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Abstract: The onset of thermal convection in uniformly rotating bidispersive horizontal porous layer,
uniformly heated from below, is analyzed. A generalized Darcy equation for the macro-phase is
considered to take the Vadasz number into account. It is proved that the presence of the Vadasz
number can give rise to oscillatory motion at the loss of stability of thermal conduction solution.
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1. Introduction

The onset of thermal convection is a very active research field due to the numerous applications
in real world phenomena (see, for example, [1–3] and references therein). Recently, a great attention
has been played to bidispersive porous media. A bidispersive porous medium is composed by clusters
of large particles that are agglomerations of small particles that can be looked as a porous medium
in which fractures or tunnels are introduced (see [4–6]). Denoting by Φ and ε the porosity associated
with the macro pores between the clusters and the porosity of the micro pores within the clusters,
respectively, the fraction of volume occupied by the micro pores is ε(1−Φ) while the solid skeleton
occupies the fraction of volume (1− ε)(1−Φ). Bidispersive porous media may be artificial [6] and they
are involved in many real engineering processes and geophysical applications, such as, for example,
in thermal convection in heat pipes [7], in the theory of landslides [8], as catalyst in the production of
high octane petrol [9].

Recently, in [10], the effect of Vadasz number on thermohaline convection in a horizontal
bidispersive layer, has been investigated. In particular, the destabilizing effect of heating from below
opposite to the stabilizing effect of the layer salted from below is studied. The effect of Vadasz number
has been widely studied for a single porosity medium [11–19], together with other effects, such as
the influence of an external magnetic field acting on an electrically conducting fluid [15] and the
presence of a chemical dissolved in the fluid [16]. In these models, a generalized Darcy equation is
employed to include the time derivative term, multiplied by a positive constant, of the seepage velocity.
In [18], Vadasz pointed out that the inertia term has a strong effect on the onset of convection in a
rotating porous layer. The uniform rotation in porous media finds relevant applications in the food
process industry, in geophysics, and in the chemical industry dealing with rotating machinery. For this
reason, many papers are devoted to the onset of thermal convection in rotating porous media (see,
for example, [20–26] and references therein). As it is well known, convection can be named steady
or oscillatory according to the secondary motion, arising when the initial rest state loses its stability,
is steady or oscillatory. The transition from the steady rest state to an oscillatory solution (i.e., the onset
of oscillatory convection) captures the interest of many researchers, because it is “less continuous”
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with respect to the onset of steady convection and because the oscillatory convection is used in various
fields that involve industrial and geophysical processes. Recently, in [27], the Coriolis effect has been
analyzed in bidispersive porous layers showing that the thermal convection can only arise via a steady
state (i.e., the principle of exchange of stability holds).

In this paper we reconsider the problem analyzed in [27], and investigate the effect of inertia in a
rotating bidispersive porous medium. We consider the inertia term in the macro-phase only (since
inertia effect can be neglected in the micro-phase) and show that inertia allows oscillatory convection
at the instability threshold, as done in [10]. The plan of the paper is as follows. Section 2 is devoted
to the introduction of mathematical model. To this aim, we consider the generalized Darcy equation
for the macro-phase only [10] and assume the same temperature in the macro and micro pores [28].
The linear instability is performed in Section 3. In particular, Sections 3.1 and 3.2 are respectively
devoted to the determination of the critical Rayleigh number for the onset of steady and oscillatory
convection, where the steady or oscillatory convection respectively means that—when the rest state
loses its stability—the convection arises via a steady or via an oscillatory (in time) state. In Section 4
the behaviour of the Rayleigh number for the onset of oscillatory convection with respect to the Taylor
number and the acceleration coefficients is numerically investigated. The paper ends with a conclusion
section in which the obtained results are summarized.

