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Abstract: The viscous behavior of solids-in-liquid suspensions and liquid-in-liquid emulsions of
non-Brownian solid particles and liquid droplets dispersed in Newtonian liquids is thoroughly
discussed and reviewed. The full concentration range of the dispersed particles/droplets is covered,
that is, 0 < φ < φm, where φ is the volume fraction of inclusions (particles or droplets) and φm is
the maximum packing volume fraction of inclusions. The existing viscosity models for suspensions
and emulsions are evaluated using a large pool of experimental viscosity data on suspensions and
emulsions. A new generalized model for the viscosity of suspensions and emulsions is proposed and
evaluated. The model takes into consideration the influence of shear-induced aggregation of particles
and droplets. It also includes the effect of the droplet-to-matrix viscosity ratio λ on the viscosity
of emulsions. In the limit of high ratio of droplet viscosity to matrix viscosity (λ→∞ ), the model
reduces to the suspension viscosity model. The proposed model uncovers some important and
novel characteristics of suspension systems rarely discussed heretofore in the literature. The model
is validated using twenty sets of experimental viscosity data on solids-in-liquid suspensions and
twenty-three sets of experimental viscosity data on liquid-in-liquid emulsions.

Keywords: suspension; emulsion; dispersion; viscosity; relative viscosity; rheology; flow; aggregation;
droplets; particles

1. Introduction

Suspensions and emulsions are two-phase dispersions consisting of solid particles or liquid
droplets dispersed in a matrix of immiscible liquid. The applications of suspensions and emulsions
are many. Some of the industries where they find applications are: food, petroleum, cosmetics and
toiletries, pharmaceuticals, paints, etc. [1]. Knowledge of the rheology of suspensions and emulsions is
required in the formulation, handling, mixing, processing, storage, and pumping operations.

The rheological behavior of non-colloidal suspensions and emulsions of spherical inclusions can
generally be described adequately by the following Newtonian constitutive equation:

σ = −Pδ+ 2ηE (1)

where σ is the bulk stress tensor, P is the pressure, δ is the unit tensor, η is the shear viscosity, and E is
the bulk rate of strain tensor [1]. Thus, shear viscosity is the only rheological property that is relevant
in the description of the rheology of non-colloidal suspensions and emulsion of spherical inclusions,
especially when φ < φm where φ is the volume fraction of inclusions and φm is the maximum packing
volume fraction of particles. Note that non-colloidal spherical inclusions of suspensions are also
referred to as non-Brownian hard spheres. Such hard spheres are solid and rigid spherical particles
that do not interact with each other non-hydrodynamically (non-hydrodynamic or colloidal forces
such as electrostatic, steric, van der Waals, and Brownian forces are all absent). Only hydrodynamic
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interactions occur in these suspensions. Non-colloidal spherical inclusions of emulsions are spherical
un-deformed liquid droplets that interact with each other only hydrodynamically. The capillary
number (defined as Ca = ηC

.
γ/(σ/R), where ηC is the continuous-phase or matrix liquid viscosity,

.
γ is

the shear rate, σ is the interfacial tension, and R is the droplet radius) is vanishingly small for droplets
to remain spherical in a shear field [1,2].

This work deals with the modelling, prediction, and experimental validation of the shear viscosity
of concentrated non-colloidal suspensions and emulsions over the full concentration range of particles
and droplets. The existing viscosity/concentration equations for suspensions and emulsions are
reviewed and their limitations are pointed out. A large pool of experimental data on the viscosity of
non-colloidal suspensions and emulsions is gathered from different sources and the predictions of
the existing viscosity models are compared with the experimental data. No single existing viscosity
equation has been found to represent the experimental data adequately. A new generalized model
for the viscosity of concentrated non-colloidal suspensions and emulsions is developed taking into
consideration the influence of shear-induced aggregation of particles and droplets. The same model
describes the experimental viscosity data for both suspensions and emulsions very well over the full
range of dispersed-phase concentration.

2. Viscosity Models for Suspensions of Non-Brownian Hard Spheres

2.1. Infinitely Dilute Suspensions

For very dilute suspension of non-Brownian hard spheres, the relative viscosity (ηr) defined as the
ratio of suspension viscosity (η) to matrix viscosity (ηC), is given by the Einstein equation:

ηr = 1 + 2.5φ (2)

where φ is the volume fraction of the dispersed particles. The Einstein equation is valid only when
φ is small (φ→ 0). It ignores any particle-particle hydrodynamic interactions. It is generally valid
for φ ≤ 0.03 [2]. It should be noted that the Einstein equation is not restricted to non-Brownian hard
spheres. It is equally valid for suspensions of Brownian hard spheres as Brownian motion has no effect
on the rheology of infinitely dilute suspensions of hard spheres.

2.2. Non-Dilute Suspensions

At finite concentration of particles, particle-particle hydrodynamic interactions cannot be ignored.
For example, when two spheres are close to each other, the flow field around one sphere is affected by
the presence of the other sphere. Thus, the general expression for relative viscosity of suspension in the
presence of multi-particle hydrodynamic interactions can be written in the form of virial expansion as:

ηr = 1 + β1φ+ β2φ
2 + β3φ

3 + · · · (3)

where β1 is 2.5, β2 is a two-particle (pair) hydrodynamic interaction coefficient, and β3 is a three-particle
hydrodynamic interaction coefficient. The problem with Equation (3) is that the values of the
hydrodynamic interaction coefficients β’s (especially β3 and higher order) are not easily calculable.
Several authors have computed the value of the pair hydrodynamic interaction coefficient β2, but there
is no agreement. Guth and Simha [3] obtained a β2 value of 14.1; Saito [4] obtained β2 of 2.5; Vand [5]
obtained β2 of 7.349; Manley and Mason [6] obtained β2 of 10.05; Batchelor and Green [7] obtained a β2

value of 5.2 by assuming a random particle distribution and neglecting Brownian motion.
Several closed form expressions have also been proposed in the literature for the relative viscosity

of concentrated suspensions of hard spheres. According to Pal [8], the Einstein equation could be
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extended to non-dilute suspensions provided that free volume available to particles is used in the
equation as shown below:

ηr = 1 + 2.5
(

Volume o f particles
Free volume available to particles

)
= 1 + 2.5

(
φ

1−φ

)
=

1 + (3/2)φ
1−φ

(4)

This equation was originally derived by Saito [4] taking into consideration the hydrodynamic
interactions between uncorrelated particles. In the limit φ→ 0 , Equation (4) reduces to the
Einstein equation.

