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Abstract: We study the stability of laminar Bingham–Poiseuille flows in a sheet of fluid (open channel)
down an incline with constant slope angle β ∈ (0, π/2). This problem has geophysical applications
to the evolution of landslides. In this article, we apply to this problem recent results of
Falsaperla et al. for laminar Couette and Poiseuille flows of Newtonian fluids in inclined channels.
The stability of the basic motion of the generalised Navier–Stokes system for a Bingham fluid in
a horizontal channel against linear perturbations has been studied. In this article, we study the
flows of a Bingham fluid when the channel is oblique and we prove a stabilizing effect of the
Bingham parameter B. We also study the stability of the linear system with an energy method
(Lyapunov functions) and prove that the streamwise perturbations are always stable, while the
spanwise perturbations are energy-stable if the Reynolds number Re is less than the critical Reynolds
number Rc obtained solving a generalised Orr equation of a maximum variational problem.
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1. Introduction

The stability of laminar flows in an inclined channel is important in many geophysical and
industrial applications. Recently, Falsaperla et al. [1,2] described the stability of laminar flows of
the steady solutions of a sheet of a Newtonian fluid (open channel) both in the horizontal case [1],
and down an incline with constant slope angle β [2]. In a reference frame O, i, j, k with i parallel to the
incline and k orthogonal to the plane of the channel, let z be the coordinate of the axis orthogonal to the
incline, the basic steady motion is given by the velocity field U(z)i and the pressure p(z). For a laminar
Newtonian fluid in a horizontal layer, U(z) is linear for Couette flows and parabolic for Poiseuille
flows, while, for an inclined channel, U(z) is a parabolic function which vanishes at the bottom of the
channel and whose derivative with respect to z vanish at the top.

Choosing an appropriately weighted L2-energy equivalent to the classical energy norm, we prove
in [1] that the plane Couette and Poiseuille flows are nonlinearly stable with respect to streamwise
perturbations for any Reynolds number (see also [3]). We also prove in [4] that the plane Couette and
Poiseuille flows are nonlinearly stable (and linearly stable in the energy norm) if the Reynolds number
is less then the critical value

ReOrr/ sin ϕ,

when the perturbation is a tilted perturbation in the x′ direction, with x′ a coordinate associated
to a new reference frame with i′ = i cos ϕ + j sin ϕ, j′ = j cos ϕ− i sin ϕ, and k′ = k. The number
ReOrr is the Orr [5] critical Reynolds number for spanwise perturbations which, for the Couette flow,
is ReOrr = 177.22 and for the Poiseuille flow is ReOrr = 175.31. The results in [1] improve those

Fluids 2020, 5, 141; doi:10.3390/fluids5030141 www.mdpi.com/journal/fluids

http://www.mdpi.com/journal/fluids
http://www.mdpi.com
https://orcid.org/0000-0001-7184-9798
https://orcid.org/0000-0002-9805-0852
https://orcid.org/0000-0002-9136-9748
http://www.mdpi.com/2311-5521/5/3/141?type=check_update&version=1
http://dx.doi.org/10.3390/fluids5030141
http://www.mdpi.com/journal/fluids


Fluids 2020, 5, 141 2 of 14

obtained by Joseph [6], who found for streamwise perturbations a critical nonlinear value of 82.6 in the
plane Couette case, and those obtained by Joseph and Carmi [7], who found the value 99.1 for plane
Poiseuille flow for streamwise perturbations. The results we obtained in [1] are in a good agreement
with the experiments and the numerical simulations. In a recent paper [2], we studied the stability
of laminar Poiseuille flows for a Newtonian fluid in an oblique channel. That work is a preliminary
investigation to model debris flows down an incline, and this work is its natural application to fluids
which model those of realistic mudflows.

De Blasio, in his monograph, “Introduction to the Physics of Landslides” [8] introduces,
in Chapter 4, non-Newtonian fluids, mudflows, and debris flows. In particular, he considers the
behaviour of a mudflow described by Bingham rheology. He gives a first example of non-Newtonian
fluid flow pattern considering a laminar stationary flow of a mud layer of thickness D along an inclined
plane of infinite length [8] (pp. 100–103). He obtains the basic motion, but he does not investigate its
stability. Basic flows of Bingham type in inclined channels arise also in other settings, for instance
lubrication flows [9,10].