2. Preliminaries

Let us consider a homogeneous incompressible fluid filling a horizontal bidisperse porous layer L
of depth d, uniformly heated from below and rotating about a vertical axis. Let us introduce Oxyz,
which is an orthogonal frame of reference with fundamental unit vectors i, j, k (k pointing vertically
upwards) and denote by Ω = Ωk the constant angular velocity of L. The aim of this paper is to
investigate the influence of inertia effect on the onset of convection in bidispersive rotating porous
medium, but considering the effect of a non-zero inertia term in the macro fluid velocity equation.
In such a way, we restrict our attention to the more mathematically difficult, but contemporarily more
physically interesting, case: in the analyzed situation, the heating wishes to destabilize the layer and
initiate convective overturning, whereas the rotation of the layer acts in the opposite manner and it is
stabilizing. The inertia term will be seen to have a very strong effect on the convection thresholds and
we believe this is a justification for the analysis. When the inertial term is taken into account in the
momentum equation of the macro-phase, the fluid motion is governed by the equations ([6,10,27])

ρ0caU f
,t = −

µ

k f
U f − δ(U f −Up)−∇p f + ρ0gαTk− 2ρ0Ω

Φ
k×U f ,

− µ

kp
Up − δ(Up −U f )−∇pp + ρ0gαTk− 2ρ0Ω

ε
k×Up = 0,

(ρc)mT,t + (ρc) f (U f + Up) · ∇T = km∆T,

∇ ·U f = 0, ∇ ·Up = 0,

(1)

with
ps = Ps − ρ0

2
|Ωk× x|2

(ρc)m = (1−Φ)(1− ε)(ρc)s + Φ(ρc) f + ε(1−Φ)(ρc)p

km = (1−Φ)(1− ε)ks + Φk f + ε(1−Φ)kp

and Us is the seepage velocity, T is the temperature, Ps is the pressure, ca is the acceleration coefficient,
δ is the interaction coefficient, g = −gk is the gravity, x = (x, y, z), µ is the fluid viscosity, ρ0 is the
reference (constant) density, kr is the permeability, α is the thermal expansion coefficient, c is the
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specific heat, cp is the specific heat at a constant pressure, and km is the thermal conductivity. Moreover,
(·),t denotes the partial derivative with respect to t and s = { f , p} being the subscript f and p referring
to the macro and micro pore effects. To (1), we append the boundary conditions

T(x, y, 0, t) = TL, T(x, y, d, t) = TU , TL > TU ,

Us · n = 0, on z = 0, d, s = { f , p},
(2)

being n the unit vector in the upward vertical direction. Model (1)–(2) admits the thermal
conduction solution

U f
b = 0, Up

b = 0, Tb = −βz + TL, β =
TL − TU

d
. (3)

Introducing the perturbation fields

us = Us −Us
b, πs = Ps − pb, θ = T − Tb, s = { f , p} (4)

setting 
x = dx∗, t = I t∗, θ = θ∗T], us = Uus

∗, πs = Pπs
∗, s = { f , p},

I =
(ρc)md2

km
, U =

km

(ρc) f d
, T] = βd, P =

kmµ

k f (ρc) f

(5)

the non-dimensional system (omitting the asterisks) governing the evolution of perturbation fields is

−Ju f
,t − u f − γ(u f − up)−∇π f + Rθk− T k× u f = 0,

−krup − γ(up − u f )−∇πp + Rθk− ηT k× up = 0,

θ,t + (u f + up) · ∇θ = w f + wp + ∆θ,

∇ · u f = 0, ∇ · up = 0,

(6)

with u f = (u f , v f , w f ), up = (up, vp, wp) and

J =
ρ0cak f km

(ρc)mµd2 = Vadasz number,

γ =
δk f

µ
, T =

2ρ0Ωk f

µΦ
= Taylor number, kr =

k f

kp
, η =

Φ
ε

,

R =
ρ0αgβd2k f (ρc) f

µkm
= Rayleigh thermal number.