Several authors have used an “effective medium” approach to develop the viscosity equations
for concentrated suspensions [9,10]. For example, consider a volume V of a suspension with
dispersed-phase concentration φ1. If ∆Vd amount of dispersed phase is added further to the dispersion,
the new concentration φ becomes:

φ =
φ1V + ∆Vd

V + ∆Vd
≈ φ1 + φ2 (5)

where φ2 = ∆Vd/(V + ∆Vd). If we now assume that the starting suspension acts like an effective
medium of viscosity η(φ1) towards the newly added dispersed phase (∆Vd), the final suspension will
have a relative viscosity ηr(φ2) given as:

ηr(φ2) =
η(φ)

η(φ1)
=
ηr(φ1 + φ2)

ηr(φ1)
(6)

Hence,
ηr(φ1 + φ2) = ηr(φ1) × ηr(φ2) (7)

This functional relation has the following solution that also satisfies the Einstein equation,
Equation (2), in the limit → 0 :

ηr = exp(2.5φ) (8)

The functional relation, Equation (7), is approximate in nature as it is based on Equation (5),
which assumes V/(V + ∆Vd) ≈ 1. The exact relationship between φ, φ1, and φ2 is as follows:

φ = φ1

(
V

V + ∆Vd

)
+ φ2 (9)

Or,
φ = φ1(1−φ2) + φ2 (10)

Thus, the correct form of the functional relationship Equation (7) is as follows:

ηr(φ1 + φ2 −φ1φ2) = ηr(φ1) × ηr(φ2) (11)

This functional relationship has the following solution that also satisfies the Einstein equation,
Equation (2), in the limit → 0 :

ηr = (1−φ)−2.5 (12)

This viscosity equation, first derived independently by Roscoe [11] and by Brinkman [12],
gives reasonable predictions of relative viscosity of suspensions of hard spheres at low to moderate
volume fractions of the dispersed phase. It under predicts the viscosity at high volume fractions of
dispersed phase as it does not consider the packing limit of particles. The viscosity of suspensions
of hard spheres diverges at maximum packing volume fraction φm of particles, which is always less
than unity. For random close packing of uniform spheres, φm is 0.637. The packing limit, that is, φm,
is 0.7404 for hexagonal close packing of uniform spheres.
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Mooney [13] argued that the functional relationship, Equation (11), should be modified to the
following form in order to take into account the packing limit of particles:

ηr(φ1 + φ2) = ηr

(
φ1

1−φ2/φm

)
× ηr

(
φ2

1−φ1/φm

)
(13)

This functional relationship has the following solution that also satisfies the Einstein equation in the
limit → 0 :

ηr = exp
(

2.5φ
1−φ/φm

)
(14)

According to Krieger and Dougherty [14], Equation (13) over-corrects the crowding and packing
of particles. They suggested the following functional relationship:

ηr(φ1 + φ2) = ηr(φ1) × ηr

(
φ2

1−φ1/φm

)
(15)

The solution of Equation (15) that also satisfies the Einstein equation in the limit φ→ 0 is as follows:

ηr =

(
1−

φ

φm

)−2.5φm

(16)

Several authors have used the “cell model” approach to derive the expressions for the viscosity of
suspensions of non-Brownian hard spheres. In the cell model approach, the particles of a suspension
are envisioned to reside in well-defined unit cells in which the flow behavior is the same [9,10].
The flow behavior in a unit cell is determined by solving Stokes equations in and around a reference
particle surrounded by the matrix. Simha [15] chose the unit cell to be spherical in shape with the
reference particle at its center. The cell boundary was considered to be a rigid surface. The solution
of Stokes equation inside such a rigid concentric enclosure led to the following expression for the
suspension viscosity:

ηr = 1 +
5
2
χ3

 4
(
1− χ7

)
42χ5 − 25χ3(1 + χ4) + 4(1 + χ10)

 (17)

where χ is the ratio of the particle radius (R) to cell radius (RC), that is:

χ = R/RC (18)

Happel [16] treated the cell boundary as a frictionless surface and chose the unit cell radius RC
to be such that the volume fraction of particle in the cell was equal to the actual volume fraction
of particles in the suspension, that is, χ = R/RC = φ1/3. He obtained the following expression of
suspension viscosity:

ηr = 1 + 5.5χ3
[

4χ7 + 10− (84/11)χ2

10(1− χ10) − 25χ3(1− χ4)

]
(19)

Frankel and Acrivos [17] also utilized the cell model approach to derive a viscosity equation for
highly-concentrated hard-sphere dispersions. However, their approach was different from that of
Simha [15] and Happel [16] in that they used hydrodynamic lubrication theory to analyze the viscous
dissipation in a cell rather than obtaining an exact solution to the Stokes equations. The Frankel and
Acrivos equation is as follows:

ηr =
9
8

 (φ/φm)
1/3

1− (φ/φm)
1/3

 (20)

This equation is valid only in the limit φ→ φm .
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Graham [18] modified the Frankel and Acrivos analysis to develop the following viscosity equation
for hard sphere non-Brownian suspensions valid over the full range of dispersed-phase concentration
(0 ≤ φ ≤ φm):

ηr = 1 +
5
2
φ+

9
4

 1

ψ
(
1 + ψ

2

)
(1 +ψ)2

 (21)

where

ψ = 2

1− (φ/φm)
1/3

(φ/φm)
1/3

 (22)

This equation reduces to the Einstein equation in the limit φ→ 0 and to the Frankel-Acrivos
equation in the limit φ→ φm .

The main problem with the cell models is that the results obtained are strongly dependent on the
choices of the shape and size of the cells and on the boundary conditions imposed on the cells.

