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Abstract: Fluid–structure interaction (FSI) systems consist of a fluid which flows and deforms one
or more solid surrounding structures. In this paper, we study inverse FSI problems, where the
goal is to find the optimal value of some control parameters, such that the FSI solution is close to
a desired one. Optimal control problems are formulated with Lagrange multipliers and adjoint
variables formalism. In order to recover the symmetry of the stationary state-adjoint system an
auxiliary displacement field is introduced and used to extend the velocity field from the fluid into
the structure domain. As a consequence, the adjoint interface forces are balanced automatically.
We present three different FSI optimal controls: inverse parameter estimation, boundary control and
distributed control. The optimality system is derived from the first order necessary condition by
taking the Fréchet derivatives of the augmented Lagrangian with respect to all the variables involved.
The optimal solution is obtained through a gradient-based algorithm applied to the optimality system.
In order to support the proposed approach and compare these three optimal control approaches
numerical tests are performed.

Keywords: finite element; fluid–structure interaction; monolithic formulation; adjoint equations;
optimal control; parameter estimation

1. Introduction

Optimization has always been a key aspect in the field of engineering in order to improve the
performance of an existing design or to improve its capability. As long as the goals to pursue are
trivial, improvements can be attained by trial and error without the use of sophisticated mathematical
models. When the problem becomes complex, the use of the appropriate optimization techniques is
instead essential. There are many approaches to optimal control problems that range from genetic
algorithms to adjoint methods. In this paper, we consider adjoint based methods since they have a
solid mathematical background. This mathematical approach allow us to evaluate the well-posedness
of the problem, the existence of local optimal solutions and the investigation of several numerical
convergence issues. The interested reader can see [1] and citations therein. Adjoint solvers have
commonly been implemented in commercial software, such as ANSYS, but the exact solution of an
optimal problem remains a difficult task due to the definition of appropriate solution spaces and
differentiability issues. Usually, optimal solutions lie in distributional spaces and the correct numerical
representations can be found only with appropriate regularizations. When the solution space is
well-defined and the control problem differentiable, then the adjoint methods have been proven to be
good tools for the optimal control of fluid dynamics complex problems, see, for example, [2,3].

Multidimensional phenomena, which depend both on time and space, are often modeled
by mean of partial differential equations including heat and wave propagation, electrodynamics,
quantum mechanics, fluid and solid motion. In fluid–structure interaction (FSI) problems the fluid
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and the solid are coupled into a single problem and the set of partial differential equations describing
fluid and solid motion has to be satisfied simultaneously. In this coupling the fluid–structure
mutual interaction is fundamental, since the behavior of the solid affects the fluid and vice versa.
The fluid, through its pressure, behaves as an external load over the solid structure that deforms
and changes the shape of the channel which modifies the fluid dynamic state inside the channel
itself. A thorough description of FSI forward problems can be found in many interesting books, see,
for example, [4–7]. Commercial packages, which use segregate solvers to speed up the convergence
and reduce memory consumption, are commonly used for complex FSI real-life simulations. However,
partitioned formulations frequently show convergence problems that are often overtaken with limiters.

Conversely, in the monolithic variational formulation, the fluid-solid coupling conditions,
which are the main constraints from the fluid to the solid domain, are automatically taken into account
and no sub-iterations are necessary as in the case of partitioned approaches, see [8–11]. The bounds
needed by partitioned solvers are a complex matter for optimal control problems that usually exploit
near-singular regions in the optimization process. In many optimal cases and engineering applications,
it is not necessary to reach the minimum and only a few iterations are enough to improve the design.
The segregated solvers, with their limiters, can cope with a couple of optimal subiterations but more
robust monolithic solvers are necessary for benchmarks and for developing correct answers.

Monolithic FSI solvers require high amounts of computational resources but multigrid and domain
decomposition methods have successfully reduced the gap with segregated solvers for the solution of
large sparse coupled linear systems. The reader interested in a detailed analysis of multigrid methods
can refer to [12,13]. These methods have gained great popularity within the FSI community and a
multitude of studies have been published in recent years. Two-dimensional FSI problems are solved
in [14] by using Vanka-type smoothers in the multigrid cycle while an extension to three-dimensional
domains is presented in [15], where the smoother is obtained by splitting the coupled problem into
a fluid and a solid domain. In the same work, the authors also consider a simplified FSI model in
order to prove by Fourier analysis that multigrid successfully damps high frequency errors. In [16] the
authors use a geometric multigrid preconditioner combined with domain decomposition smoothers
for monolithic Newton–Krylov solvers. They show good results also in the case of incompressible
materials and direct-to-steady FSI simulations. Finally, in the recent work [17] the authors show the
efficiency and scalability of a parallel approximated Newton multigrid solver for monolithic FSI.

Many FSI studies have been published in recent years but the optimal control of such problems is
still an open challenge. In many cases the “trial and fail” technique is still the most used optimal control
tool. Only few optimal control studies of FSI systems can be found in literature. Among them the reader
can see [18–23]. The authors in [18] study a linear unsteady FSI optimal control problem, written in
monolithic form and focus their attention to the theoretical aspects of the problem. The resulting
optimality system couples time and space with state and adjoint variables. In order to evaluate the
properties of biological tissues, the authors in [19] propose a well-posedness analysis of an inverse
FSI problem. Optimal control and parameter estimation of non-stationary and non-linear FSI has
been recently investigated in [20]. In [22] a steady Lamé parameter estimation problem and pressure
boundary control are studied.