(7)

To (6) we append smooth initial data

us(x, 0) = us
0(x); πs(x, 0) = πs

0(x); θ(x, 0) = θ0(x) (8)

with ∇ · us
0 = 0, s = { f , p} and the boundary conditions

w f = wp = θ = 0, on z = 0, 1. (9)
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In the sequel, we perform the linear stability analysis of the null solution of (6)–(9) under the assumption
that the perturbations {us, vs, ws, πs, θ} (s = { f , p}) are periodic in the horizontal directions x and y,
respectively, of period 2π/ax, 2π/ay and denote by

V =

[
0,

2π

ax

]
×
[

0,
2π

ay

]
× [0, 1]

the periodicity cell.

3. Linear Instability

Neglecting the nonlinear terms, (6) reduces to

−Ju f
,t − u f − γ(u f − up)−∇π f + Rθk− T k× u f = 0,

−krup − γ(up − u f )−∇πp + Rθk− ηT k× up = 0,

θ,t = w f + wp + ∆θ,

∇ · u f = 0, ∇ · up = 0,

(10)

under the boundary conditions (9). Setting

ζs = (∇× us) · k, s = { f , p}, (11)

the third components of the curl of (10)1 and (10)2, respectively, lead to the following equations:
Jζ

f
,t + ζ f + γ(ζ f − ζ p)− T w f

,z = 0,

krζ p + γ(ζ p − ζ f )− ηT wp
,z = 0.

(12)

Since the system (10) is autonomous, setting ∀ϕ ∈ {us, vs, ws, πs, θ}

ϕ(x, y, z, t) = ϕ̃(x, y, z)eσt (13)

with σ ∈ C and substituting, respectively, in (12)1 and in (12)2, one has that:
(Jσ + 1 + γ)ζ f − γζ p − T w f

,z = 0,

(γ + kr)ζ p − γζ f − ηT wp
,z = 0,

(14)

i.e., 
ζ f =

T (γ + kr)

A
w f

,z +
ηγT

A
wp

,z,

ζ p =
ηT (1 + σJ + γ)

A
wp

,z +
γT
A

w f
,z,

(15)

being
A = (γ + kr)(1 + σJ) + γkr. (16)
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The third components of the double curl of (10)1–(12)2 are, respectively
(1 + σJ + γ)∆w f − γ∆wp − R∆1θ + T ζ

f
,z = 0,

−γ∆w f + (γ + kr)∆wp − R∆1θ + ηT ζ
p
,z = 0,

(17)

with

∆1 =
∂2

∂x2 +
∂2

∂y2 , ∆ = ∆1 +
∂2

∂z2 .

The derivative with respect to z of (15)1 and (15)2 leads to:
ζ

f
,z =

T (γ + kr)

A
w f

,zz +
ηγT

A
wp

,zz,

ζ
p
,z =

γT
A

w f
,zz +

ηT (1 + σJ + γ)

A
wp

,zz

(18)

and substituting (18) into (17), one has that
(1 + σJ + γ)∆w f − γ∆wp − R∆1θ + T 2

[
γ + kr

A
w f

,zz +
ηγ

A
wp

,zz

]
,

−γ∆w f + (γ + kr)∆wp − R∆1θ + ηT 2
[

γ

A
w f

,zz +
η(1 + σJ + γ)

A
wp

,zz

]
.

(19)

On taking into account (19) and (10)3–(10)5, let us consider the following initial-boundary
value problem

(1 + σJ + γ)∆w f − γ∆wp − R∆1θ + T 2
[

γ + kr

A
w f

,zz +
ηγ

A
wp

,zz

]
,

−γ∆w f + (γ + kr)∆wp − R∆1θ + ηT 2
[

γ

A
w f

,zz +
η(1 + σJ + γ)

A
wp

,zz

]
,

σθ = w f + wp + ∆θ,

∇ · u f = 0, ∇ · up = 0,

(20)

us(x, 0) = us
0(x); πs(x, 0) = πs

0(x); θ(x, 0) = θ0(x) (21)

w f = wp = θ = 0, on z = 0, 1 (22)

and let us look for normal modes solutions, i.e.,:

ϕ(x, y, z, t) = ϕ̃(z)ei(ax x+ayy)+σt, ∀ϕ ∈ {w f , wp, θ} . (23)