A number of empirical and semi-empirical equations have been proposed in the literature for the
viscosity of concentrated hard sphere non-Brownian suspensions. For example, Thomas [19] proposed
the following correlation on the relative viscosity of suspensions of uniform spheres based on the
extensive amount of experimental data available at that time:

ηr = 1 + 2.5φ+ 10.05φ2 + 0.00273 exp(16.6φ) (23)

Another empirical equation popular in the literature, originally proposed by Maron and Pierce [20]
and later derived by Quemada [21], is as follows:

ηr =

(
1−

φ

φm

)−2

(24)

Mendoza and Santamaria-Holek [22] proposed the following semi-empirical equation recently to
describe the viscosity of concentrated suspensions of spherical rigid particles:

ηr =

(
1−

φ

1− cφ

)−2.5

(25)

where c = (1−φm)/φm.
More recently, Faroughi and Huber [23] used the effective medium approach and proposed the

following equation for the viscosity of concentrated suspensions of spherical rigid particles:

ηr =

[
φm −φ

φm(1−φ)

]−2.5φm/(1−φm)

(26)

Table 1 summarizes and classifies the various suspension viscosity models just discussed.
The origin and limitations of the models are also noted.

Table 1. Summary and classification of various available suspension viscosity models.

Class of Suspension
Viscosity Model

Equation
Numbers References Comments

Exact theoretical
models (2) [2]

The exact theoretical models are based on single particle
mechanics. The dipole strength of a single particle immersed
in an infinite matrix fluid is calculated rigorously from the
knowledge of flow fields around the particle. Using the dipole
strength, the exact rheological constitutive equation for dilute
suspension is developed.

Virial expansions of
viscosity (3) [3–7]

Only the truncated form of the virial expansion of viscosity is
useful as the virial coefficients of third and higher order are
generally not known.
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Table 1. Cont.

Class of Suspension
Viscosity Model

Equation
Numbers References Comments

Effective medium
models-no packing

limit
(8), (12) [11,12]

The drawback of these models is that they place no restriction
on the amount of dispersed (particulate) phase that can be
incorporated in a suspension. They allow the volume fraction
of the dispersed particles to reach unity. This is physically
impossible in a suspension of rigid particles.

Effective medium
models—with
packing limit

(14), (16),
(26) [13,14,23]

The effective medium models with packing limit are popular
in the literature as they incorporate the effects of crowding and
packing of particles on the suspension viscosity. The viscosity
of suspension diverges when the packing limit is reached.
However, the available models often fail to correctly account
for the crowding and packing effects of particles on suspension
viscosity. For example, the Mooney equation, Equation (14),
often over predicts and the Krieger-Dougherty equation,
Equation (16), often under predicts the suspension viscosity

Cell models (17), (19),
(20) [15–17]

The drawback of the cell model approach is that it gives
different expressions of suspension viscosity depending on the
shape and size of the cell and the boundary condition specified
at the boundary of the cell. There is no single equation
(derived on the basis of the cell model approach) that is known
to describe the viscosity data of suspensions adequately.

Models based on
minimization of
viscous energy

dissipation

(24) [21]

The Maron-Pierce-Quemada (MPQ) model, Equation (24), can
be derived on the basis of minimization of viscous energy
dissipation. One problem with the MPQ model is that it does
not reduce to the exact theoretical model (Einstein equation) in
the limit φ→ 0

Semi-empirical
models

(21), (23),
(25) [18,19,22]

The drawback of these models is that they contain terms or
factors which have no theoretical basis. Furthermore, there is
no single semi-empirical equation that is known to describe
the viscosity data of all suspensions.

3. New Approach to Modelling the Viscosity of Suspensions of Non-Brownian Hard Spheres

The viscosity models discussed in the preceding section do not explicitly consider collision and
aggregation of particles in a shear field. A number of theoretical and experimental studies [5,24–26]
indicate that collision and aggregation of particles is a common occurrence in the flow of suspensions
of non-Brownian hard spheres. In shear flow of suspension, particles in the same stratum move with
the same velocity, and therefore, the mutual distances between the particles do not change. However,
particles moving in different strata are moving with different velocities, and therefore, collisions and
hence aggregation of particles takes place.

Vand [5] was probably the first to hypothesize the existence of shear-induced microstructure in
suspensions even in the absence of any non-hydrodynamic interactions. The experimental work of
Graham and Bird [26] confirms the formation of clusters of particles in sheared suspensions where only
hydrodynamic forces are present. The experimental observations of Graham and Bird [26] indicate
that clusters are continuously created and destroyed in shear flow of suspensions of non-Brownian
hard spheres. The clusters formed translate and rotate as the suspension is sheared. Figure 1 shows
schematically the existence of clusters in shear flow of suspension. At low concentration of particles,
the aggregates may consist of just doublets of particles. With further increase in particle concentration,
the size of the aggregates grows from doublets to triplets, from triplets to quartets, and so on. As an
example, Figure 2 shows the formation of doublets of particles. When the distance between the particles
is relatively large, the particles rotate and translate independently of each other. When the spheres are
close enough, they are no longer able to rotate independently. The pair of particles form a doublet that
rotates about its center of mass. The rotation of the doublet eventually brings the particles into different
strata moving with different velocities resulting in separation of doublet into individual particles.
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According to Vand [5], when a doublet is formed, the liquid in the neighborhood of the
points of contact of the particles is essentially immobilized. Thus, when aggregates of particles
are formed, a significant amount of the continuous phase liquid is immobilized within the aggregates.
The immobilized liquid becomes part of the dispersed phase and consequently, the effective volume
fraction of the dispersed phase becomes significantly higher than the actual volume fraction of particles.
Figure 3 shows schematically some examples of matrix liquid immobilization within different types of
clusters of particles.Fluids 2020, 5, x FOR PEER REVIEW 8 of 30 
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The effective volume fraction of particles (φe f f ) can be expressed as:

φe f f = kφ (27)

where k is the aggregation coefficient. The aggregation coefficient k is unity in the absence of aggregation,
otherwise it is greater than unity. The aggregation coefficient k is expected to a be function of φ as the
size and number of aggregates increase with the increase in φ, that is:

φe f f = k(φ)φ (28)

The simplest model of aggregation coefficient is a linear relation:

k = a + bφ (29)
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Using the boundary conditions: φ→ 0, k = 1 and φ→ φm, φe f f = 1, k = 1/φm , one can readily
show that:

k = 1 +
[

1−φm

φ2
m

]
φ (30)

Thus, the effective volume fraction of particles (φe f f ) can be expressed as:

φe f f =

{
1 +

[
1−φm

φ2
m

]
φ

}
φ (31)