Numerical solutions of realistic unsteady optimality systems, as proposed in [18], are not feasible
with the actual computational power, since they couple in space-time the state-adjoint variables.
In particular, this coupled optimality system consists of a forward in time equation for the state
variables and a backward in time equation for the adjoint variables. The interested reader can
see [1] for unsteady optimal control flow problems. In order to reduce the computational effort,
we consider the steady optimal control of FSI systems. One of the greatest challenges in the solution
of a steady optimal control problem is that the optimal solution, which involves non-linear solid
deformations, must be obtained in an iterative way. However, the steady optimality system defines
only the steady final configuration with no information on how to balance non-linear intermediate
body deformations, interface forces and mesh movements. Following the method described in [21],
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we introduce an auxiliary displacement field and use it to extend the velocity field to the solid domain.
As a consequence, the interface forces both for FSI and adjoint variables are balanced automatically,
the fictitious velocity moves the structure and the solid velocity vanishes only at the end of the
non-linear iterations.

This paper can be then considered a further development of the idea proposed in [21]. However,
in this work we study a larger class of problems than in our previous one where only a boundary
pressure control was considered. Here we recover an optimality system that is used to perform
boundary pressure control, distributed control or inverse Young modulus estimation with inequality
constraints over the control. This is one of the aim of the paper, namely to show that all these different
control problems can be solved by the same adjoint approach. Furthermore, in the parameter estimation
problems studied in [20,22], the control (i.e., Lamé parameter or Young modulus) is assumed to be
constant in the solid subdomain. In this work, we consider instead a spatially non-uniform control.
The motivation behind this comes from the growing interest in temperature dependent materials,
such as composite materials, where a relationship between the Young modulus and the temperature
can easily be established, and the optimal solution can be achieved by controlling the temperature
itself. As a consequence, we have to impose inequality constraints on our control parameter, since very
high or low values of the Young modulus, and therefore of the temperature, may be physically not
meaningful. For the same reasons we also add a regularization on the control, in order to obtain
smoother optimal solutions.

The rest of this paper is organized as follows. In Section 2 we describe the FSI model considered.
Then, we present three different strategies to solve a displacement matching profile problem in the
framework of FSI steady optimization: pressure boundary control, distributed control and finally
parameter estimation with inequality constraints. In Section 3 numerical results are presented and
finally some conclusions are gathered together.

2. Mathematical Model

In this section we present the formulation of the FSI optimal control problem and recover the
optimality system needed to be solved. We first introduce the basic notation about functional spaces.
On the open set Ω ⊂ Rm we denote with L2(Ω) the space of square integrable functions and with
Hs(Ω) the standard Sobolev space with norm ‖ · ‖s. We recall that H0(Ω) = L2(Ω) and in the following
‖ · ‖0 = ‖ · ‖. Let Hs

0(Ω) be the space of all functions in Hs(Ω) that vanish on the boundary of Ω.
For more details on these spaces the interested reader can see [12].

Let us consider a bounded open set Ω ⊂ Rn split into a structure domain Ωs and a fluid
domain Ω f , so that Ω = Ωs ∪Ω f and Ωs ∩Ω f = ∅. We denote by Γ = ∂Ω the outer boundary,
which is then split into solid and fluid boundaries Γs = Γ ∩ ∂Ωs and Γ f = Γ ∩ ∂Ω f , respectively.
The surface Γi = ∂Ωs ∩ ∂Ω f shared between the solid and the fluid is the fluid–structure interface.
The mathematical model of the steady state FSI problem in strong form is defined by the following set
of equations

∇ · v = 0 on Ω f , (1)

ρ f (v · ∇)v−∇ · σ f = 0 on Ω f , (2)

∇ · σs(η) = f on Ωs . (3)

The viscous stress tensor σ f of a Newtonian fluid and the Cauchy strain tensor σs of a St.
Venant Kirchhoff material read

σ f (p, v) := −pI + µ f (∇v +∇vT) , (4)

σs(η) = ES(η) = λs(∇ · η)I + µs(∇η+∇ηT) , (5)
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where p is the fluid pressure, µ f the dynamic viscosity of the fluid while λs and µs are the solid
Lamé parameters. We denote with η the unknown displacement field and E is the Young modulus.
By substituting the following definitions of the Lamé parameters µs and λs

µs =
E

2(1 + ν)
λs =

Eν

(1 + ν)(1− 2ν)
, (6)

into the (5) we obtain

σs(η) =
1

2(1 + ν)
(∇η+∇ηT) +

ν

(1 + ν)(1− 2ν)
(∇ · η)I . (7)

The Young modulus E and Poisson ratio ν determine uniquely the solid physical properties.
In order to complete the FSI problem we need to set the boundary conditions. Let Γ f

d and Γs
d be

the wall regions where we set Diricet boundary conditions for fluid velocity and solid displacement.
Let also Γ f

n and Γs
n be part of the boundary where fluid outflow and free displacement boundary

conditions are imposed, respectively. The fluid-solid interface is denoted by Γi. By denoting with
ns and n f the normal unit for the solid and fluid boundary on Γi we summarize the boundary
conditions as

v = v0 on Γ f
d , η = η0 on Γs

d ,

σ f · n f = 0 on Γ f
n, σs · ns = 0 on Γs

n , (8)

σ f · n f + σs · ns = 0 on Γi, v = 0 on Γi .

We remark that, by using a monolithic approach in a finite element framework, the interface
conditions are imposed directly in the same solver with correct interface values, see [21,24,25]. In order
to simplify notation we introduce the following functional spaces

V = {φ ∈ H1(Ω) : φ
Γ f

d∪Γs
d
= 0} , Qs, f = L2(Ωs, f ) , W s, f = {φ ∈ H1(Ω) : φΓs, f = 0} . (9)

We rewrite the monolithic FSI system in weak form for the displacement η and for the velocity field
v over Ω(η) = Ω f (η) ∪Ωs(η) implicitly incorporating the boundary conditions (8) on the common
interface Γi∫

Ω f

(∇ · v)ψ dΩ = 0 ∀ψ ∈ Q f , (10)∫
Ω f

[(
ρ f (v · ∇)v

)
·φ− p∇ ·φ + µ f∇v : ∇φ− f

]
dΩ +

∫
Γ
[
[

pn f − µ f (∇v · n f ) ·φ
]

dΓ+

∫
Ωs

E
[

ν

(1 + ν)(1− 2ν)
(∇ · η)(∇ ·φ) +

1
2(1 + ν)