Setting D =
d
dz

, a2 = a2
x + a2

x, it follows that

∆1 ϕ = −a2 ϕ, ∆ϕ = (D2 − a2)ϕ, ∀ϕ ∈ {w f , wp, θ}. (24)
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Then, by virtue of (23) and (24), (20)1–(20)3 can be written as

(1 + σJ + γ)(D2 − a2)w̃ f − γ(D2 − a2)w̃p + Ra2θ̃ +
T 2

A

[
(γ + kr)D2w̃ f + ηγD2w̃p

]
= 0,

−γ(D2 − a2)w̃ f + (γ + kr)(D2 − a2)w̃p + Ra2θ̃ +
ηT 2

A

[
γD2w̃ f + η(1+σJ+γ)D2w̃p

]
=0,

σθ̃ = w̃ f + w̃p + (D2 − a2)θ̃.

(25)

In view of the boundary conditions, since the set {sin nπz}n∈N is a complete orthogonal system for

L2(0, 1), ∀ϕ̃(z) ∈ {w̃ f , w̃p, θ̃} there exists a sequence {ϕ̃n(z)}n∈N such that ϕ̃(z) =
∞

∑
n=1

ϕ̃0 sin nπz.

Subsequently, setting Λn = a2 + n2π2, (25) becomes

−
[

Λn(1 + σJ + γ) +
n2π2T 2(γ + kr)

A

]
w f

0 +

(
Λnγ− n2π2T 2ηγ

A

)
wp

0 + Ra2θ0 = 0,

(
γΛn −

n2π2T 2ηγ

A

)
w f

0 −
[

Λ(γ + kr) +
n2π2T 2η2(1 + σJ + γ)

A

]
wp

0 + Ra2θ0 = 0,

w f
0 + wp

0 − (Λn + σ)θ0 = 0.

(26)

From (26), the condition guaranteeing the existence of a non null solution is the following

R =
Λn + σ

a2
Λ2

n A2 + n2π2T 2ΛnB + n4π4T 4η2

Λn AC + n2π2T 2E
, (27)

being
B = (1 + σJ + γ)2η2 + (γ + kr)2 + 2ηγ2,

C = 4γ + kr + 1 + σJ, E = γ(η − 1)2 + η2(1 + σJ) + kr.
(28)

As it is well known, the onset of convection occurs or via a steady state –associated to σ = 0—and
named “steady convection”, or via an oscillatory state—associated to σ = ±iσ1 with σ1 ∈ R+ \
{0}—and named “oscillatory convection”. In the sequel, we determine the critical Rayleigh thermal
number for the onset of steady and oscillatory convection.

3.1. Steady Convection

In order to determine the critical Rayleigh thermal number for the onset of steady convection,
say RS, we substitute σ = 0 in (27). Then

RS = min
(n,a2)∈N×R+

Λn

a2
Λ2

n A2
1 + π2T 2ΛnB1 + n4η2π4T 4

Λn A1C1 + n2π2T 2E1
, (29)

with A1, B1, C1, E1 given by (16), (28) when σ = 0, i.e.,

A1=γ+kr+γkr, B1=(1+γ)2η2+(kr+γ)2+2ηγ2, C1=4γ+kr+1, E1=γ(η−1)2+η2+kr. (30)
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The minimum with respect to n ∈ N of the right-hand side of (29) is attained at n = 1. Then, setting
Λ = Λ1 = a2 + π2, one has that

RS = min
a2∈R+

fs(a2) := min
a2∈R+

Λ2 A2
1 + π2T 2ΛB1 + η2π4T 4

ΛA1C1 + π2T 2E1
. (31)

Let us remark that RS does not depend on J, i.e., RS does not depend on the inertial term.
Hence, RS coincides with the critical Rayleigh thermal number for the onset of steady convection in

the absence of inertia term found in [27]. Furthermore,
∂RS
∂T 2 > 0, i.e., T 2 has a stabilizing effect on the

onset of steady convection, as one is expected. When T 2 = 0, RS reduces to

(RS)T 2=0 = min
a2∈R+

Λ2 A1

a2C1
, (32)

that is the critical Rayleigh number for the onset of steady convection found in [10] in the absence of
rotation. The minimum of R evaluated for σ = 0 with respect to a2 is attained at a2 = a2

s , with a2
s being

a positive root of a fourth-order degree polynomial:

f (x) := A1C1x4 + c1x3 + c2x2 + c3x− π6c4, (33)

with ci constants and

c4 =

(
π2C1 +

π2T 2E1

A1

)(
A1 +

T 2B1

A1
+ T 4η2

)
.