Figure 5 shows the plots of aggregation coefficient k for different packing arrangement of particles
within clusters. The plots are generated from Equation (30) using the following φm values: random
close packing (RCP) of spheres, φm = 0.637, glass transition concentration of spherical particles,
φm = 0.58, and hexagonal close packing (HCP) of spheres, φm = 0.7404. For any given φ, the effective
volume fraction of particles, and hence k, is highest for glassy clusters as the particles are arranged
randomly in a loose manner. The lowest value of k corresponds to hexagonal close packing of particles
within clusters.
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In what follows, a viscosity model is developed for concentrated non-colloidal suspensions of
hard spheres taking into consideration shear-induced aggregation of particles. The viscosity model is
derived using the differential effective medium approach used extensively by Pal in his work on the
development of models for different physical properties of disperse media [27–32]. The approach is
discussed here only briefly. Consider a concentrated suspension of actual volume fraction of particles
φ and effective volume fraction of φe f f (expressed in the form of Equation (28) or Equation (31)).
The concentrated suspension is now imagined to be obtained from an initial matrix liquid by adding
differential or infinitesimally small quantities of particles successively to the system until the final
volume fraction of particles is attained. The addition of an infinitesimally small amount of particles
at any arbitrary stage (i) leads to the next stage (i + 1). According to the effective medium approach,
the suspension of stage (i) can be replaced by an equivalent effective medium, which has the same
viscosity as that of suspension at stage (i) and which is homogeneous (single-phase) with respect to
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the new set of particles added to reach stage (i + 1). As a result, the Einstein equation (Equation (2)
with φ replaced by φe f f ) can be utilized to calculate the differential increase in viscosity in going from
stage (i) to stage (i + 1). This process leads to the development of a differential equation, which can
be integrated to obtain the final solution. Roscoe [11] and Brinkman [12] used a similar approach to
derive a viscosity equation (Equation (12)) for suspensions of rigid spheres. The differential equation is
as follows:

dη
η

= 2.5
[ dφe f f

1−φe f f

]
(32)

Upon integrating Equation (32) with the limit η→ ηc at φ = 0 (also φe f f = 0), the following result
is obtained:

ηr =
(
1−φe f f

)−2.5
(33)

Substituting Equation (31) in Equation (33), the following model for the viscosity of non-colloidal
suspensions of hard spheres is obtained:

ηr =

[
1−

{
1 +

(
1−φm

φ2
m

)
φ

}
φ

]−2.5

(34)

This model could be re-cast as:
ηr = [1− kφ]−2.5 (35)

where k is the aggregation coefficient, given by Equation (30). Although this model (Equation (35))
was published recently by Pal [33], it was never validated for non-colloidal suspensions. Furthermore,
the theoretical background leading to the development of the model presented here was lacking.

4. Comparison of Experimental Suspension Viscosity Data with Model Predictions

The viscosity models for suspensions of non-Brownian hard spheres discussed in the preceding
sections are evaluated using twenty sets of experimental data available on the viscosity of suspensions
of non-Brownian hard spheres. Table 2 gives the summary of the various suspension systems
considered in evaluating the viscosity models. The suspension systems considered are generally
monodispersed or mono-modal consisting of non-Brownian hard spheres of different average particle
sizes. Non-hydrodynamic interactions are negligible.

Table 2. Summary of various suspension systems considered in evaluating the viscosity models.

Set No Range of φ Description Source

1 0–0.50 Glass spheres, diameter range 100–160 µm Vand [34]

2 0–0.30 Methyl methacrylate smooth spheres, non-Brownian particles, diameter
ratio of largest to smallest particle 1.6:1 Ward and Whitmore [35]

3 0–0.30 Methyl methacrylate smooth spheres, non-Brownian particles, diameter
ratio of largest to smallest particle 3:1 Ward and Whitmore [35]

4 0–0.397 Glass spheres, diameter range 5–10 µm Lewis and Nielsen [36]

5 0–0.410 Glass spheres, diameter range 30–40 µm Lewis and Nielsen [36]

6 0–0.50 Glass spheres, diameter range 45–60 µm Lewis and Nielsen [36]

7 0–0.45 Glass spheres, diameter range 90–105 µm Lewis and Nielsen [36]

8 0–0.50 Data represents average experimental viscosity curve drawn through
several different suspension systems of non-Brownian spheres Rutgers [37]

9 0–0.57 Data represents average experimental viscosity curve drawn through
several different suspension systems of non-Brownian spheres Thomas [19]

10 0–0.512 Glass spheres, diameter 230 µm Ting and Luebbers [38]

11 0–0.50 Glass spheres, diameter 43 ± 5.7 µm Zarraga et al. [39]

12 0–0.45 Polystyrene spheres, 40 µm Tanner et al. [40]

13 0.50–0.576 Monodispersed glass spheres, diameter ranging from 53.8 to 236 µm Chong et al. [41]
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Table 2. Cont.

Set No Range of φ Description Source

14 0–0.40 Monodispersed solid spheres, suspensions of different diameter
particles Chong et al. [41]

15 0–0.398 Polystyrene spheres, diameter 700 µm Ilic and Phan-Thien [42]

16 0–0.50 Monomodal suspensions, glass spheres average diameter 26 µm Smith [43]

17 0–0.50 Monomodal suspensions, glass spheres average diameter 61 µm Smith [43]

18 0–0.5236 Monomodal suspensions, glass spheres average diameter 125 µm Smith [43]

19 0–0.55 Monomodal suspensions, glass spheres average diameter 183 µm Smith [43]

20 0–0.50 Monomodal suspensions, glass spheres average diameter 221 µm Smith [43]

Figures 6–12 compare the model predictions with the experimental viscosity data for suspensions
of non-Brownian hard spheres. The comparisons reveal the following information: (1) the Einstein
and Roscoe-Brinkman models (Equations (2) and (12), respectively) severely under predict the
relative viscosity of suspensions (see Figure 6); (2) the Mooney model (Equation (14)) over predicts
the suspension viscosity, whereas the Krieger-Dougherty model (Equation (16)) under predicts the
viscosity (see Figure 7). The experimental data fall in between the predictions of the Mooney and
Krieger-Dougherty models. Note that φm of 0.637 corresponding to random close packing of uniform
spheres is used in the models to generate the plots in Figure 7; (3) the cell models of Simha and
Happel (Equations (17) and (19), respectively) are a poor fit to the experimental data (see Figure 8).
They predict higher viscosities at low concentrations and lower viscosities at high concentrations;
(4) The Graham and Thomas empirical equations (Equations (21) and (23), respectively) generally
predict lower viscosities at high concentrations (φ > 0.30). The MPQ (Maron-Pierce-Quemada) model
(Equation (24)) with φm of 0.637 generally over predicts the viscosity at low concentrations (φ < 0.30)
and under predicts at high concentrations (see Figure 9); (5) the model proposed by Faroughi and
Huber (Equation (26)) over predicts the viscosities (see Figure 10). This is not surprising as they
incorrectly incorporated the exclusion effect twice in their derivation as pointed out by Pal [44]; (6) the
semi-empirical equation promoted by Mendoza and Santamaria-Holek (Equation (25)) generally under
predicts the viscosity especially when φ > 0.30 (see Figure 11); and (7) the model proposed in this work,
Equation (34), describes the experimental data satisfactorily over the full range of particle concentration
(see Figure 12). It represents the average curve for twenty sets of experimental data on the relative
viscosity vs. particle concentration of suspensions.

