is characterized by a value within each eigenvector, and these are the values ultimately used to
cluster trajectories.

The eigenvector matrix Q ∈ RN×M whose columns are the dominant eigenvectors q1, . . . , qM,
with M � N, stores the characteristics used to cluster the trajectories. The number of retained
eigenvectors M is specified depending on the system. Let yi ∈ RM be the characterization vector
corresponding to the i-th row of Q, which contains the condensed differentiating information of
trajectory i. The eigenanalysis provides a suitable low dimensional representation of the data set.
The characterization vectors {yi}1≤i≤N are then partitioned into K clusters. The relationship between
the number of clusters K and the number of dominant eigenvectors M used for clustering depends on
characteristics of the system, and is specified for each of the case studies in the following sections.

We cluster the characterization vectors using a fuzzy c-means algorithm [5,19], instead of the
conventional k-means often performed at this step [15,18]. The c-means algorithm assigns to each
trajectory i probabilities pi,k ∈ [0, 1] of being a member of cluster k, with 1 ≤ k ≤ K, such that
∑K

k=1 pi,k = 1. This step requires the prescription of a fuzziness parameter m > 1 that controls how
“tight” the clustering membership probabilities are. As m→ 1, the clustering result approaches the
k-means result where pi,k ∈ {0, 1}. For greater m, the “looser” distribution in membership probabilities
allows the identification of particles that present intermediate behaviors between clusters, as opposed
to always assigning a trajectory as member of a single cluster. The cluster centers are initialized based
on the dominant eigenvectors before starting the c-means iterative process detailed by Froyland and
Padberg-Gehle [5]. Finally, Hadjighasem et al. [15] use an eigengap heuristic to determine M and K
that relies on a large cluster differentiation to work properly, and in many practical cases an eigengap
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may be less pronounced or nonexistent [18]. We leave the number of dominant eigenvectors and
clusters as method free-parameters and study the related uncertainty associated to the clustering
results for each K-choice.

2.2. Uncertainty Quantification for Multiple Realizations

In Sections 4 and 5, we will be interested not in applying the spectral clustering algorithm to
a single realization of the flow, but in collecting clustering results from different realizations and
combining them to get statistical information about the variability of the clusters with the method
free-parameters σ, m and K, or with velocity model parameters. We therefore need a method to combine
clustering results from different realizations. Regardless of the differences between realizations,
we initialize the N particles on the same grid, so that trajectory i is uniquely labeled across realizations,
based on xi(t0). Each realization I ∈ {1, . . . , R} generates a full set of membership probabilities p(I)

i,k ,
with i ∈ {1, . . . , N} and k ∈ {1, . . . , K}. The cluster labels for different realizations are matched based
on the similarity between cluster centers.

To quantify the uncertainty of a trajectory i being a member of cluster k, the probabilities p(I)
i,k are

used to compute the mean membership probabilities over all R realizations

pi,k =
1
R

(
R

∑
I=1

p(I)
i,k

)
, (5)

and the corresponding sample standard deviations

Si,k =

√√√√ 1
R− 1

R

∑
I=1

(
p(I)

i,k − pi,k

)2
. (6)

Both the mean and the standard deviation of the realizations are bounded values, with 0 ≤ pi,k ≤ 1
and 0 ≤ Si,k ≤ 0.5. We perform this calculation for each trajectory, for each cluster.

3. The Bickley Jet System and Sensitivity to Method Free-Parameters

We analyze the analytic, quasi-periodic Bickley jet system to evaluate the spectral clustering
method free-parameter and velocity field model sensitivity. This system is an idealized model
of a meandering zonal jet under geostrophic balance and has been extensively used to illustrate
coherent structures in fluid flows [20,37,38,42]. The model features a sheared zonal flow on which a
superposition of Rossby-like waves propagate. The streamfunction ψ prescribing the two-dimensional
velocity field u = −∂yψ ex + ∂xψ ey with a superposition of three waves is

ψ(t, x, y) = −UL tanh
( y

L

)
+ UL sech2

( y
L

) 3

∑
n=1

An cos [kn(x− cnt + φn)] , (7)

where U and L are a characteristic speed and length, respectively. The domain is periodic in
the x-direction, with periodicity lx = 2πRe cos(60◦), where Re = 6371 km is Earth’s radius.
The rectangular domain corresponds to x/lx ∈ [0, 1], and we limit our analysis to y/lx ∈ [−0.15, 0.15].
The Rossby-like waves correspond to the three longest wave modes in the periodic domain,
with amplitudes An, wave numbers kn = 2πn/lx, phase speeds cn, and phases φn, for n = 1, 2, 3.
To model the self-consistent state obtained by Rypina et al. [37] for modes 2 and 3 on the periodic
domain, we fix U = 62.74 ms−1, L = 1767 km, c2/U = 0.2051, and c3/U = 0.4615. The mode-1 wave
has speed c1/U = 0.1446 chosen based on the golden ratio to break periodicity [15,37]. Provided that
A1 � min(A2, A3), the mode-1 wave acts as a small perturbation to the system’s periodicity. In this
section, we fix the mode amplitudes to A1 = 0.0075, A2 = 0.15, and A3 = 0.30, values used
by Hadjighasem et al. [15], and all three waves are in phase: φ1 = φ2 = φ3 = 0. Note, however,
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that while the system dynamics depend on the values of An and φn [37], there is no physical basis
for the stated choice of amplitudes and phases, and the impact of varying these parameters will be
explored in Section 4.

The present section discusses the application of the spectral clustering algorithm to the Bickley jet
system, and studies the sensitivity of the results to user-defined method free-parameters. We present
the impact of the choice of similarity measure in Section 3.1. Then, study the sensitivity to the
method free-parameters: similarity radius σ, in Section 3.2, tightness of the cluster memberships m,
in Section 3.3, and number of clusters K, in Section 3.4.