Bingham fluids are typically applied to drilling muds. They are subjected to a yield stress in
addition to a plastic viscosity. The rheological properties are well-presented in the introduction of the
paper by Frigaard et al. [11]. The stability (both in the linear and nonlinear case) of the horizontal
laminar Poiseuille flows of a Bingham fluid has been investigated during the last 15 years by C.
Nouar, I.A. Frigaard and co-workers [11–16]. In [12] the authors write: “Parallel duct flows of slurries
and suspensions are relatively common in the petroleum and mining industries, where prediction of
the flowregime can be an important design parameter in hydraulic systems. These complex fluids are
commonly visco-plastic, meaning that they are characterised rheologically by having a yield stress,
below which no deformation takes place”. Among other results, in [11–16], the plug (unyielded) zone
and the yielded zone are introduced, and it is observed that the basic motion is the Bingham–Poiseuille
flow, with basic velocity field U(z) parabolic in the yielded zone and constant in the plug zone. In [14]
the authors determine the yield surface and write the perturbation equations to the basic motion.
They also linearise around the basic motion, and analyse the long-time behaviour of the disturbance
which is transformed in an eigenvalue problem. They finally solve the eigenvalue problem with
the appropriate boundary conditions using a Chebyshev collocation method, and investigate the
dependence of the Reynods number on the Bingham parameter. In particular, they obtain the linear
stability of the basic motion and prove that the Bingham number has a stabilizing effect.

The main aim of this work is to study the stability of the basic motion of the Bingham fluid down
an inclined open channel as given in De Blasio, [8]. In particular, we study the stability of the linearised
system of perturbations, and generalise to Bingham flows the stability results obtained for Newtonian
fluids in [2]. Precisely, we prove that the basic motion is linearly stable for any Reynolds number and we
prove (as in [11–16]) a stabilizing effect of the Bingham parameter. We also consider the linear stability
studying the evolution in time of the energy of the perturbations, which amounts of investigating
the stability in the energy norm with the Lyapunov method introduced by Reynolds [4] and Orr [5].
We prove that the streamwise perturbations are always stable while the spanwise perturbations are
energy-stable if the Reynolds number Re is less than a critical Reynolds number Rc obtained by solving
a generalised Orr equation of a maximum variational problem.

We also observe that Allouche et al. [17] focussed on Newtonian and generalised Newtonian
(in particular, Carreau) fluid film flows down an incline and compared the thresholds of oblique waves
to those of two-dimensional waves for a given slope in order to reach the dominant instability in a
given flow configuration. In particular they consider the shear-thinning and the shear-thickening cases
and performed a temporal linear stability study on the problem. However, they do not study the
stability of Bingham fluids.

In this article, we consider the stability in the linear context (both numerically and in energy).
In a future paper we plan to investigate the nonlinear stability of Bingham flows and the stability of
flows that obey to the Herschel–Bulkley rheology, which is even more appropriate in applications to
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landslides. We also plan to investigate, as in [1], the stability with respect to oblique perturbations and
its relation with the experiments.

The layout of the paper is the following. In Section 2, following [8], we introduce the governing
equations for a laminar open flow of a Bingham fluid down an inclined channel. In Section 3,
following [11–16], we write the linearised equations for a perturbation to the basic motion U(z)
with the appropriate boundary conditions, and we solve the generalised Sommerfeld equations for the
eigenvalue problem with the Chebyshev collocation method. In Section 4 we study the stability of
the linearised perturbations with the Lyapunov method by using an energy norm, we find sufficient
conditions for stability in energy for the streamwise and the spanwise perturbations and, for the latter,
we write the Euler–Lagrange equations for the maximum problem and we solve the related generalised
Orr equation. In Section 5, we draw some conclusions.

2. Laminar Open Flow of a Bingham Fluid Down an Inclined Channel

Consider the stationary laminar motion of a mud layer of thickness D along an inclined plane of
infinite length with constant slope angle β, 0 < β < π/2 [8] (p. 100) in a reference frame O, i, j, k with
associated coordinates x, y, z. The motion takes place in a channel D1 = R2

x,y × [0, D]z of thickness D.
The x-axis is taken along the slope direction while the z-axis is perpendicular to the slope. The y-axis is
also parallel to the slope and orthogonal to the slope direction x. The channel extends indefinitely in
the x, y directions and has a finite depth D in the z direction (see Figure 1).

plug layer

shear layer

solid layer

g

x

z

DS
D

β

Figure 1. Inclined layer of an angle β. The light grey layer is the shear layer which is moving with a
parabolic law. The wall corresponding to z = 0 is the rigid terrain. The superior layer, the plug region
DS ≤ z ≤ D, is rigidly moving at a constant velocity U(DS). D is the depth of the layer, DS is the
depth of the shear layer and D− DS is the depth of the plug region. g is the gravity.