Interestingly, the proposed model, Equation (34), describes all the experimental viscosity data
adequately with φGlass

m ≤ φm ≤ φHCP
m , where φGlass

m is the glass transition concentration of particles
where the suspension becomes glassy and φHCP

m is the hexagonal close packing concentration of
particles. As noted earlier, φGlass

m = 0.58 and φHCP
m = 0.7404 for uniform spheres. Figure 13 show the

bounds generated from the model, Equation (34), using 0.58 ≤ φm ≤ 0.7404. As can be seen, all the
experimental data fall within the bounds: the upper bound with φm = φGlass

m = 0.58 and the lower
bound with φm = φHCP

m = 0.7404. Thus, it is clear that the variation or spread in experimental relative
viscosity data at a given concentration of particles is largely due to different packing microstructure,
and hence different φm values, of different suspension systems. Interestingly, all the suspension
viscosity data for twenty sets can be collapsed on to a single curve by slight tweaking of φm values.
Figure 14 shows the plot where all the twenty sets of experimental viscosity data collapse on to a single
master curve. The data are plotted as ηr versus φe f f where φe f f is defined in Equation (31). Table 3
summarizes the φm values used in plotting of Figure 14. The φm value varies from one set to another
set in the range of 0.58 to 0.68. The average value of φm is 0.6105.



Fluids 2020, 5, 150 12 of 28

Fluids 2020, 5, x FOR PEER REVIEW 12 of 30 

 

Figure 6. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of Einstein equation and Roscoe-Brinkman model. 

 

Figure 7. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of Mooney and Krieger-Dougherty equations (߶௠ = 0.637). 

Figure 6. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres
with the predictions of Einstein equation and Roscoe-Brinkman model.

Fluids 2020, 5, x FOR PEER REVIEW 12 of 30 

 

Figure 6. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of Einstein equation and Roscoe-Brinkman model. 

 

Figure 7. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of Mooney and Krieger-Dougherty equations (߶௠ = 0.637). Figure 7. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres

with the predictions of Mooney and Krieger-Dougherty equations (φm = 0.637).



Fluids 2020, 5, 150 13 of 28

Fluids 2020, 5, x FOR PEER REVIEW 13 of 30 

 

Figure 8. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of Simha and Happel models. 

 

Figure 9. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of Graham, Thomas, and Maron-Pierce-Quemada (MPQ) models. ߶௠ = 0.637 
for the Graham and MPQ models. 

Figure 8. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres
with the predictions of Simha and Happel models.

Fluids 2020, 5, x FOR PEER REVIEW 13 of 30 

 

Figure 8. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of Simha and Happel models. 

 

Figure 9. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of Graham, Thomas, and Maron-Pierce-Quemada (MPQ) models. ߶௠ = 0.637 
for the Graham and MPQ models. 

Figure 9. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres
with the predictions of Graham, Thomas, and Maron-Pierce-Quemada (MPQ) models. φm = 0.637 for
the Graham and MPQ models.



Fluids 2020, 5, 150 14 of 28Fluids 2020, 5, x FOR PEER REVIEW 14 of 30 

 

Figure 10. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of model proposed by Faroughi and Huber (߶௠ = 0.637). 

 

Figure 11. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of model proposed by Mendoza and Santamaria-Holek (߶௠ = 0.637). 

Figure 10. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres
with the predictions of model proposed by Faroughi and Huber (φm = 0.637).

Fluids 2020, 5, x FOR PEER REVIEW 14 of 30 

 

Figure 10. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of model proposed by Faroughi and Huber (߶௠ = 0.637). 

 

Figure 11. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the predictions of model proposed by Mendoza and Santamaria-Holek (߶௠ = 0.637). 

Figure 11. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres
with the predictions of model proposed by Mendoza and Santamaria-Holek (φm = 0.637).



Fluids 2020, 5, 150 15 of 28Fluids 2020, 5, x FOR PEER REVIEW 15 of 30 

 

Figure 12. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres 
with the prediction of the proposed model (߶௠ = 0.637). 

Interestingly, the proposed model, Equation (34), describes all the experimental viscosity data 
adequately with ߶௠ீ௟௔௦௦ ≤ ߶௠ ≤ ߶௠ு஼௉, where ߶௠ீ௟௔௦௦ is the glass transition concentration of particles 
where the suspension becomes glassy and ߶௠ு஼௉  is the hexagonal close packing concentration of 
particles. As noted earlier, ߶௠ீ௟௔௦௦ = 0.58	and ߶௠ு஼௉ = 0.7404 for uniform spheres. Figure 13 show the 
bounds generated from the model, Equation (34), using 0.58 ≤ ߶௠ ≤ 0.7404. As can be seen, all the 
experimental data fall within the bounds: the upper bound with ߶௠ = ߶௠ீ௟௔௦௦ = 0.58	and the lower 
bound with ߶௠ = ߶௠ு஼௉ = 0.7404.  Thus, it is clear that the variation or spread in experimental 
relative viscosity data at a given concentration of particles is largely due to different packing 
microstructure, and hence different ߶௠ values, of different suspension systems. Interestingly, all the 
suspension viscosity data for twenty sets can be collapsed on to a single curve by slight tweaking of ߶௠ values. Figure 14 shows the plot where all the twenty sets of experimental viscosity data collapse 
on to a single master curve. The data are plotted as ߟ௥  versus ߶௘௙௙  where ߶௘௙௙  is defined in 
Equation (31). Table 3 summarizes the ߶௠ values used in plotting of Figure 14. The ߶௠ value varies 
from one set to another set in the range of 0.58 to 0.68. The average value of ߶௠ is 0.6105. 