3.1. Gaussian Similarity Measure

To cluster the Bickley jet system according to the method described in Section 2.1, particles are
initialized in a uniform grid of 400 by 120 positions uniformly covering the domain, and advected
from t0 = 0 to t f = 40 days, matching [15]. The distance function in (2) takes into consideration the
x-periodicity of the domain, and the M = 6 dominant eigenvectors of (4) are used to partition the
domain into K = 7 clusters, to account for 6 materially coherent vortices, which are the coherent
clusters, and an incoherent cluster, the chaotic sea [15]. The method uses a fuzziness parameter m = 2.

The membership probabilities for the clusters identifying the 6 materially coherent vortices at
time t0 are presented in Figure 1. Figure 1a presents our results, obtained using a Gaussian similarity
function (3), with similarity radius σ/lx = 0.020, and no sparsification of the similarity matrix.
The membership probabilities, plotted in different colors, highlight the 6 coherent vortices. We assign
labels to the vortices, from left to right, and vortex 6 appears split at t0 due to the x-periodicity.
The membership probabilities of being part of the chaotic sea, the seventh cluster, are complementary
to the ones plotted and are omitted throughout. Note that the use of a soft membership assigns to
particles located at the periphery of the vortices lower probabilities of being a member, which relates
to lower similarity in the dynamics (some of them may, for instance, be trapped inside the vortices for
just a fraction of the time window of analysis, then merge with the chaotic sea, or vice-versa).

Figure 1. Spectral clustering membership probabilities for clusters k ∈ {1, . . . , 6} identifying materially
coherent vortices, with fuzziness m = 2 and number of clusters K = 7 (incoherent cluster probabilities
are omitted). The similarity functions wij used are (a) the proposed Gaussian similarity measure (3)
with σ/lx = 0.020, and (b) the inverse measure lx/rij from [15] sparsifying values less than 1/0.075.
The six color maps presented here are also used in Figures 2, 4a,b, and 7.

The results for the Gaussian similarity measure in Figure 1a are similar to those obtained with
the lx/rij similarity measure used by Hadjighasem et al. [15], presented in Figure 1b. For the latter,
matrix entries wij = 0 for rij/lx > 0.075, and the offset diagonal value is chosen as 100 times the
largest matrix entry. The clustering results are particularly sensitive to the sparsification threshold,
which relates to the choice of σ for the similarity measure (3). Both similarity functions yield similar
results for the selected parameter values, with smoother transitions in membership probabilities
(from 1 to 0) for the Gaussian measure.
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When using the lx/rij similarity measure, the degree of sparsification is an additional parameter
for the clustering method that can impact the results. This parameter can be eliminated for the Gaussian
similarity measure as no sparsification was necessary for the result in Figure 1a, but it is worthwhile to
sparsify the matrix to reduce computational costs and storage. We demonstrate in the Supplementary
Materials A that sparsifying entries of W that satisfy wij < exp(−42/2) ≈ 3 · 10−4, corresponding to
rij > 4σ, has negligible impact on the clustering membership probability results, and hence we sparsify
according to this rule hereafter. Note that this result is valid for the Bickley jet, but the impact of
sparsification may vary for an arbitrary flow.

3.2. Similarity Radius

We highlighted in the previous section how the similarity radius σ is closely related to the
sparsification threshold used by Hadjighasem et al. [15]. While the sparsification threshold selection
was mentioned in [15], the clustering results are highly sensitive to this parameter [36], and we now
address this sensitivity.

While there may be some intuition on the size of the structures of interest, this is not always
helpful in prescribing σ or in understanding how the σ-choice impacts the resulting clusters.
Hadjighasem et al. [15] choose their threshold by defining which values of W to keep based on a fixed
percent sparsification of the matrix. However, for a fixed percent sparsification, the graph connections that
are retained are ultimately a function of the number of particles and their distribution in the initial grid.

Based of this relationship between the sparsification level in [15] and the parameter σ in the
Gaussian similarity function (3), we vary σ to demonstrating the clustering sensitivity to changes
in sparsification. First, we define an interval bounding all relevant σ-values to be tested. For σ/lx

distributed on the interval [0.005, 0.040] with steps of 0.001 (36 cases), the method is applied with
m = 2 to identify K = 7 clusters. Figure 2 presents the membership probabilities for each of the six
coherent clusters for σ/lx = 0.005, 0.015, 0.030 and 0.040. Compared to the results for σ/lx = 0.020
presented in Figure 1a, smaller values of σ (Figure 2a,b) tend to shrink the coherent clusters to the
vortex cores only, while larger choices of σ (Figure 2c,d) assign higher membership probabilities to
filaments that correspond to particles that do not belong to the coherent vortex from the start, but have
a long residence time on the perimeter of the vortex.

Figure 2. Membership probabilities for vortices k ∈ {1, . . . , 6}, for different choices of the parameter
σ, plotted at t = t0. Values correspond to (a) σ/lx = 0.005, (b) 0.015, (c) 0.030, and (d) 0.040.
Corresponding colorbars presented in Figure 1. (See Supplementary Materials for a video of the
time evolution of the clustered trajectories.)
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To determine how the membership probabilities for each trajectory depend on σ, we use
the information from the different realizations to compute the membership probability means pi,k
and sample standard deviations Si,k for each trajectory and cluster, as described in Section 2.2.
These statistical measures are presented in Figure 3. In Figure 3a, we present pi,1 for vortex k = 1,
and in Figure 3b the corresponding standard deviation Si,1. Figure 3c,d condense the information for
all vortices k ∈ {1, . . . , 6}. The superimposed mean pi,k̂ in Figure 3c and the superimposed standard
deviation Si,k̂ in Figure 3d are such that, for each trajectory i, k̂ is the cluster that maximizes the mean
membership probability, hence k̂ = argmaxk pi,k.