∇η : ∇φ

]
dΩ+ (11)∫

Γ
E
[

1
2(1 + ν)

(∇η · ns) ·φ +
ν

(1 + ν)(1− 2ν)
(∇ · η)ns ·φ

]
dΓ = 0 ∀φ ∈ V ,

The surface integrals vanish due to the boundary and interface conditions (8). If we use standard
techniques to obtain the unsteady optimality system for a generic FSI problem in a monolithic form
then the adjoint system results in a symmetric and monolithic patterns similar to the unsteady state
system. However, if we follow the same standard techniques to obtain the steady optimality then the
steady adjoint system results in a non-symmetric and non-monolithic form that differs from those of
the state variable Equations (10) and (11). Furthermore, the steady adjoint system results in a set of
equations with uncoupled boundary conditions on the interface. In order to have the steady adjoint
equations in a similar monolithic form, with coupled boundary conditions as well, we need to extend
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the state variables appropriately. Over the solid domain Ωs(η) we define the auxiliary displacement
field η̂, solution of the following Laplace operator and boundary conditions

∇2η̂ = 0 x ∈ Ωs , (12)

η̂ = η on Γi , (13)

η̂ = 0 on (∂Ωs − Γi) . (14)

Therefore, over the whole domain Ω, we can define the velocity field v as

v =

{
τ (η− η̂) on Ωs(η)

v solution of (1)-(2) on Ω f (η)
, (15)

with τ a constant that mimics the time behavior. The mapping η̂ : Ωs(0̂) → Ωs(η̂) defines the solid
domain movement. Over Γi, the velocity field v is set to be continuous during the non-linear optimal
control iterations and vanishes as the algorithm reaches the steady state. The introduction of the
velocity field v allows us to differentiate the functional and take the shape derivatives of Ωs(η̂) and
Ω f (η̂). With this notation the FSI problem takes the following form∫

Ω f (η̂)
(∇ · v)ψ dΩ = 0 ∀ψ ∈ Q f , (16)

∫
Ωs(η̂)

E
[

1
2(1 + ν)

∇η : ∇φ +
ν

(1 + ν)(1− 2ν)
(∇ · η)(∇ ·φ)− f

]
dΩ+∫

Ω f (η̂)

[(
ρ f (v · ∇)v

)
·φ− p∇ ·φ + µ f∇v : ∇φ

]
dΩ = 0 ∀ φ ∈ V , (17)∫

Ωs(η̂)
∇η̂ : ∇η̂a dΩ = 0 ∀ η̂a ∈W s , (18)∫

Ωs(η̂)
(v− τ(η− η̂)) · βa dΩ = 0 ∀βa ∈ Qs . (19)

In the following we refer to (16)–(19) as state system in weak form.

Optimality System

Key aspects of an optimal control problem are the objective and the control parameters of interest.
One of the main objective of the paper is to show that this FSI optimal control formulation can cope
with distributed, boundary and material control problems with equation and inequality constraints.
We first consider a pressure boundary control on a subset of the fluid boundary, then a distributed
control with a distributed force acting on the structure and finally a parameter estimation problem
where the control parameter is one of the solid material properties, e.g., the Young modulus. In these
cases the objective functional, that we aim to minimize, then reads

J (η, pc, f, E) =
1
2

∫
Ωd

ω‖η− ηd‖2dΩ +
α

2

∫
Γc
|pc|2 dΓ +

β

2

∫
Ωc
‖f‖2dΩ+

γ

2

∫
Ωs
|E|2 dΩ +

λ

2

∫
Ωs
|∇E|2 dΩ .

(20)

The first term measures how far the solid displacement η, solution of the state system, is from
the desired value ηd, over the target region Ωd ⊆ Ωs. We denote with ω a weight function that can be
used to give more importance to some parts of the target region. Without loss of generality, we can
take ω vanishing on the boundary ∂Ωd, thus simplifying some mathematical steps in the derivation of
the optimality system.
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The Tichonov regularization terms with the parameters α, β, γ, δ are introduced to keep the
controls in the space of square integrable functions L2(Ω). Optimal solutions can be often found in
distributional spaces. When these parameters are too small then singularities cannot be represented
numerically and numerical instabilities appear during the iteration process. If these parameters are
too high the regularization exceeds the functional target terms. Morozov’s discrepancy principle may
be used as a method for tuning a posteriori the regularization parameters, see [26]. Different choices
of these parameters lead to different optimal control problems and, as a consequence, to different
solutions. However, the solution obtained with a given amount of regularization is the one that
minimizes the corresponding functional (20). In (20), we reported all the control regularization terms,
however, we would like to clarify that only the one corresponding to the control approach of interest
has to be considered.

Furthermore, we take into account constraints over the Young modulus in order to avoid negative
or very large values, see [27,28]. For this purpose we define the space of admissible controls Ead as

Ead = {E ∈ L2(Ωs) : χ ≤ E ≤ ω with χ, ω ∈ R+} , (21)

where χ and ω are the lower and upper limits for the control, respectively. The couple (η, E) is said to
be an admissible solution in Aad if η ∈ H1(Ωs), the functional J (η(E)) is bounded, and there exists a
E ∈ Ead such that (η, E) satisfies the problem in (16)–(19). Given ηd, the optimal control problem can
then be formulated as finding (η, E) ∈ Aad such that J (η(E)) ≤ J (w(h)) ∀(w, h) ∈ Aad. If (η̄, Ē) is
an optimal solution of the control problem and the Gateaux derivative of J (η̄(Ē)) exists, then the
following variational inequality holds true

J ′(η̄(Ē)) · (h− Ē) ≥ 0 ∀h ∈ Ead . (22)

In fact from the definition of optimal solution (η̄, Ē), we have

J (η̄(Ē))−J (η̃(Ẽ)) ≥ 0 ∀Ẽ ∈ Ead . (23)

As Ead is convex, then we can set Ẽ = ht + (1− t)Ē for all t ∈ [0, 1] and for all h ∈ Ead. Hence,
we have

J (η̄(Ē− t(Ē− h)))−J (η̄(Ē)) ≥ 0 ∀t ∈ [0, 1] , (24)

which, by using the definition of the Gateaux derivative, implies (22) when t tends to 0.
We now present a strategy that is usually adopted to deal with this variational inequality.