Since lim
x→∞

f (x) = ∞, f (0) < 0, a2
s exists.

3.2. Oscillatory Convection

In order to determine the critical Rayleigh thermal number for the onset of oscillatory convection,
say RO, then we substitute σ = iσ1 in (27), with i being the imaginary unit and σ1 ∈ R+ \ {0}.
Subsequently, we take the real and imaginary parts of R, require the vanishing of the imaginary part
of R, substitute σ2

1 into the real part of R, and determine the minimum—with respect to (n, a2) ∈
N×R+—of the obtained number. Setting

A2 = γ + kr, B2 = 2(1 + γ)η2, (34)

and
k1n = Λ2

n A2
1 + n2π2T 2ΛnB1 + n4π4T 4η2, k2n = Λn(Λn A2

2 + n2π2T 2η2),

k3n = Λn(2Λn A1 A2 + n2π2T 2B2), k4n = Λn A1C1 + n2π2T 2E1,

k5n = Λn A2, k6n = Λn(A2C1 + A1) + n2π2T 2η2,

(35)

one obtains

R =
Λn + iσ1

a2
k1n − σ2

1 J2k2n + iσ1 Jk3n

k4n − σ2
1 J2k5n + iσ1 Jk6n

. (36)

Subsequently, one has that R = Re(R) + iσ1 Im(R) with

Re(R) = fo(a2) :=
1

a2[(k4n − σ2
1 J2k5n)2 + σ2

1 J2k2
6n]

{
Λn

[
(k1n − σ2

1 J2k2n)(k4n − σ2
1 J2k5n) + σ2

1 J2k3nk6n

]
+

− Jσ2
1
[
k3n(k4n − σ2

1 J2k5n)− k6n(k1n − σ2
1 J2k2n)

]}
.
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Im(R) =
{
(k1n − σ2

1 J2k2n)(k4n − σ2
1 J2k5n) + σ2

1 J2k3nk6n + Λn J
[
k3n(k4n − σ2

1 J2k5n)− k6n(k1n − σ2
1 J2k2n)

]}
a2
[
(k4n − σ2

1 J2k5n)2 + σ2
1 J2k2

6n
] .

The vanishing of the imaginary part of R implies that σ2
1 has to satisfy

k2nk5n J4x2− J2(k2nk4n+k1nk5n−k3nk6n+Λn Jk3nk5n−Λn Jk2nk6n)x+k1nk4n+Λn J(k3nk4n−k1nk6n)=0. (37)

Subsequently, if

k2nk4n + k1nk5n − k3nk6n + Λn Jk3nk5n −Λn Jk2nk6n < 0, k1nk4n + Λn J(k3nk4n − k1nk6n) > 0, (38)

or if
(k2nk4n+k1nk5n−k3nk6n+Λn Jk3nk5n−Λn Jk2nk6n)

2−4k2nk5n [k1nk4n+Λn J(k3nk4n−k1nk6n)] < 0, (39)

oscillatory convection can not occur. When the complementary case to (38) and (39) holds, substituting
the value of σ2

1 (positive solution of (37)) in the real part of R and minimizing with respect to (n, a2) ∈
N× R+, one obtains the critical Rayleigh thermal number for the onset of oscillatory convection.
Numerical simulations show that the minimum—with respect to n ∈ N—is attained at n = 1 and, hence

RO = min
a2∈R+

fo(a2) :=
1

a2[(k4−σ2
1 J2k5)2+σ2

1 J2k2
6]

{
Λ
[
(k1−σ2

1 J2k2)(k4−σ2
1 J2k5)+σ2

1 J2k3k6

]
+

− Jσ2
1
[
k3(k4 − σ2

1 J2k5)− k6(k1 − σ2
1 J2k2)

]}
= fo(a2

o),

(40)

with k j = k1j, j ∈ {1, 2, · · · , 6}.