Figure 3. Clustering statistics varying σ, plotted at t = t0, for σ uniformly distributed in [0.005, 0.040].
Membership probability (a) mean for k = 1, (b) standard deviation for k = 1, (c) superimposed mean,
and (d) superimposed standard deviation for k ∈ {1, . . . , 6}. The two color maps presented here are
also used in Figures 4c,d, 5, 6, 8, and 9a.

Figure 3a,c demonstrate that the vortex cores have the greatest mean membership, which relates
to the fact that those particles are identified with high membership probabilities in all realizations.
Particles further away from the cores have a lower mean, as a result of lower probabilities of
being part of the respective vortices, in particular for low σ values. We also notice sharp drops
in the probability after a certain vortex size. The uncertainty of particles being part of a vortex
is highlighted by the standard deviations in Figure 3b,d, where we again see negligible standard
deviation (low uncertainty) on the membership probabilities for the cores. As a result that there are
no realizations that identify the central jet and some portions of the chaotic sea as part of the clusters,
there is also a low standard deviation for those trajectories. The highest uncertainty is obtained for
particles between the core and the chaotic sea, and some filaments are also highlighted with higher
standard deviation. Those filaments correspond to particles consistently identified as part of a vortex,
with high membership probabilities, for σ greater than a threshold, but not for lower values of σ.

3.3. Fuzziness Parameter

Next, we consider the sensitivity of the choice of the fuzziness parameter m, introduced by the
c-means step that assigns cluster membership probabilities. In this analysis, σ/lx = 0.020 while
m is varied on the interval [1.05, 3.00] with steps of 0.05. The results are presented in Figure 4.
The membership probabilities for the extreme values (m = 1.05 and 3.00) are illustrated in Figure 4a,b,
and the superimposed mean and standard deviation in Figure 4c,d.
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Figure 4. Membership probabilities for k ∈ {1, . . . , 6}, with (a) m = 1.05, and (b) m = 3.00.
Clustering statistics plotted at t = t0 for m uniformly distributed in [1.05, 3.00]. Membership probability
(c) superimposed mean and (d) superimposed standard deviation for k ∈ {1, . . . , 6}. Corresponding
colorbars presented in Figures 1 and 3.

While m = 1.05 (in Figure 4a) yields a bimodal probability distribution, with 99% of the pi,k > 0.5
cases also being greater than 0.95 (so tending to the corresponding k-means result), the use of m = 3.00
(Figure 4b) produces smoother probability transitions from the vortex core to the perimeter, as well
as overall lower membership probabilities, with only 10% of the pi,k > 0.5 cases greater than 0.95.
The superimposed mean and standard deviations reveal a similar trend to the one observed for the
dependence on σ, with two major differences: (i) while varying m introduces uncertainty in the
membership probability of trajectories starting at the vortex perimeters, the m-choice does not identify
filaments as part of the vortex for the current σ/lx = 0.020 value, and (ii) the magnitude of the standard
deviations related to m are about half of the ones associated to σ (see Figure 4d in comparison to
Figure 3d).

A direct comparison between the σ- and m-sensitivity is presented in Figure 5, where the mean and
standard deviation profiles are plotted along the cross-section x/lx = 0.5, passing through the center
of vortex 3 at t = t0, for y/lx = [−0.02, 0.15]. These profiles are interpolated from the membership
probability statistics for the particle positions in Figures 3c,d and 4c,d. Varying σ generates higher
mean membership probabilities in the vortex core and a more gradual drop in the mean probability
from the core to the perimeters (Figure 5a), which is associated to wider peaks of high standard
deviation (Figure 5b). While the core has slightly higher standard deviations for the m-variation study,
the maximum standard deviations, which occur at the vortex perimeters, are only half of the ones
associated to σ. There is, however, a remarkable consistency on the vertical coordinates where sharp
drops in pi,3 and Si,3 occur, for both σ and m variations: y/lx = 0 (bottom) and 0.13 (top). These results
reflect the fact that the method applied to the Bickley jet system is more sensitive to the choice of σ

than m.
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Figure 5. Membership probability profiles for (a) mean pi,3 and (b) standard deviation Si,3

corresponding to vortex k = 3, for the variable-σ (solid green line) and variable-m (dash-dotted
magenta line) studies. Insets present the clustering statistics for vortex 3, from Figures 3c,d and 4c,d.
The profiles correspond to the cross-section x/lx = 0.5 and are interpolated from the membership
probabilities at t = t0, presented in the insets. Corresponding colorbars presented in Figure 3.

3.4. Number of Clusters

Finally, the number of clusters in the system is not necessarily known beforehand, and here we
address how the clustering results statistically vary for different choices of K. As presented in [15],
for a suitable sparsification level of the similarity matrix, the eigengap heuristic can be used to infer
the use of M = 6 dominant eigenvectors to choose K = 7 for the Bickley jet, and thus identify the
6 materially coherent vortices, plus the chaotic sea. It is known, however, that the existence of an
eigengap is not guaranteed for any system, and depends on, among other properties, the connectivity
of the similarity graph [18]. The number of clusters for systems not as distinctly separated as the
Bickley jet will, therefore, be more challenging to determine. Without any prior knowledge about
the number of clusters in the system, one could consider clustering based on different numbers of
dominant eigenvectors of (4) into different K, which might result in merging clusters, splitting clusters,
missing clusters, or even identifying new ones. As we vary K, we fix the relationship between M and
K to K = M + 1 to always include the chaotic sea as an independent cluster [15].