By introducing an auxiliary variable s we transform the inequality constraint into an equality, which can
then be treated with standard techniques for equality constrained minimization problems. We replace

χ ≤ E ≤ ω on Ωs , (25)

by

(E− E0)
2 − E2

m + s2 = 0 on Ωs , (26)

with s ∈ L2(Ωs) and E0 = (χ + ω)/2, Em = (ω− χ)/2. It can be easily verified that (25) implies (26).
Furthermore, if (η̄, Ē) is an optimal solution, then it can be shown that a subspace of the solution space
exists, A′ad ⊂ Aad, such that

1. On A′ad we have χ < E < ω and

J ′(η̄(Ē)) · Ẽ = 0 ∀Ẽ ∈ L2(Ωs) , (27)

with s2 = E2
m − (E− E0)

2;
2. On Aad −A′ad we have s = 0 which implies E = χ or E = ω.
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In case 1, the constraints are said to be inactive since they do not limit the control. As a
consequence, the optimal solution obtained corresponds to a local minimum of the objective functional.
In case 2, one of the constraints is active and limits the control, therefore the optimal solution may
not be a functional minimum. No more improvements can be made since the control coincides with
one of the bounds, however we have found the optimal solution in the admissible set Ead. If we use
this equation in a numerical algorithm the variable s introduces many local minima, leading to a poor
computational behavior, therefore it will not be used in our algorithm. In this work, we deal with
the control constraints by using a projected gradient method that projects back the control E to the
admissible control set Ead.

The constrained problem can be transformed into an unconstrained one by mean of the Lagrangian
formalism and augmented functional. This is the sum of the objective functional and all the constraints
multiplied by appropriate space dependent Lagrangian multipliers. The Lagrangian multipliers are
called also adjoint variables and the augmented Lagrangian takes the following form

L(p, v, η, η̂, pa, va, η̂a, ŝa, βa) = J +
∫

Ω f

(∇ · v) pa dΩ +
∫

Ω f

[ρ f (v · ∇)v +∇p−∇ · (µ f∇v)] · va dΩ

+
∫

Ωs

[
−∇ · E

(
1

2(1 + ν)
∇η+

ν

(1 + ν)(1− 2ν)
I(∇ · η)

)
− f
]
· va dΩ +

∫
Ωs

∇2η̂ · η̂a dΩ (28)

+
∫

Γc

(va · n)p dΓ +
∫

Γi

ŝa ·
[
(η̂− η) +

v
τ

]
dΓ +

∫
Ωs

βa · [v− τ(η− η̂)] dΩ .

We use label a to denote the adjoint variable (pa, va, η̂a, βa) of the corresponding state variable.
Then, the solution that minimizes the functional J under the constraints given by the FSI system is
a stationary point of the Lagrangian functional L and therefore can be computed by imposing the
following first order necessary minimization condition

δL = 0 . (29)

Let δq be the variation of q and (DL/Dq)δq be the Fréchet derivative of L along the direction δq.
For the computation of the shape derivative we use the following properties [29]

dF1

dΩ(η̂)
δv =

∫
∂Ω(η̂)

yδv · n dΓ , (30)

dF2

dΓ(η̂)
δv =

∫
Γ(η̂)

(∇n + χ) yδv · n dΓ , (31)

where F1 =
∫

Ω y dΩ is a functional defined on the domain Ω and F2 =
∫

Γ y dΓ a functional on the
boundary Γ. The derivative operator along the normal direction over the surface Γ is denoted by
∇n and the mean curvature by χ. Each independent variation must vanish. The adjoint variations
(pa, va, η̂a, βa) give back the weak form of the FSI state system (16)–(19). The variations of the state
variables (v, p, η, η̂) give the adjoint system. In order to write the adjoint system we start with δv
terms obtaining
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DL
Dv

δv =
∫

Ω f

(∇ · δv) pa dΩ +
∫

Ωs
δv · βa dΩ +

∫
Γc

[
(∇n + χ)

αp2

2

]
δv · n dΓ+∫

Ω f

[ (
ρ f (δv · ∇)v

)
· va +

(
ρ f (v · ∇)δv

)
· va −∇ · (µ f∇δv) · va

]
dΩ

∫
∂Ω f

(∇ · v) pa δv · n dΓ +
∫

∂Ωd

ω
(η− ηd)

2

2
δv · n dΩ +

1
τ

∫
Γi

δv · ŝa dΓ+∫
∂Ω f

va ·
[
ρ f (v · ∇)v +∇p−∇ · (µ f∇v)

]
δv · n dΓ+ (32)

∫
∂Ωs

va ·
[
−∇ · E

(
1

2(1 + ν)
∇η+

ν

(1 + ν)(1− 2ν)
I(∇ · η)

)
− f
]

δv · n dΓ+∫
∂Ωs

(
∇2η̂ · η̂a

)
δv · n dΓ +

∫
Γi

(∇n + χ)
[
ŝa ·

[
(η̂− η) +

v
τ

]]
δv · n dΓ+∫

∂Ωs
βa · [v− τ(η− η̂)] δv · n dΓ = 0 ∀δv ∈ V .