Figure 12. Comparison of experimental viscosity data for suspensions of non-Brownian hard spheres
with the prediction of the proposed model (φm = 0.637).

Fluids 2020, 5, x FOR PEER REVIEW 16 of 30 

 

Figure 13. Upper and lower bounds predicted from the proposed model, Equation (34). Upper bound 
with ߶௠ = ߶௠ீ௟௔௦௦ = 0.58	 and lower bound with ߶௠ = ߶௠ு஼௉ = 0.7404. 
It is interesting to note that the proposed model uncovers some important and novel 

characteristics of suspension systems rarely discussed heretofore in the literature. For example, 
consider the relative viscosity vs. particles volume fraction experimental data of Set 10 suspensions, 
shown in Figure 15. The same suspension system undergoes a transition of microstructure from 
hexagonally close packed (HCP) clusters to randomly packed clusters (RCP) at a particle volume 
fraction of about 0.40. A similar behavior is exhibited by other suspension systems shown in Figures 
16 and 17. Figure 16 shows the experimental data of Set 18. In this case, the same suspension system 
undergoes a transition of microstructure from randomly packed clusters (RCP) to glassy clusters at a 
particle volume fraction of about 0.40. The experimental data of Set 19 is shown in Figure 17. This 
suspension system undergoes a transition of microstructure from hexagonally close packed (HCP) 
clusters to randomly packed clusters (RCP) at a particle volume fraction of about 0.35. 

Figure 13. Upper and lower bounds predicted from the proposed model, Equation (34). Upper bound
with φm = φGlass

m = 0.58 and lower bound with φm = φHCP
m = 0.7404.



Fluids 2020, 5, 150 16 of 28

It is interesting to note that the proposed model uncovers some important and novel characteristics
of suspension systems rarely discussed heretofore in the literature. For example, consider the relative
viscosity vs. particles volume fraction experimental data of Set 10 suspensions, shown in Figure 15.
The same suspension system undergoes a transition of microstructure from hexagonally close packed
(HCP) clusters to randomly packed clusters (RCP) at a particle volume fraction of about 0.40. A similar
behavior is exhibited by other suspension systems shown in Figures 16 and 17. Figure 16 shows
the experimental data of Set 18. In this case, the same suspension system undergoes a transition of
microstructure from randomly packed clusters (RCP) to glassy clusters at a particle volume fraction of
about 0.40. The experimental data of Set 19 is shown in Figure 17. This suspension system undergoes a
transition of microstructure from hexagonally close packed (HCP) clusters to randomly packed clusters
(RCP) at a particle volume fraction of about 0.35.
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Table 3. Summary of φm values used in the plotting of Figure 14.

Set No φm Set No φm

1 0.60 11 0.60
2 0.58 12 0.62
3 0.58 13 0.64
4 0.58 14 0.63
5 0.58 15 0.63
6 0.60 16 0.61
7 0.58 17 0.60
8 0.58 18 0.59
9 0.68 19 0.65

10 0.68 20 0.60
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5. Viscosity Models for Emulsions of Non-Brownian Spherical Droplets

5.1. Infinitely Dilute Emulsions

Assuming droplets to remain nearly spherical in shape, Taylor [45] developed the following
expression for the relative viscosity of infinitely dilute emulsions:

ηr = 1 +
(2 + 5λ

2 + 2λ

)
φ (36)

where λ is the ratio of droplet viscosity (ηd) to matrix viscosity (ηC). According to the Taylor equation,
Equation (36), the relative viscosity of emulsion depends not only on the volume fraction of inclusions
(droplets) but also on the viscosity ratio λ. The Taylor equation reduces to the Einstein equation,
Equation (2), in the limit of λ→∞ as expected.

The plots of relative viscosity ηr versus droplet volume fraction φ for dilute emulsions generated
from the Taylor equation for different values of the viscosity ratio λ are shown in Figure 18. With the
decrease in λ, the relative viscosity of emulsion decreases. When λ→∞ , the droplets behave as
rigid particles and therefore, the relative viscosity is the highest. When λ→ 0 , the droplets behave as
bubbles and consequently, the relative viscosity is the lowest. It should be noted that when droplets
are subjected to a shear field, the fluid within the droplets undergoes internal circulation due to
transmission of stresses from the surrounding matrix fluid. The internal circulation reduces the
distortion of flow patterns around the droplets in comparison with the solid particles. Consequently,
emulsions exhibit lower viscosities in comparison with suspensions.
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Like the Einstein equation, the Taylor is valid only when φ is small (φ→ 0). It ignores any
hydrodynamic and non-hydrodynamic interactions between the droplets.

5.2. Non-Dilute Emulsions

Oldroyd [46] extended the Taylor analysis of the viscosity of infinitely dilute emulsions to higher
volume fractions of droplets using the effective medium approach. He first treated emulsion as an
equivalent homogeneous medium with properties same as that of the actual emulsion. A small portion
of the effective homogeneous medium was then replaced by the actual components of the emulsion.
Assuming that there is no difference in the rheological behavior of the two systems at a macroscopic
level, the properties of the effective medium were determined. The Oldroyd viscosity equation for
emulsions is as follows:

ηr =

1 + 3
2φH

1−φH

 (37)

where
H =

(2 + 5λ
5 + 5λ

)
(38)

The Oldroyd model, Equation (37), reduces to Equation (4) in the limit λ→∞ where H = 1.
In the limit φ→ 0 , the Oldroyd model reduces to the Taylor equation, Equation (36).