As a result that the free-parameter K cannot be varied continuously, and because varying K while
fixing σ and m would only mean changing the number of eigenvectors to use in the c-means step,
we adopt a different strategy to quantify the K-uncertainty. For each choice of K, we perform statistics
using realizations in which σ and m are varied. The (σ/lx, m) pairs are sampled from uniform
distributions over [0.005, 0.040] × [1.05, 3.00], corresponding to the same intervals in Sections 3.2
and 3.3. We consider 100 samples from uniform distributions, and compute mean and sample standard
deviations for K = 6, 7, and 8. One should now expect missing or merging vortices for K < 7,
while splitting vortices or identifying new structures for K > 7. For the ensemble statistics, if vortex
k is not identified in realization I, we set p(I)

i,k = 0 for all i. For K = 8, a new coherent cluster
corresponding to the jet is consistently identified, in all realizations. The jet is therefore considered a
seventh coherent cluster.

The superimposed means and standard deviations for K = 6, 7, and 8 are presented in Figure 6.
For K = 6, Figure 6a,b reveals that different (σ/lx, m) free-parameter choices can result in different
vortices not being identified. Notably, vortices 3, 5, and 6 are missed in some of the realizations, which
reduces their mean probability and increases uncertainty for those clusters. Figure 6c,d, for K = 7,
presents six vortices identified with similar probability distributions to the ones obtained by varying σ

alone in Section 3.1 (in Figure 3c,d). Such similarity between these cases highlights the dominance of
the σ-sensitivity over the choice of m, and the fact that these two parameters do not compound each
other. Finally, Figure 6e,f present the results for K = 8, highlighting the consistent identification of the
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jet as a coherent cluster in the system. The jet cluster has a higher sensitivity to σ and m, with higher
standard deviations than the vortex cores in Figure 6b.

Figure 6. Clustering statistics varying σ and m, for different numbers of clusters K, with (σ/lx, m)

sampled from a uniform distribution over [0.005, 0.040]× [1.05, 3.00]. Each row for (a–f) presents the
superimposed mean pi,k̂ (left) and the corresponding superimposed standard deviation Si,k̂ (right),
for (a,b) K = 6, (c,d) K = 7, and (e,f) K = 8. Membership probability profiles corresponding to the
cross-section x/lx = 0.5 (solid gray line in (c)) are interpolated at t = t0 and presented for (g) mean pi,3
and (h) standard deviation Si,3 corresponding to vortex k = 3, for variable K. Corresponding colorbars
presented in Figure 3.

Figure 6g,h present a direct comparison between mean and standard deviation profiles along the
cross-section x/lx = 0.5, passing through the center of vortex 3 at t = t0, for the different K values.
For K = 6, the peak mean probabilities of vortex 3 are less than 0.75, and there is high standard
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deviations throughout. The mean membership probability at the core goes up to over 0.95 for K = 7,
corresponding to a drop in the standard deviation. As another cluster is added for K = 8 and the jet is
identified, Figure 6g,h reveals a modest drop in the mean values compared to K = 7, associated to an
increase in the standard deviation for the vortex core from 0.08 to 0.12.

While these ensemble statistics could be used as a basis for setting the method free-parameters,
a thorough investigation on this is beyond the focus of the parameter sensitivity study presented in
this paper. Based on the results for K = 6, 7, and 8, it would be reasonable to state that K = 7 could
be chosen over the other options, as it is the case leading to the smallest space-averaged uncertainty
(see impact of choosing K = 8 compared to K = 7 in Figure 6h). At the same time, however, the jet is
a structure that differentiates itself from the rest of the flow, by behaving in a distinct and coherent
way compared to the remaining particles in the chaotic sea. It could be argued that the choice of K = 8
for this system is an equally possible way of clustering the system, and provides extra information
about the jet cluster, at the price of increasing the result sensitivity to other method free-parameters.
Further work is necessary to automate this selection for a general system.

4. Ensemble Realizations and Uncertainty to Model Parameters and System Dynamics

In the previous section, a single set of model parameters of the Bickley jet system, with fixed
physical parameters, was used to demonstrate how the choice of the method free-parameters
impact the clustering results. Here, we focus on model parameters that influence the dynamics
of the system by changing the velocity field and the resulting trajectories. Multiple realizations
of the system are used to determine the clustering sensitivity to model parameters, allowing for a
characterization of the robustness of the identified clusters. Section 4.1 explains how system parameters
are randomized to generate multiple dynamically different realizations. Section 4.2 presents the
statistics over the described realizations, leading to an uncertainty quantification of the clustering
results to model parameters.

4.1. Perturbing the Bickley Jet Dynamics

While system parameters such as U, L, c2, and c3 are set by physical arguments (as discussed in
Section 3), the wave amplitudes An and phases φn are not, despite exerting a major influence on the
system dynamics [37]. We use these values as unknown model parameters to introduce variability in
the system dynamics. The amplitudes and phases are sampled from normal distributions centered
around the values used in Section 3 (and [15]). The realization presented in Section 3 is hereafter
referred to as the central realization, and corresponds to amplitudes An = An, with A1 = 0.0075,
A2 = 0.15, and A3 = 0.30, and phases φn = 0. The parameters for each realization I in this section are
generated by

A(I)
n / An ∼ N

(
1,
(

1
2

)2
)

and φ
(I)
n / lx ∼ N

(
0,
(

1
24

)2
)

, (8)

where N
(
µ, Σ2) denotes a normal distribution of mean µ and standard deviation Σ. The standard

deviations for A(I)
n are scaled by the corresponding mean values, while the standard deviation for φ

(I)
n

is chosen small enough so that the vortex centers for each realization are likely to be inside of the area
covered by the vortices in the central realization.