The terms are rearranged to define the equation on the fluid region Ω f , on the solid domain Ωs

and the corresponding boundary conditions. The functional spaces and the boundary conditions of the
optimal control problem imply that the shape derivative terms vanish. Furthermore, the following term∫

Γi

(∇n + χ)
[
ŝa ·

[
(η̂− η) +

v
τ

]]
δv · n dΓ , (33)

vanishes by using classical arguments. For details see [29]. We assume that the target region Ωd
deforms with the solid and the weight function ω is vanishing on its boundary ∂Ωd. With these
hypotheses the surface integral over ∂Ωd vanishes. Similarly we assume that the controlled boundary
Γc is fixed and this implies that all the integrals over Γc for the control variables vanish.

The equation for δv simplifies as∫
Ω f

[
(

ρ f (δv · ∇)v
)
· va +

(
ρ f (v · ∇)δv

)
· va −∇ · (µ f∇δv) · va] dΩ+∫

Ω f

(∇ · δv) pa dΩ +
∫

Ωs
δv · βa dΩ +

1
τ

∫
Γi

δv · ŝa dΓ ∀δv ∈ V = 0 .
(34)

For δη we have

DL
Dη

δη =
∫

Ωd

ω(η− ηd)δη dΩ +
∫

Ωs
[µs∇δη : ∇va + λs(∇ · δη)(∇ · va)] dΩ

− τ
∫

Ωs
δη · βa dΩ−

∫
Γi

ŝa · δη dΓ = 0 ∀δη ∈ H1
Γs

d
(Ωs) .

(35)

Now we need to integrate by parts the terms in δη in order to obtain

βa = −
1
τ
∇ · [µs∇va + λsI(∇ · va)] +

ω

τ
(η− ηd) , (36)

ŝa = [µs∇va + λsI(∇ · va)] · n . (37)

By using (36) and (37), the (34) becomes



Fluids 2020, 5, 144 9 of 19

∫
Ω f

(∇ · δv) pa dΩ +
1
τ

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ +
1
τ

∫
Ωd

ω(η− ηd)δv dΩ+∫
Ω f

[ (
ρ f (δv · ∇)v

)
· va +

(
ρ f (v · ∇)δv

)
· va −∇ · (µ f∇δv) · va

]
dΩ = 0 ∀δv ∈ V .

(38)

By collecting δη̂ we obtain∫
Ωs
∇δη̂ : ∇η̂a dΩ + τ

∫
Ωs

δη̂ · βa dΩ +
∫

Γi

ŝa · δη̂ dΓ = 0 ∀δη̂ ∈ H1
Γs

d
(Ωs) . (39)

With (36) and (37) the (39) reads∫
Ωs
∇η̂a : ∇δη̂ dΩ = −

∫
Ωs

[µs∇va : ∇δη̂+ λs(∇ · va)(∇ · δη̂)] dΩ+∫
Ωd

ω(η− ηd)δη̂ dΩ ∀δη̂ ∈ H1
Γs(Ωs) .

(40)

Finally, we have to consider the Fréchet derivatives of the Lagrangian with respect to the control
parameters (p, f, E). The equation for the variation δp gives∫

Γc
(pα + va · n)δp dΓ−

∫
Ω f

(∇ · va)δp dΩ = 0 ∀δp ∈ Q f . (41)

The volume term states that the divergence of the adjoint velocity has to be null, while the surface
term over the controlled boundary Γc, which differs from zero only in the pressure boundary control
problem, gives the following pressure control equation

pc = p = −va · n
α

. (42)

When considering the distributed control problem, by taking the derivative in the δf direction,
we recover the following control equation

DL
Df

δf =
∫

Ωc
(−βf + va)δf dΩ = 0 . (43)

The distributed control is therefore proportional to the adjoint velocity scaled by the regularization
parameter β, namely f = va/β.

Finally, in the Young modulus estimation problem we have to take the derivative with respect to
the control parameter E, obtaining the variational equality

DL
DE

δE =
∫

Ωs
(S(η) : ∇va)δE dΩ +

∫
Ωs

γEδE + λ∇E · ∇δE dΩ = 0 ∀δE ∈ H1(Ωs) , (44)

that in the case λ = 0 reduces to the following expression

E =
S(η) : ∇va

γ
. (45)

To summarize, the adjoint system in weak form is represented by
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∫
Ω f

(∇ · va)δp dΩ = 0 ∀δp ∈ Q f , (46)∫
Ω f

(∇ · δv) pa dΩ +
1
τ

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ +
1
τ

∫
Ωd

ω(η− ηd)δv dΩ+∫
Ω f

[ (
ρ f (δv · ∇)v

)
· va +

(
ρ f (v · ∇)δv

)
· va −∇ · (µ f∇δv) · va

]
dΩ = 0 ∀δv ∈ V , (47)∫

Ωs
∇η̂a : ∇δη̂ dΩ = −

∫
Ωs

[µs∇va : ∇δη̂+ λs(∇ · va)(∇ · δη̂)] dΩ+∫
Ωd

ω(η− ηd)δη̂ dΩ ∀δη̂ ∈ H1
Γs(Ωs) . (48)

For Finite Elements numerical implementations one can use the weak formulation (46)–(48).
For Finite Volume formulations the strong form of the adjoint equation can be found by performing an
integration by parts on the terms where the derivatives of variations are present. For the adjoint state
(v f

a , vs
a, pa) ∈ H1

∂Ω f−Γi
(Ω f ) ∩H2(Ω f )×H1

∂Ωs−Γi
(Ωs) ∩H2(Ωs)× L2

0(Ω f ) ∩H1(Ω f ), we have

∇ · v f
a = 0 ,

− ρ f (∇v)Tv f
a + ρ f [(v · ∇)v f

a ] +∇pa −∇ · (µ f∇v f
a ) =

ω

τ
(η− ηd) , (49)

∇ · σs(vs
a) = 0 ,

with boundary conditions defined as

vs
a = v f

a on Γi ,

σs(vs
a) · n = σ f (v

f
a ) · n on Γi , (50)

µ f (∇va) · n = −(v · n) va , pa = 0 on Γ f
n ,

va = 0 on Γ f d ∪ Γsd .