4. Numerical Results

Because of the complexity in writing RO in algebraic closed form, in this section—via Matlab
software—we perform some numerical simulations in order to:

(1) analyze the asymptotic behaviour of RO with respect to T 2 and J; and,
(2) compare RS and RO to establish whether the convection arises through a steady state (stationary

convection) or via an oscillatory state (oscillatory convection).

Let us fix {γ = 0.8, kr = 1.5, η = 0.2} (see [10]) and let T 2 and J vary separately.
Let us fix T 2 = 10 and let J vary in order to analyze the behaviour of RO with respect to J. In this

case, one has that a2
s = 15.919, RS = 51.9256 and there exists a threshold J∗ ∈ (0.31, 0.32) for the inertia

coefficient, such that RO exists and convection arises via an oscillatory state (see Table 1). Furthermore,
RO is a decreasing function of J (see Figure 1).

Table 1. Critical threshold of J, from which RO exists and convection occurs via an oscillatory state in
the case {γ = 0.8, kr = 1.5, η = 0.2, T 2 = 10}.

J a2
o RO

0 @ @
0.25 @ @
0.31 @ @
0.32 15.3410 51.9150
0.35 14.7812 59.7010
0.4 14.0459 49.0951
0.7 11.9923 44.4657
1 11.2881 42.7649
5 10.3196 40.0417
10 10.2433 39.7591
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Figure 1. Asymptotic behaviour of RO with respect to J for {γ = 0.8; kr = 1.5, η = 0.2, T 2 = 10}.

In Figures 2 and 3, we plot the frequency σ2
1 of oscillation motions (solution of (37)) with respect to

a2 for different values of J: the graphs show that the existence of σ2
1 (>0) and, hence, of RO is guaranteed

for J > 0.31.
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Figure 2. Behaviour of σ1 versus a2.
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Figure 3. Behaviour of σ1 versus a2.
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Let us consider the following parameters set {γ = 0.8, kr = 1.5, η = 0.2, J = 0.5} and let T 2

vary in order to analyze the behaviour of RO with respect to T 2. In Table 2 the numerical values of
RO, computed through Matlab software are collected. In particular, we found that: (i) RO and RS are
increasing functions of T 2 (see Figure 4); (ii) there exists a threshold T ∗2 ∈ (7.26, 7.27) for the Taylor
number, such that, if T 2 > T ∗2, then the convection arises via an oscillatory state (see Figure 5).

Table 2. Critical threshold of T 2 from which RO exists and convection occurs via an oscillatory state in
the case {γ = 0.8, kr = 1.5, η = 0.2, J = 0.5}.

T 2 a2
s a2

o RS RO

7 15.3031 @ 45.5293 @
7.07 15.3234 12.5623 45.6906 46.0730
7.1 15.3320 12.5674 45.7596 46.0815
7.2 15.3603 12.5844 45.9885 46.1098

7.26 15.3769 12.5946 46.1253 46.1268
7.27 15.2796 12.5963 46.1480 46.1296
7.3 15.3878 12.6014 46.2162 46.1381
7.5 15.4410 12.6353 46.6677 46.1945
10 15.919 13.0503 51.9256 46.8876
20 16.1538 14.5717 67.9956 49.4695
50 15.2776 18.2109 95.5668 55.9909
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Figure 4. Behaviour of RS and RO with respect to T . The other parameters are set as
{γ = 0.8; kr = 1.5, η = 0.2, J = 0.5}.