For each of the studies presented, a total of R = 1000 realizations are generated from the
distributions in (8), and the spectral clustering algorithm described in Section 2 is applied with method
parameters fixed to σ/lx = 0.020, m = 2 and K = 7. While it is possible that individual realizations
may require a different method free-parameter selection, our goal in presenting this section is to
separate the effects of method free-parameters from those of model parameters. By sampling model
parameters together with method free-parameters, the cluster uncertainty resulting from the model
would be obfuscated. We thus fix the method free-parameters based on the central realization only,
while considering multiple realizations with varying model parameters.
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Figure 7 presents the membership probabilities for four realizations with variable An and φn.
While the realizations do modify the position, shape, and dynamics of the vortices (see videos in
Supplementary Materials), their presence and number, as well as the presence of the shear jet, mostly
remain unchanged. Figure 7a,b presents how variable the initial cluster sizes and shapes can be, as
well as the effect of the wave phases on the nonuniform spacing between the identified vortices at t0.
While for most realizations all six vortices are identified, there are cases where some of the expected
vortices are not identified. Figure 7c presents a case in which the jet is identified and one of the vortices
is missed. For that case, vortex 5 gets identified as part of the chaotic sea (not plotted), while a highly
asymmetric jet is identified as another coherent cluster in the system, and trajectories are assigned
membership probabilities pi,jet. Figure 7d presents a case for which a more symmetric jet is identified
as a cluster and two of the vortices (2 and 4) are merged into a single cluster. Other realizations,
not illustrated here, result in cases where only a few (or even none) of the vortices are identified.
For those realizations, there is no clear Eulerian signature of the six vortices. In what follows, only
clusters that identify one and only one vortex are considered for statistical purposes.

Figure 7. Examples of membership probabilities for the six identified clusters, plotted at t = t0,
for different model parameters {An} and {φn} sampled from normal distributions. Cases correspond
to parameters (A1, A2, A3, φ1/lx, φ2/lx, φ3/lx) equal to (a) (0.0087, 0.19, 0.20, 0.01, 0.06, −0.03),
(b) (0.0069, 0.26, 0.25, 0.00, −0.08, 0.09), (c) (0.0102, 0.35, 0.25, 0.01, −0.01, 0.01), where the jet is
identified and one of the vortices missed, and (d) (0.0077, 0.11, 0.32, 0.00, −0.01, 0.02), where the
jet (grayscale) is identified and two vortices are merged. Corresponding colorbars for the vortices
presented in Figure 1. (See Supplementary Materials for a video of the time evolution of the clustered
trajectories.)

4.2. Uncertainty Quantification of Ensemble Simulations

Clustering results for all the realizations are analyzed to measure their uncertainty statistics.
For each one of the vortices, the mean and standard deviation over the ensemble of parameter
value sets of the Bickley jet are computed according to (5) and (6). Three independent studies,
with R = 1000 realizations each, are performed to first isolate the effect of the amplitude variation,
with variable An and φn = 0 (Figure 8a,b), then the phase variation, with variable φn and An = An

(Figure 8c,d), and finally the combined effect of varying both An and φn at the same time (Figure 8e,f).
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Figure 8. Clustering statistics, plotted at t = t0, for three ensembles of R = 1000 realizations of the
Bickley jet system with (a,b) variable amplitudes An and constant phases, (c,d) variable phases φn

and constant amplitudes, and (e,f) variable amplitudes An and phases φn. Coefficient values are
sampled from normal distributions around the central realization values. Each row in (a–f) presents
the superimposed mean pi,k̂ (left) and the corresponding superimposed standard deviation Si,k̂ (right).
Membership probability profiles corresponding to the cross-section x/lx = 0.5 (solid gray line in (e))
are interpolated at t = t0 and presented for (g) mean pi,3 and (h) standard deviation Si,3 corresponding
to vortex k = 3, for the three studies. Corresponding colorbars presented in Figure 3.

Figure 8a,c,e presents the superimposed membership probability means pi,k̂ and Figure 8b,d,f the
corresponding superimposed sample standard deviations Si,k̂, for each of the ensembles. While the
amplitude variation mostly affects the vortex size, the phase variation introduces uncertainty on
the horizontal position of the identified vortices, and the combined variation leads to an increase in
uncertainty around the vortex core positions. Even with a variety of behaviors observed, as illustrated
in Figure 7, averaging the ensemble smooths the vortices, resulting in cluster shapes and positions that
are similar to the ones obtained for the central realization (Figure 1a). However, the mean probabilities
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in Figure 8a,c,e highlight how introducing uncertainty in the wave amplitudes and phases leads to
smaller vortex cores with high membership probabilities. The mean probabilities for the combined An

and φn variation study now peak at 0.91 rather than 1.00. The membership probability decay from the
vortex cores to the perimeters is also more gradual than for the central realization, and the averaging
clears out previously identified filaments that are realization-dependent.

Figure 8b,d,f highlights a more spread out distribution and overall higher magnitude for the
superimposed standard deviations. Moreover, higher standard deviations are now observed at the
vortex cores. In addition, most of the low uncertainty regions associated to the jet in Figure 3b
have higher uncertainty in Figure 8f. With the varying model parameters and dynamics, the vortex
positions, shapes and trajectories are more variable. All of these introduce uncertainties that are
not observed for the central set of parameter values. Figure 8g,h presents a comparison between
means and standard deviations along the cross-section x/lx = 0.5, passing through the center of
vortex 3 at t = t0, for the three studies. Higher means and lower standard deviations are obtained
for the amplitude-only variation, and the lowest means and highest uncertainty are obtained for
the combined variation. The way these parameters contribute to the uncertainties and where mean
and standard deviations are maximized, however, do not behave like a simple superposition of
contributions. The nonlinear combination is highlighted, for example, by the location of the peaks in
standard deviation in Figure 8h that occur closer to the vortex core for the combined variation than for
any of the individual variations. The ensemble analysis, therefore, highlights structure sensitivities
(and robustness) that are not apparent from the central realization alone.