As required we have symmetry between the state (1) and adjoint Equation (49). Furthermore,
with a monolithic approach the conditions on the interface are satisfied for both the state (16) and (17)
and the adjoint system (46) and (47). With this formulation the adjoint velocity va is continuous and
different from zero on the interface in order to propagate information from the solid to fluid region
and vice versa.

3. Numerical Implementation and Results

The non-linearities and the large number of unknowns make the numerical solution of this
optimality system very complex. Since the use of one-shot methods is not feasible, we use a segregated
approach where the state and adjoint equations are solved separately and their coupling is obtained by
mean of source terms. Moreover, if one has at hand a well tested FSI direct solver, the adjoint solver
can be obtained with minor changes.

In Algorithm 1 we reported a description of the steepest descent method used to solve the
optimality system. First, the reference case with no control is obtained as well as the first functional
value. Then, the adjoint system (46) and (47) is solved and used to determine the gradient direction δg
with the control equation. After that, the state system is sequentially solved, in a backtracking line
search loop, until the functional decreases sufficiently, see [30]. When the step length becomes lower
than the threshold value toll = 10−8 the algorithm has found the optimal solution and control, and no
more improvements can be obtained. This algorithm spends most of the computational time during
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the line search process since the state system must be solved many times. However, it is quite robust
and the CPU effort required is analogous to that of forward simulations. Furthermore, it may have
a slow convergence rate since it relies only on the information available at the current iteration to
determine the direction of the functional gradient. We implement this algorithm in our in-house finite
element code FEMuS (available at [31]), that works on multiprocessor architectures with openMPI
libraries and uses a multigrid solver with mesh-moving capability [13,32,33].

Algorithm 1 Description of the Steepest Descent algorithm.
1. Set a state (v0, p0, η0) satisfying (16) and (17) . Setup of the state - Reference case
2. Compute the functional J 0 in (20)
3. Set r0 = 1
for i = 1→ imax do

4. Solve the system (46) and (47) to obtain the adjoint state (vi
a, pi

a)
5. Compute the control update δgi with (42)–(44)
6. Set ri = r0

while J i(gi−1 + riδgi) > J i−1(gi−1) do . Line search
7. Set ri = ρ ri

8. Solve (16) and (17) for the state (vi, pi, ηi) with gi

if ri < toll then
Line search not successful . End of the algorithm

end if
end while

end for

We now introduce the finite element discretization used. Let Ωh be a bounded open domain,
Xh ⊂ H1(Ωh) and Sh ⊂ L2(Ωh) be two families of finite dimensional sub-spaces parameterized
by h that tends to zero. We denote with Sh

0 the family of finite dimensional sub-spaces containing
piece-wise constant functions. In order to satisfy the Babuška-Brezzi-Ladyzhenskaya (BBL) inf-sup
condition (see [34]) we consider the velocity field uh ∈ Xh and the pressure ph ∈ Sh and use standard
Taylor-Hood elements. We consider quadratic displacements fields (η, η̂) ∈ Xh

2 . In the parameter
estimation problem, the Young modulus is discretized as a piece-wise constant function Eh ∈ Sh

0 when
λ = 0, while a point-wise discretization Eh ∈ Xh

2 is adopted when λ > 0. The discretization of the
adjoint variables follows that of the corresponding state variable. In the next section, we report the
results obtained for the different optimal control approaches with different values of the regularization
parameters and compare the effectiveness of the methods in terms of functional reduction.

3.1. Test Case Configuration

In the first test case we consider a channel, shown in Figure 1 (on the left), where a fluid flows
along the vertical direction. In order to simplify the computation, we consider a symmetric domain
around the axis AF. The fluid inlet is defined by the segment AB and the outlet by EF. The domain
consists of two rectangular regions ABEF and BCDE. The fluid flows in the rectangular region ABEF
(Ω f ) contained by the solid region BCDE (Ωs). The controlled domain is defined by Ωd. In this test we
impose pressure boundary conditions with pEF = 10,000 Pa and pAB = 11,500 Pa. The segments AC
and DF are fixed and the solid is free to move around the fixed endpoints C and D. We consider the
physical properties as

ρs = ρ f = 103 kg/m3, ν f = 0.07 m2/s, νs = 0.2, E = 106 Pa , (51)

so the solid can easily bend and the flow is not turbulent. This simple test case is used to compare
the different optimal control approaches previously described by fixing the boundary conditions,
physical properties and objective functional, while changing the control parameter in order to perform
a meaningful comparison. The optimal control problems search for the optimal parameters, until the
x-component of the displacement over the region Ωd matches the uniform target value ηd = 0.05 m.
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The displacement in the remaining part of the solid domain is not controlled and therefore can take
any value, solution of the state system.

A B C

DEF

Γi

Ωs

Ωf

Ωd

Γf
n ≡ Γc

Γf
n

Γsymm

Γwall

0.0 0.1 0.2

−0.2

−0.1

0.0

0.1

0.2

0.0

0.243

0.487

0.730

0.974
v[m/s]

0.2 0.3

−0.2

−0.1

0.0

0.1

0.2

0.0

0.005

0.010

0.015

0.020
ηx[m]

Figure 1. Geometry and controlled region defined by dotted square on the right Ωd (left). Reference
case with velocity profiles and streamlines in the liquid (center). Solid displacement field ηx for the
same reference configuration (right).

Now we present the results referring to the reference case. We use the notation α = ∞ for the case
with no control. If one solves the problem taking α = ∞, then the optimal solution gives a vanishing
control, since every other control would result in a functional higher than in the reference case.
A standard laminar velocity profile develops in the fluid domain Ω f and is reported with streamlines
in the center of Figure 1. The solid displacement in the solid domain Ωs is shown on the right of the
same Figure. The main deformation occurs around the middle point of the right boundary and the
maximum value is ηx = 0.02 m, lower than the target value ηd.