To compare the asymptotic behaviour of RO versus RS to look for the occurrence of steady or
oscillatory convection, we have numerically studied some specific cases. For example, on fixing the
parameters {γ = 0.8, kr = 1.5, η = 0.2, J = 1.5} it arises that: for T 2 = 30, convection sets in via an
oscillatory state at R = RO = 51.8111 (Figure 5); while, for T 2 = 7.1, there is a switch in the onset of
convection that sets in through a steady state R = RS = 45.7596 (Figure 6).
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Figure 5. Behaviour of fs(a2) and fo(a2) for γ = 0.8; kr = 1.5, η = 0.2, J = 1.5 and T 2 = 30.
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Figure 6. Behaviour of fs(a2) and fo(a2) for γ = 0.8; kr = 1.5, η = 0.2, J = 1.5 and T 2 = 7.1.

The asymptotic behaviour of fo(a2) with respect to T 2 and J is shown in Figures 7 and 8,
respectively. In particular, Figure 7 shows that, for {γ = 0.8, kr = 1.5, η = 0.2, J = 10}, RO increases
with T 2 and, hence, as one is expected, rotation has a stabilizing effect on the onset of convection.
Figure 8 shows that, for {γ = 0.8, kr = 1.5, η = 0.2, T 2 = 10}, RO decreases with J and, hence, J has
a destabilizing effect on the onset of oscillatory convection.

0 10 20 30 40 50 60 70 80 90 100

a
2

40

50

60

70

80

90

100

110

120

130

140

f O
(a

2
)

Figure 7. Plot of fo(a2) for γ = 0.8, kr = 1.5, η = 0.2, J = 10.
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Figure 8. Plot of fo(a2) for γ = 0.8, kr = 1.5, η = 0.2, T 2 = 10.

Table 3 displays the numerical values of a2
s , a2

o , RS and RO of the previous examples.

Table 3. Onset of steady or oscillatory convection.

γ kr η T 2 J a2
s a2

o RS RO CONVECTION

10 7 2 30 1.3 22.74 15.78 198.64 202.89 STEADY
10 7 2 100 1.3 37.07 21.08 437.66 289.54 OSCILLATORY
0.8 1.5 0.2 300 10 19.25 13.92 193.25 63.84 OSCILLATORY
0.8 0.5 0.2 100 1 21.27 @ 120.07 @ STEADY
0.8 0.5 0.2 100 1.5 21.27 17.10 120.07 44.72 OSCILLATORY

On summarizing we have found numerically some thresholds T 2
c and Jc such that:

(i) if T 2 < T 2
c or if {T 2 > T 2

c , J < Jc}, then convection can only arise via a steady state;
(ii) if {T 2 > T 2

c , J > Jc}, convection can only arise via an oscillatory state.

5. Conclusions

In this paper, the onset of thermal convection in a horizontal bidispersive porous layer, uniformly
heated from below and rotating about a vertical axis, is analyzed in the presence of inertial effects.

The critical Rayleigh number for the onset of steady convection, RS, has been found in algebraic
closed form and it has been found that:

• RS does not depend on the acceleration coefficient, i.e., inertial effects do not affect RS;
• RS increases with the Taylor number, i.e., T 2 has—as one is expected—a stabilizing effect on the

onset of steady convection; and,
• RS reduces to the critical Rayleigh number for the onset of steady convection found in [27] in the

absence of inertia and to the critical Rayleigh number for the onset of steady convection found
in [10] in the absence of rotation.

Moreover, due to the complexity in evaluating exactly the threshold for the onset of oscillatory
convection RO, we have performed some numerical simulations through Matlab software in order to
analyze the influence of rotation and acceleration coefficient on RO. In particular, we have found that:

• RO is a decreasing function of J and there exists a threshold J∗ ∈ (0.31, 0.32) for the inertia
coefficient, such that RO exists and convection arises via an oscillatory state; and,

• RO is an increasing functions of T 2 and there exists a threshold T ∗2 for the Taylor number, such
that, for T 2 > T ∗2, the convection arises via an oscillatory state.
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Finally, we have compared RS and RO to establish whether the convection arises through a steady
state (stationary convection) or via an oscillatory state (Hopf bifurcation).
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