To illustrate the ramifications of regions of high uncertainty, we demonstrate how different
ensemble trajectories are when initialized at high and low uncertainty locations. At t0 = 0, the orange
particles in Figure 9a are initially located at the core of cluster 1 and correspond to pi,1 = 0.883 and
Si,1 = 0.287, while the red particles start at the perimeter of cluster 4 and correspond to pj,4 = 0.469
and Sj,4 = 0.475. Figure 9b–d presents snapshots of the particle positions for all 1000 realizations
at three different times. For reference, the gray boundaries enclose vortices k = 1 and 4 for the
central realization (for particles such that pi,k ≥ 0.5). While particles released in the position of lowest
uncertainty (orange) remain concentrated, particles released in the position of highest uncertainty (red)
quickly spread throughout the domain. The presence of the jet separating the top and bottom of the
domain keeps most orange and red particles from moving to the opposite half. Particle concentration
is more pronounced for the case of lower uncertainty, with 76.4% of the particles remaining inside the
corresponding boundary after t = 40 days, as opposed to only 45.0% for the higher uncertainty case.
This corresponds well to the dispersion statistics of the final particle positions, where the dispersion
length is the standard deviation of the final position for the different realizations. This length is 0.38 lx

for the particles released inside the vortex core (orange) and 2.48 lx for the particles released in the high
uncertainty zone (red). Note that the periodicity has been disregarded in this calculation. The six fold
increase in the dispersion length is characteristic of particles released in the chaotic sea and the high
uncertainty regions. Within the vortex cores, the dispersion is consistently low because the trajectories
remain close due to being stuck within the vortex that is highlighted by the clustering results.
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Figure 9. Evolution of trajectories from the 1000 realizations with variable An and φn released from a
low (orange, top) and high (red, bottom) uncertainty position. (a) Orange particles are initialized at the
core of vortex 1, while red particles are initialized at the perimeters of vortex 4. Positions are plotted on
top of the superimposed standard deviation Si,k̂ computed using vortices 1 and 4, and plotted at time
t0 = 0. The positions for the multiple realizations and the central realization vortex boundaries are
presented at (b) t = 5, (c) t = 20, and (d) t f = 40 days. Transparency is used to highlight high or low
concentration of particles. The vortex boundaries from the central realization are plotted in gray and
enclose particles with membership probabilities greater than 0.5, for clusters 1 and 4. Corresponding
colorbar for (a) presented in Figure 3. (See Supplementary Materials for a video of the time evolution.)

Regions of higher uncertainty, not characterized when considering the central realization only,
are revealed by the ensemble analysis, and correspond to flow regions for which particle cluster
membership is most unknown. Our analysis shows that the cores of the vortices are robust even if the
model parameters are varied, but the narrow filaments identified in the central realizations should
be viewed as less robust as demonstrated by the ensemble analysis. Further, while both particles
in Figure 9 are initialized and remain inside of their respective clusters for the central realization,
the same happens for less than half of the realizations considered, once model parameter uncertainty
is incorporated and accounted for.

5. Martha’s Vineyard Ensemble Forecast and Surface Drifter Trajectories

Having demonstrated the clustering uncertainty quantification method on an analytic system,
we apply the technique to a real ensemble forecast of a nested primitive equation ocean model,
with intrinsic model uncertainty. The model is used to forecast the three-dimensional velocity field for
the coastal region near Martha’s Vineyard, an island located south of Cape Cod, Massachusetts, USA.
Trajectories from drifters deployed [36] for the corresponding day are then compared to the cluster
behaviors. Section 5.1 presents characteristics of the Martha’s Vineyard region, the model used to
forecast the velocity field, and the results of the clustering uncertainty quantification analysis applied
to the ensemble forecast. Section 5.2 details the drifter experiment and compares the drifter trajectories
to the forecast trajectory clustering results and the associated uncertainty.

5.1. Velocity Model Ensemble Forecast and Uncertainty Quantification

The island of Martha’s Vineyard, with an area of almost 250 km2, is the largest island in New
England, and lies 11 km off the coast of Cape Cod. The prevailing currents in the coastal region south
of the island are associated with wind-driven coastal divergence, tidal forcing and a mean southward
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drift [31]. During the summer months, the region experiences a mean westward surface current that
reaches velocities of 15 cm s−1 [32]. The drifter deployment experiments targeting predicted coherent
structures [36], presented in Section 5.2, took place around the 2.5 km2 uninhabited island of Nomans
Land, south of Martha’s Vineyard. The channel between the two islands has a width of approximately
5 km and an average depth of 10 m.

We used the MIT Multidisciplinary Simulation, Estimation, and Assimilation Systems primitive
equation (MSEAS-PE) ocean modeling system [39,40] to compute ocean surface velocity forecasts in
the Martha’s Vineyard coastal region during August 2018. The modeling system provided forecasts of
the ocean state variable fields (three-dimensional velocity, temperature, salinity, and sea-surface
height) every hour, with a spatial resolution of 200 m. More details about the model forecast
initialization, tidal forcing, atmospheric flux forcing, and CTD data assimilation can be found in [25,36].
The deterministic two-way nesting ocean forecast initialized from the estimated ocean state conditions
at a particular time is referred to as the central forecast, and ensemble forecasts were initialized
using Error Subspace Statistical Estimation procedures [43]. The forecasts within the ensemble were
initialized from perturbed initial conditions of all state variables and forced by perturbed tidal forcing,
atmospheric forcing fluxes and lateral boundary conditions. These perturbations were created to
represent the expected uncertainties in each of these quantities. Finally, parameter uncertainties
(bottom drag, mixing coefficients, etc.) were also modeled by perturbing the values of parameters for
each forecast.