3.2. Pressure Boundary Control

The optimal control problem with optimal pressure on the lower fluid boundary Γc minimizes
the following functional

J (η, pc) =
1
2

∫
Ωd

ω(ηx − 0.05)2dΩ +
α

2

∫
Γc
|pc|2dΓ . (52)

We report in Table 1 the functional values J (η, p) and the mean values η̄x of the x-component
of the displacement in the controlled region Ωd, obtained with different α values. By reducing α,
the controlled solution tends to converge to the desired displacement and the functional values
decrease. In Figure 2 a comparison is shown among the results obtained with different values of the
regularization parameter α. The pressure profile over Γc is reported as a function of the horizontal
coordinate x for three values of the regularization parameter α = 10−8, 10−9 and 10−10. The pressure
has a more uniform, regular profile as α decreases. In Figure 3 we report the results obtained when the
optimal control problem is solved with α = 10−10. On the left the fluid velocity with streamlines and,
in the center, the solid displacement are shown. Due to the large pressure gradient between the fluid
inlet and outlet the velocity is much higher than in the reference case. This may lead to convergence
issues and eventually to a failure of the algorithm. Finally, on the right of the same figure, the adjoint
velocity field is reported with streamlines at the beginning of the optimization algorithm.
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Table 1. Objective functional. The reference case with no control is labeled with α = ∞.

α J (η, p) η̄x [m]

∞ 1.292 · 10−5 0.0180
10−8 9.192 · 10−6 0.0202
10−9 1.515 · 10−6 0.0469
10−10 6.454 · 10−7 0.0497

0 0.05 0.1 0.15 0.2

10,000

20,000

30,000

A

B

C

x

p
c
[P

a
]

Figure 2. Control pressure profile with α = 10−8 (A), α = 10−9 (B) and α = 10−10 (C).
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17.67

26.50

35.34
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0.2 0.3

−0.2

−0.1

0.0

0.1

0.2
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0.0 0.1 0.2 0.3
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0.00E+00

5.83E-06
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1.75E-05

2.33E-05
Va[m/s]

Figure 3. Controlled case with velocity profiles v and streamlines in the liquid (left) and displacement η in
the solid (center). Adjoint velocity va field and streamlines for the reference case configuration (right).

3.3. Distributed Control

Now we refer to the same solid displacement matching profile problem and focus on the
distributed control case where the control is a force acting on the whole structure. This approach can
be used in practical application to reformulate complex FSI shape optimization problems into simpler
distributed control ones. The optimal control algorithm then aims to find the optimal force on the
whole solid domain Ωs such that the x-component of the displacement over the region Ωd matches the
uniform target value ηd = 0.05 m. Therefore, the objective functional reads

J (η, f) =
1
2

∫
Ωd

ω(ηx − 0.05)2dΩ +
β

2

∫
Ωc
‖f‖2dΩ . (53)
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The results obtained in the controlled case with β = 10−13 are reported in Figure 4 and the
functional J (η, f), together with the mean horizontal displacement, in Table 2. Finally, we report,
on the right of Figure 4, the profile of the force acting on the solid. The force has the highest intensity
near the boundaries of the controlled domain Ωd and forces the solid mainly to the right. In the interior
of Ωd the force is applied with lower intensity to the left in order to balance the stress induced on the
controlled region by the fluid, obtaining a flat profile with uniform displacement.

0.0 0.1 0.2

−0.2

−0.1

0.0

0.1

0.2

0.0

0.295

0.591

0.886

1.182
v[m/s]

0.2 0.3

−0.2

−0.1

0.0

0.1

0.2

0.0

0.013

0.026

0.039

0.052
ηx[m]

0.00E+00

5.29E+02

1.06E+03

1.59E+03

2.12E+03
f [N ]

Figure 4. Controlled case with velocity profiles v and streamlines in the liquid (left) and displacement
η in the solid (center). Force vectors f in black and magnitude in colors (right).

Table 2. Objective functional J and average x-displacement over the controlled region Ωd computed
with no control (β = ∞) and different β values.

β ∞ 10−11 10−12 10−13

J (η, f) · 108 1292.4 25.854 5.8864 2.3875
η̄x [m] 0.0180 0.0494 0.0498 0.0499

We now compare these results with those obtained applying the pressure boundary control as
shown in Section 3.2. We first notice that with the distributed control the fluid velocity in the optimized
configuration is much lower. In fact, with the boundary control we have a large pressure gradient
between the fluid inlet and outlet with the purpose to increase the velocity field. Now, on the contrary,
the boundary pressure values are fixed and are the same as in the reference configuration with no
control. The slightly different velocity profile is due to the obtained different solid configuration.
Furthermore, the solid deformation is more uniform with an average value closer to the target one.
The functional values reported in Table 2 are lower than those obtained with the boundary control,
meaning that the distributed control has found an optimized solution closer to the desired one. One can
see that the greatest improvements are obtained with the lowest regularization in both cases.

3.4. Parameter Estimation Problem

Our last optimal control approach aims to reach the solid target displacement ηd by finding the
optimal value of the Young modulus in Ωs. This problem has many industrially relevant applications,
since changes in the mechanical properties as a function of temperature are commonly visible.
The target displacement ηx = 0.05 m in the region Ωd can be obtained only if the Young modulus is
not uniform in the whole solid domain, with a complex distribution. The value of the Young modulus
used for the reference case may be used as initial guess for the optimizing algorithm.
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We use a multigrid approach for the solution of both the state and adjoint systems. The coarsest
grid l = 0 has ne = 8 quadratic elements and the finer levels are obtained through a standard
mid-point refinement approach. We solve the optimal control problem with different discretization
levels, the finest one l = 5 has ne = 2048 elements (8385 grid nodes).