Yaron and Gal-Or [47] and Choi and Schowalter [48] used the “cell model” approach to derive
the expressions for the viscosity of concentrated emulsions of spherical droplets. Following the cell
model approach of Happel [16], Yaron and Gal-Or [47] derived the following expression for the
emulsion viscosity:

ηr = 1 + 5.5χ3

 4χ7 + 10− (84/11)χ2 + (4/λ)
(
1− χ7

)
10(1− χ10) − 25χ3(1− χ4) + (10/λ)(1− χ3)(1− χ7)

 (39)
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Choi and Schowalter [48] extended the cell model analysis of Simha [15] for concentrated
suspensions to concentrated emulsions. They derived the following expression for the emulsion viscosity:

ηr = 1 +
5
2
χ3

 4
{(
λ+ 2

5

)
− (λ− 1)χ7

}
4(1 + λ) − 5(2 + 5λ)χ3 + 42λχ5 − 5(5λ− 2)χ7 + 4(λ− 1)χ10)

 (40)

where χ is the ratio of the droplet radius (R) to cell radius (RC) given as χ = R/RC = φ1/3. In the limit
λ→∞ , Equation (39) reduces to the Happel model, Equation (19), whereas Equation (40) reduces
to the Simha model, Equation (17). Also note that while the Choi and Schowalter model, Equation
(40), reduces to the Taylor equation, Equation (36), in the limit φ→ 0 , the Yaron and Gal-Or model,
Equation (39), does not reduce to the Taylor equation.

Pal [49] developed the following two expressions for the viscosity of concentrated emulsions of
spherical droplets. The differential effective medium approach was utilized to derive these expressions.
The crowding and packing of droplets were included in the derivation.

ηr

[
2ηr + 5λ
2 + 5λ

]3/2

= exp
(

2.5φ
1−φ/φm

)
(41)

ηr

[
2ηr + 5λ
2 + 5λ

]3/2

=

(
1−

φ

φm

)−2.5φm

(42)

Equation (41) reduces to the Mooney equation, Equation (14), in the limit λ→∞, whereas
Equation (42) reduces to the Krieger-Dougherty equation, Equation (16), when λ→∞ .

Pal [50] also proposed and verified through experimental viscosity data that, in general,
any explicit relative viscosity vs. concentration equation for suspension can be transformed to
emulsion relative viscosity vs. concentration equation by replacing ηr with ηr[(2ηr + 5λ)/(2 + 5λ)]3/2.
Thus, the suspension viscosity model proposed in Section 3 and validated with experimental data for
suspensions in Section 4 can be generalized to suspensions and emulsions as follows:

ηr

[
2ηr + 5λ
2 + 5λ

]3/2

= [1− kφ]−2.5 (43)

where k is the aggregation coefficient, given by Equation (30). From Equations (30) and (43), it
follows that:

ηr

[
2ηr + 5λ
2 + 5λ

]3/2

=

[
1−

{
1 +

(
1−φm

φ2
m

)
φ

}
φ

]−2.5

(44)

Equation (44) is a new generalized model for the viscosity of concentrated suspensions and emulsions
never published heretofore. This model takes into consideration the shear-induced aggregation and
packing of inclusions (solid particles, droplets, or bubbles) and associated increase in the effective
dispersed phase concentration. In the case of fluidic inclusions (droplets and bubbles), the model
also incorporates the effect of the viscosity ratio λ, that is, the ratio of inclusion material viscosity to
matrix liquid viscosity. The full derivation of the new generalized model, Equation (44), is given in
Appendix A.

Figure 19 compares the predictions of various emulsion viscosity models for viscosity ratio λ of 2.5.
The maximum packing volume fraction φm is taken as 0.637. Note that the Oldroyd model (Equation
(37)) and the cell models of Choi and Schowalter (Equation (40)) and Yaron and Gal-Or (Equation (39))
do not involve any φm. The Oldroyd and cell models show, relatively speaking, a gradual rise in the
emulsion viscosity with the increase in volume fraction of droplets (φ). For a given φ, these models
generally predict emulsion relative viscosity in the following order Oldroyd (Equation (37))<Yaron
and Gal-Or (Equation (39))<Choi and Schowalter (Equation (40)). The models involving the crowding
effect and packing limit (φm) of droplets, that is, Equations (41), (42), and (44) all show a much sharper
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rise in the emulsion relative viscosity with the increase in volume fraction of droplets. The new
model proposed in this work, that is, Equation (44), predicts emulsion relative viscosities, which fall in
between the predictions of Equations (41) and (42).
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6. Comparison of Experimental Emulsion Viscosity Data with Proposed Model Predictions

The generalized viscosity model for emulsions and suspensions proposed in the preceding section
is evaluated using twenty-three sets of experimental data available on the viscosity of emulsions
of non-Brownian spherical droplets. Table 4 gives the summary of the various emulsion systems
considered in evaluating the viscosity models. The emulsion systems considered are generally
monodispersed or mono-modal consisting of non-Brownian droplets of different average droplet sizes.
Non-hydrodynamic interactions are negligible.

Figure 20 compares the experimental viscosity data for emulsions of non-Brownian spherical
droplets with the prediction of the proposed suspension model (Equation (34)) ignoring the effect of
the viscosity ratio. Except for Set 12 data (Pickering emulsions), all the emulsion viscosity data fall
well below the suspension curve. This is not unexpected as the viscosity ratio λ plays an important
role in determining the viscosity of an emulsion. For example, the viscosity of a suspension of bubbles
(λ→ 0) is expected to be much lower than the viscosity of a suspension of solid particles (λ→∞ )
at the same volume fraction of the dispersed phase φ. Pickering emulsions (Set 12 data) follow the
suspension curve as the droplets of such emulsions are covered with a rigid layer of solid nanoparticles.
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Table 4. Summary of various emulsion systems considered in evaluating the viscosity models.

Set
No

Type of
Emulsion Range of φ Viscosity Ratio (λ) Description Source

1 O/W 0–0.60 4.15 × 10−3 Polymer-thickened emulsions Pal [51]

2 O/W 0–0.60 1.12 × 10−2 Polymer-thickened emulsions Pal [51]

3 O/W 0–0.60 5.82 × 10−2 Polymer-thickened emulsions Pal [52]

4 W/O 0–0.65 1.65 × 10−1 Mineral oil emulsions Hsieh [53]

5 O/W 0–0.596 2.574 Mineral oil emulsions Pal [54]

6A O/W 0–0.516 5.52
Set 6 emulsions prepared from same oil
and aqueous phase but droplet sizes were
different

Pal [55]

6B O/W 0–0.494 5.52 Pal [55]

6C O/W 0–0.553 5.52 Pal [55]

6D O/W 0–0.543 5.52 Pal [55]

7A O/W 0–0.343 5.573
Milk-fat emulsions. The matrix phase
consisted of skim milk, diluted, and
concentrated skim milk

Leviton & Leighton [56]

7B O/W 0–0.230 12.35 Leviton & Leighton [56]

7C O/W 0–0.397 21.74 Leviton & Leighton [56]