A total of 71 forecasts were considered for the present study. Fluid particle trajectories confined
to the surface were analyzed over a 6 h-time-window, between t0 = 16:00 and t f = 22:00 UTC on
7 August 2018. Such a short timing is critical in search-and-rescue operations, as after six hours
the likelihood of rescuing people alive drops significantly [25]. The forecast velocity fields used for
trajectory integration were generated the night before the experiment. Synthetic trajectories were
computed using the web-based gateway Trajectory Reconstruction and Analysis for Coherent Structure
Evaluation [44,45]. At time t0, particles are uniformly distributed on a 250-by-250 grid covering the
domain [70.65◦ W, 70.90◦ W]×[41.15◦ N, 41.35◦ N], from which portions corresponding to land are
removed. This grid is approximately 21 km by 22 km.

Figure 10a presents the initial particle distribution, superposed with the velocity field for the
central forecast. Trajectories are integrated using an adaptive 7th-order Runge–Kutta–Fehlberg method
and bicubic spline spatial interpolation, with free-slip boundary conditions applied near land. Particle
positions are output every 5 minutes. Figure 10b presents the final positions of the particles for the
central forecast. Darker regions correspond to particles collecting, which is mostly observed along the
coast. The model velocity field captures the reversal of the tide, as can be observed from the flipping
in the average flow direction between t0 in Figure 10a and t f in Figure 10b. Trajectories obtained in
each of the 71 forecasts are presented in Figure 10c in contrast with the central forecast, for particles
initialized at distinct positions, to demonstrate the degree of trajectory variability between forecasts.

A similar study to the one in Section 3 was performed for the central forecast, to determine
the spectral clustering sensitivity to method free-parameters. We select the following method
free-parameters: similarity radius σ = 1 km, fuzziness m = 2, and number of clusters K = 4,
which are used for all R = 71 forecasts. While it is possible to break the domain into fewer clusters,
four clusters minimize the space-averaged standard deviation of the results. As a result that the
graph is fully connected with this choice of σ, λ1 = 0 and the components of q1 are constant [18].
Therefore, the clustering (in the absence of a chaotic sea) into K = 4 clusters is performed using the
information from eigenvectors q2, q3 and q4 only. The membership probabilities for the central forecast
are presented in Figure 11a for trajectories with pi,k ≥ 0.5. The domain is partitioned into 4 quadrants
of similar size, and gaps between clusters correspond to particles with membership probabilities lower
than 0.5.
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Figure 10. Martha’s Vineyard coastal area, central forecast particle distribution, and superimposed
forecast model velocity field at (a) the initial time t0 = 16:00, (b) the final time t f = 22:00 UTC.
(c) Trajectories obtained in each of the 71 forecasts for 4 different initial positions. Circles represent the
initial positions and crosses the final positions, after 6 hours. The darker trajectories correspond to the
central forecast.

Different forecasts are used to compute the means pi,k and sample standard deviations Si,k for
k ∈ {1, . . . , 4}. The superimposed mean pi,k̂ and standard deviation Si,k̂ are presented in Figure 11b,c.
The parameterization used for the model produces only a modest variation in the trajectory outcomes
over six hours as demonstrated in Figure 10c. Regions of highest uncertainty for this system correspond
to identifying the edges of the clusters accurately, but this level of uncertainty is significantly lower than
those observed in the Bickley jet example. The most pronounced uncertainty regions, in Figure 11c,
correspond to the boundary between clusters 1 and 4, followed by that between clusters 1 and 2.

Figure 11. (a) Central forecast membership probabilities at t = t0, for clusters k ∈ {1, . . . , 4}. The black
box encloses the domain where trajectories are initialized. Clustering statistics for ensemble of R =

71 forecasts: superimposed membership probability (b) mean pi,k̂ and (c) standard deviation Si,k̂.
The color maps presented in (a) are also used in Figure 12.

5.2. Drifter Data and Forecast Cluster Dynamics

The experiment targeting predicted coherent structures consisted of surface drifter releases that
took place on 7 August 2018, in the vicinity of Nomans Land [36]. The CODE drifters used in the
experiment have technical specifications listed in [25,36]. Drifters of the same design are routinely used
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by the U.S. Coast Guard in search-and-rescue operations, as well as in previous field experiments in the
coastal region near Martha’s Vineyard [31,32]. The drifters were equipped with GPS transmitters that
provided positioning fixes every 5 min, with an accuracy of a few meters. An elliptical route around
Nomans Land was used for the drifter deployment, employing two WHOI vessels to minimize ship
time, so that all drifters were in water by the start of the interval of analysis. Eighteen drifters were
deployed in the water around the predicted locations of the targeted coherent structures. The position
of the drifters at the starting time of our analysis, t0 = 16:00 UTC, is presented in Figure 12a.

Figure 12a–d presents the mean cluster trajectories for each of the 4 clusters, on which we
superpose the drifter positions from [36]. To plot the evolution of pi,k, the entire domain is first
split into 175× 175 bins. Then, at each time instance, an average membership probability for each
bin, over the forecasts, is calculated. This average is based on particles inside each bin at time t,
and weighted by their membership probabilities pi,k. The overall system dynamics are similar to what
was observed for the central forecast in Figure 10a,b, with the clusters highlighting groups of different
behavior. Using the labels from Figure 11a, while cluster 1 (purple) travels a longer distance to the
northeast, ending north of Martha’s Vineyard, cluster 2 (blue) moves a shorter distance northward,
while clusters 3 and 4 (red and yellow) are less dynamic and remain mostly to the east of Nomans Land.