In Figure 5 we report the profile of the Young modulus E obtained after the optimization process,
for l = 2 and with different values of the Young modulus lower bound Emin. In order to improve the
readability of the Figures we scaled all E values by 2.4 · 103.
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344.4
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0.0

0.1

0.2

71.19

126.9

182.6

238.3

294.0
E

0.20 0.25 0.30 0.35

−0.2

−0.1

0.0

0.1

0.2

100.0

162.7

225.4

288.1

350.8
E

Figure 5. Young modulus E fields, discretization l = 2 with different Emin = 10 Pa (left), 50 Pa (center),
100 Pa (right). E and Emin are scaled by 2.4 · 103.

By comparing these results with the reference solution we notice that the control is able to obtain
a profile close to the desired one. The Young modulus highest values are located near the middle
point of the right side, which is the target region Ωd, in order to try to recover the desired uniform
displacement. In the upper and lower parts of the solid sub-domain the solution is almost symmetric.
By increasing the Young modulus lower limit the region near the solid endpoints where E = Emin
becomes larger, as well as the maximum value of E in the central region.

In Figure 6 we report the results obtained on the finest grid, l = 5, with the same values of Emin.
By comparing these results with those obtained on a coarser grid (Figure 5), it is worth noticing that
the solution is similar. Clearly, in the case l = 5, the number of degrees of freedom available for
the optimal control is higher and then, with higher resolution, the solid deformation is closer to the
desired one, see Table 3. In this Table we report the functional obtained with different grid resolution,
from l = 2 to l = 5 and with different values of the Young modulus lower bound Emin. The effects of
the penalty constraints are more important with higher lower bounds and the corresponding solutions
are further away from the target one, in particular when Emin = 200 Pa. We would like to point out that
the functional value obtained with Emin = 50 Pa is lower than this with Emin = 10 Pa. Although it may
seem strange, we recall that in the context of gradient-based optimization the final solution attained
is usually affected by the choice of the initial guess and by the evolution of the solution during the
optimization process. When Emin ≤ 100 Pa the functionals are of the same order of magnitude as in
the distributed control case and lower than those referring to the boundary control. Finally, the Young
modulus profile, obtained with different values of Emin, on the solid mid-line and on the fluid-solid
interface is shown in Figure 7.
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Figure 6. Young modulus E fields, discretization l = 5 with different Emin = 10 Pa (left), 50 Pa (center),
100 Pa (right). E and Emin are scaled by 2.4 · 103.

Table 3. Objective functional. Emin is scaled by 2.4 · 103. The reference case with no control is labeled with NC.

Emin[Pa]

Level 10 50 100 200 NC

2 1.63·10−7 2.08·10−7 1.82·10−7 2.73·10−6 1.23·10−5

3 1.41·10−7 1.12·10−7 1.53·10−7 2.58·10−6 1.23·10−5

4 1.23·10−7 1.62·10−7 1.18·10−7 2.58·10−6 1.23·10−5

5 1.19·10−7 9.17·10−8 1.16·10−7 2.52·10−6 1.23·10−5
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Figure 7. Young modulus profile on the solid vertical mid-line (left) and on the interface Γi (right),
with different Emin = 10 Pa (A), 50 Pa (B), 100 Pa (C). E and Emin are scaled by 2.4 · 103.

Control with Gradient Regularization

In this test, case we want to recover smoother E profiles, so we impose further regularization
based on the gradient of the control. For this case we refer to the (20), take λ > 0 so that E ∈ H1(Ωs)

and investigate the effects of the choice of λ.
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In Figure 8, the Young modulus profile is shown for λ = 10−1 and 10−3 with Emin = 10 Pa.
In Table 4 we report the functional values obtained by changing the lower bound Emin and with the
same values of λ. The regularization term produces smoother solutions in particular with higher
values of λ. In this case we have an optimal solution where the limits on the control are inactive and
the control is not very effective. This can be deduced also from the plot on the right of the same Figure,
where the Young modulus profile on the solid vertical mid-line is reported and has an almost uniform
value in the whole domain. With λ = 10−1, we obtain the same functional values for different Emin
which means that the inequality constraint is inactive. By taking λ = 10−3, the regularization term
becomes less important and the optimal solution recovered by the algorithm is closer to the target and
to the one obtained with E ∈ L2(Ωs), see Figure 7.
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Figure 8. Young modulus E fields, discretization l = 5 with Emin = 10 Pa and λ = 10−1 (left),
λ = 10−3 (middle). Young modulus profile on the solid vertical mid-line (right), with Emin = 10 Pa
and λ = 10−1 (A), λ = 10−3 (B). E and Emin are scaled by 2.4 · 103.

Table 4. Objective functionals. Emin is scaled by 2.4 · 103. The reference case with no control is labeled
with NC.

Emin[Pa]

λ 10 50 100 200 NC

10−1 3.29·10−7 3.29·10−7 3.51·10−7 2.68·10−6 1.23·10−5

10−3 9.79·10−8 9.20·10−8 3.22·10−7 2.68·10−6 1.23·10−5

4. Conclusions

In this work, we have applied the optimal control theory to stationary fluid–structure interaction
systems with the aim of keeping a single framework with different types of controls such as pressure,
force, intensity and gradient of the Young modulus. The steady optimal problem has been reformulated
by using a “fictitious” velocity field to obtain a symmetric adjoint system, coupling adjoint variables
and forces on the interface, thus allowing us to use the same coupled solver for the state and adjoint
systems. To solve the minimization problem we have adopted the Lagrangian multiplier method
and the optimality system have been recovered by imposing the first-order necessary conditions.
The objective of the optimal control problem is the matching of the desired displacement field in
a particular region of the solid domain. This optimality system has been solved with an iterative
gradient-based algorithm implemented in the FEM code.
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We have studied and compared all the three optimization strategies: distributed, boundary and
property controls. Distributed controls are the strongest ones while boundary controls are the weakest
ones. As expected, the distributed control can act directly in the solid controlled region, with greater
effectiveness. The effects of the boundary control instead have to propagate from the fluid boundary
to the target domain that may be far away, which means that, in this case, the objective functional is
less sensitive to the control parameter. The results obtained show the feasibility, the robustness and the
weakness of the approaches proposed.
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