7D O/W 0–0.218 29.41 Leviton & Leighton [56]

8 O/W 0–0.635 1.17 × 103 Heavy oil emulsions Pal [49]

9 O/W 0–0.551 2.67 Mineral oil emulsions Pal [54]

10 O/W 0–0.60 23.7 Mineral oil emulsions Bains [57]

11 O/W 0–0.549 2.91 Mineral oil emulsions Buhidma [58]

12 O/W 0–0.55 4.0 Pickering type emulsions; droplets coated
with a layer of solid nanoparticles Wolf et al. [59]

13 O/W 0.5 3.87 × 10−4–1.95 Polymer-thickened emulsions Pal [52,60]

14 O/W 0.5 2.574–3.26 × 105 Emulsions prepared from different
viscosity oils Pal [49,54,55,57,61]

15 O/W 0.5 1.7–64.2 Limpid and viscous paraffin emulsions Sibree [62]

16 O/W 0.5 0.834–123.1 Emulsions prepared from three different
oils: nujol, benzene, and olive oil Broughton and Squires [63]

17 W/O 0.5 0.153–0.447 Emulsions prepared from different
viscosity oils Pal [54,64]
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When the effect of viscosity ratio is taken into account, the agreement between the experimental
emulsion viscosity data and model prediction improves markedly. Figure 21 shows comparison
between emulsion viscosity data and proposed emulsion model (Equation (44)) that takes into
consideration the effect of the viscosity ratio. Clearly the agreement between the model prediction and
experimental data has improved markedly as compared with the suspension viscosity model shown in
Figure 20. The maximum packing volume fraction φm is taken as 0.637 in the model. Although the
proposed emulsion model (Equation (44)) with φm of 0.637 describes the experimental data reasonably
well, there is a significant scatter of data around the model prediction.

Interestingly, the proposed model, Equation (44), describes the experimental viscosity data
adequately with φGlass

m ≤ φm ≤ φHCP
m , where φGlass

m is the glass transition concentration of droplets
where the emulsion becomes glassy and φHCP

m is the hexagonal close packing concentration of droplets.
Note that φGlass

m = 0.58 and φHCP
m = 0.7404 for uniform spherical droplets. Figure 22 show the bounds

generated from the model, Equation (44), using 0.58 ≤ φm ≤ 0.7404. As can be seen, most of the
experimental data fall within the bounds: the upper bound with φm = φGlass

m = 0.58 and the lower
bound with φm = φHCP

m = 0.7404. The variation or spread in experimental relative viscosity data at a
given concentration of droplets is largely due to different packing microstructure, and hence different
φm values, of different emulsion systems. Interestingly, the experimental viscosity data for emulsions
can be collapsed on to a single curve by slight tweaking of φm values. Figure 23 shows the plot where
all the experimental viscosity data collapse on to a single master curve. The data are plotted as ηr

versus φe f f where φe f f is defined in Equation (31). Table 5 summarizes the φm values used in plotting
Figure 23. The φm value varies from one set to another set in the range of 0.637 to 0.7404. The average
value of φm is 0.67.
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In Figure 24, the experimental relative viscosity data at a fixed φ value of 0.5 but varying viscosity
ratio λ (Sets 13–17, Table 4) are compared with the predictions of the proposed emulsion model,
Equation (44). At low to moderate values of viscosity ratio (λ < 10), the emulsion viscosity data
follow the model with φm of 0.637 (random close packing of droplets). At high viscosity ratios
(λ > 10), the viscosity data follow the model with φm of 0.7404 (hexagonal close packing of droplets).
Thus, the microstructure of emulsions is affected by the viscosity ratio λ.Fluids 2020, 5, x FOR PEER REVIEW 26 of 30 
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Table 5. Summary of φm values used in the plotting of Figure 23.

Set No φm Set No φm

1 0.637 7A–7D 0.637
2 0.67 8 0.7404
3 0.7404 9 0.637
4 0.637 10 0.72
5 0.68 11 0.637
6A–6D 0.66 12 0.637
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7. Conclusions

The viscous behavior of dilute and concentrated suspensions of non-Brownian hard spheres is
reviewed. The existing viscosity models for suspensions are tested using a large pool of experimental
viscosity data (twenty sets) available on suspensions. No single model is found to describe the
experimental viscosity data of suspensions adequately. A new model is proposed for the viscosity of
concentrated suspensions of non-Brownian hard spheres, taking into consideration the shear-induced
aggregation and maximum packing of particles. The model is validated using the available viscosity
data on suspensions. The proposed suspension viscosity model uncovers some important and novel
characteristics of suspension systems rarely discussed heretofore in the literature.

The viscous behavior of dilute and concentrated emulsions of non-Brownian droplets is reviewed.
The available viscosity models for emulsions are discussed. A new generalized viscosity model is
proposed for suspensions and emulsions taking into consideration the effect of the viscosity ratio
λ. The generalized model reduces to the proposed suspension viscosity model in the limit λ→∞ .
The new generalized viscosity model for suspensions and emulsions is validated using the available
viscosity data for suspensions and emulsions. Thus, a single model describes the viscosity data for
both suspensions and emulsions adequately.
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Appendix A. Derivation of Equation (44)

Equation (44) can be derived in a manner similar to the derivation of suspension viscosity equation,
Equation (34), using the differential effective medium approach. The Taylor equation, Equation (36),
for the viscosity of infinitely dilute emulsions is used to determine the incremental increase in the
emulsion viscosity dη when the effective dispersed phase concentration of the emulsion is increased by
a differential amount dφe f f . Thus,

dη = η

[
5ηd + 2η
2ηd + 2η

][ dφe f f

1−φe f f

]
(A1)

where η is the emulsion viscosity, ηd is the viscosity of the dispersed-phase (droplets), and φe f f is the
effective volume fraction of dispersed phase given by Equation (31) as:

φe f f =

{
1 +

[
1−φm

φ2
m

]
φ

}
φ (A2)

Upon integration, Equation (A1) gives:

ηr

[
2ηr + 5λ
2 + 5λ

]3/2

=

[
1−

{
1 +

(
1−φm

φ2
m

)
φ

}
φ

]−2.5

(A3)

where ηr is the relative viscosity of emulsion and λ is the viscosity ratio (ratio of dispersed-phase
viscosity to matrix viscosity). Equation (A3) is the same as Equation (44).
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