Figure 12. Time evolution of the average clusters in a binned domain. The 18 drifters are marker-coded
depending on the cluster in which they started. Crosses represent the 4 drifters initialized at locations
of higher uncertainty, with Si,k̂ > 0.1. The times correspond to (a) t0 = 16:00, (b) t = 18:00, (c) t = 20:00,
and (d) t f = 22:00 UTC. Triangles are initialized on the purple cluster (3 drifters), squares on the blue
cluster (5 drifters), and circles on the orange cluster (6 drifters). Corresponding colorbars presented in
Figure 11a. (See Supplementary Materials for a video of the time evolution.)
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Drifters are marker-coded according to the mean membership probabilities pi,k of their spatial
position at t0. Triangles correspond to cluster 1, squares to cluster 2, circles to cluster 3, and no drifters
were initialized in cluster 4. Drifters initialized in higher uncertainty regions (see Figure 11c) are
plotted as crosses, and correspond to regions where Si,k̂ > 0.1, or pi,k̂ < 0.7. The results demonstrate
that the drifters predominately remain inside of the forecast model clusters during the first four hours
of the time interval, and exceptions to this behavior are associated with higher uncertainty. Consider,
for example, the three drifters represented as crosses, initially west of Nomans Land. Two of them
move along the northern coast of the island, with one of them beaching and the other ending on
cluster 2. The third drifter headed south first, then east, also toward cluster 2. This fact highlights
the value of the uncertainty quantification analysis to understand different dynamical behaviors in
the flow which are not captured by the central forecast alone. All drifters were eventually advected
eastward after 20:00.

Some discrepancies between the clustering predicted behavior and the drifter trajectories
were observed. Wind gusts that occurred between 16:00 and 20:00 significantly affected the drifter
trajectories. These gusts had not been predicted by the forecasts from the National Centers for
Environmental Prediction used by the MSEAS-PE model for the atmospheric forcing [36]. The study
was therefore limited by differences between observed flows and model flows, and the coherent
structure analysis accuracy is limited to the accuracy of the velocity field used for processing.
Nonetheless, drifters released in the clusters with high membership probabilities tend to behave
similarly to the clusters, even if they do not precisely match the predicted trajectory behavior. This fact
highlights the coherent structure robustness, even in uncertain conditions. The clustering analysis
partitions the domain into robust regions where a drifter released in the region will remain there or
nearby over the period of analysis. The uncertainty quantification analysis helped identifying the key
structures delimiting regions with different transport behaviors, further showing and expanding the
applicability of trajectory clustering for studying oceanic flows, despite model imperfections.

6. Conclusions

Ensemble statistics of the trajectory clustering results provide a partitioning of the fluid domain
that may provide critical information in emergency response situations, such as search-and-rescue
operations, when operational decisions about optimal resource allocation need to be made quickly,
accurately, and account for model uncertainties. We presented a modified version of the spectral
clustering method with soft membership probabilities, and applied it to fluid particle trajectories to
identify coherent structures first in an analytic flow model, then in forecast simulations provided by a
coastal ocean model. Uncertainty quantification was applied to assess both the result sensitivity to
the clustering method free-parameters and the cluster variability with unknown parameters of the
model data. The method sensitivity study, performed on the analytic quasi-periodic Bickley jet system,
identified the similarity radius as the free-parameter to which the clusters are most sensitive. To mimic
model uncertainty, the Bickley jet parameters were varied to perform a model sensitivity study that
highlights the robustness of vortex cores compared to the more uncertain vortex perimeters.

Finally, the method was applied to an ocean ensemble forecast of the coastal region of Martha’s
Vineyard, and the clustering results were compared to drifter trajectories from a drifter release
experiment targeting predicted coherent structures. The forecast clusters from the ensemble analysis
provided a good baseline for the drifter behavior, as drifters deployed within each cluster performed
similar motions to their corresponding clusters. Ocean transport predictions are challenging due to
the complexity of the underlying dynamics governing the flow, and while the Lagrangian approach
ultimately depends on the accuracy of the available velocity fields and the quality of the model data,
the results presented here demonstrate that the identified clusters are robust to uncertainties in the
model and able to predict the main elements of the organization of flow transport. The coupling of
the clustering approach to uncertainty quantification can provide a more complete and informative
description of flow transport and areas of higher and lower uncertainty within different clusters.
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Despite not having been the case for the drifter release presented here, a clustering forecast analysis
could be used in planning a drifter deployment for future experiments.

Further refinement of the trajectory clustering method is highly desirable, in particular aiming to
reduce parameter sensitivity. The uncertainty quantification with respect to method free-parameters
could be used to select parameters that minimize cluster variability, in order to identify clusters that are
physical structures, and not a byproduct of the system and parameters chosen. On a more fundamental
level, while the method presented here provides robust clusters, it may be possible to improve the
method by incorporating fundamental changes to the similarity measure, rather than addressing the
sensitivity to free-parameters only. To quantify trajectory similarity, one could not only consider the
similarity between the particle spatial coordinates in time, but also that of their velocity vectors, and
propose a hybrid notion of similarity. Finally, applying the method to other oceanic forecasts and
using the forecast clustering results to plan and execute drifter release experiments can be a promising
path to more effective experiments, by increasing the likelihood of released drifters capturing targeted
coherent structures and ocean transport barriers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-5521/5/4/184/s1,
Supplementary Material A: Similarity Matrix Sparsification, Supplementary Material B: Video Description,
Supplementary Videos 2, 7, 9 and 12 matching the corresponding figures in the manuscript.
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