We consider the flow of an incompressible Bingham fluid with yield stress τ0 and plastic viscosity
(Bingham viscosity) µB. The wall placed in z = 0 is rigid (the velocity of the flow vanishes) while that
placed at z = D is stress-free (the shear stress is zero). The governing equations are (cf. [11–16]):Ut + U·∇U = g− 1

ρ
∇ p̄ +

1
ρ
∇ · τ(U),

∇ ·U = 0,

where U is the velocity field, ρ is the constant density, p̄ is the pressure, τ is the deviatoric extra-stress
tensor,∇ is the gradient operator, and g is the gravity, g = g sin β i− g cos β k. The velocity vector is of
the form U = Ui +Vj +Wk, where U, V, W are the velocity components, and i, j, k are unit vectors in
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the streamwise (x) and spanwise (y) directions, and normal to the wall (z), respectively. As in [11–16],
we assume the constitutive relations between the stress and the strain rate for a Bingham fluid

τ = ηγ̇ ⇔ τ ≥ τ0

γ̇ = 0 ⇔ τ < τ0 ,
(1)

where γ̇ and τ are the strain rate and deviatoric stress tensors respectively. The yield stress is denoted
by τ0 and η denotes the effective viscosity, defined by

η = µB + τ0γ̇−1,

where µB is the Bingham viscosity (see De Blasio [8]), also called limiting viscosity (cf. [11]), τ0 is the
yield stress, γ̇ and τ are respectively the second invariants of the strain rate and the deviatoric stress
tensors. They are given by γ̇ =

√
γ̇ijγ̇ij/2, τ =

√
τijτij/2, γ̇ij = Ui,j +Uj,i, and the Einstein convention

on summation of repeated indices has been assumed.
Following De Blasio [8], we assume that “the thickness of the mud flow does not change along the x

coordinate, hence, U and p̄ are independent of x”. So, we consider laminar shear flows U = U(z)i, p̄ = p̄(z)
which are solutions to the stationary equationsU·∇U = g− 1

ρ
∇ p̄ +

1
ρ
∇ · τ(U),

∇ ·U = 0 .
(2)

Equation (2) becomes 
g sin β +

1
ρ

∂τxz

∂z
= 0

1
ρ

∂ p̄
∂z

+ g cos β = 0.

Solving these equations, we haveτxz = ρg sin βz + Ā,

p̄ = −ρg cos βz + B̄,

where Ā and B̄ are integration constants that can be determined by imposing the chosen boundary
conditions, that, in our case, are vanishing shear stress at the upper surface of the mud, i.e., ∂zU(D) = 0,
and pressure equals to the atmospheric pressure patm. Applying Bingham Equation (1) and denoting
τ = τxz, we have 

µB
∂U
∂z

= τ − τ0 = ρg sin β(D− z)− τ0, if τ ≥ τ0,
∂U
∂z

= 0, if τ ≤ τ0.
(3)

Following De Blasio [8] (p. 101), the first of two, Equation (3), can now be integrated from the
base up to the level where the right-hand side becomes zero. This defines a layer known as the shear
layer (the yielded zone) whose thickness DS can be found from Equation (3) imposing τ = τ0. We find

z = DS = D− τ0

ρg sin β
.
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From Equation (3) and the definition of DS we have
µB

∂U
∂z

= τ − τ0 = ρg sin β(D− z)− τ0, if 0 ≤ z ≤ DS

∂U
∂z

= 0, if z ≥ DS.
(4)

We note that for z ≤ DS the velocity U(z) increases with height. For z ≥ DS, as De Blasio observes,
the weight of the overlying material is not sufficient to shear the material, as it is obvious from the
second of Equation (4). As a consequence, the material moves rigidly, U(z) = c0 (c0 a constant) like a
plug. The thickness of this plug layer (unyielded zone) is

DP = D− DS =
τ0

ρg sin β
.

Integrating (4) and adopting the boundary conditions

U(0) = 0,
∂U(DS)

∂z
= 0.

We have the basic Bingham-Poiesuille flow, p̄ = patm + ρg cos β(D− z), and

U(z) =


ρg sin β

µB
z
[

DS −
z
2

]
if 0 ≤ z ≤ DS,

ρg sin βD2
S

2µB
if z ≥ DS,

These equations are non-dimensionalized using a length scale D, a velocity scale U0 = U(DS) =

(ρg sin βD2
S)/(2µB), and a pressure–stress scale ρU2

0 . Introducing the non-dimensional Reynolds and
Bingham numbers

Re =
ρU0D

µB
, B =

τ0D
µBU0

,

the non-dimensional form of (3) are
τ =

1
Re

(
∂U
∂z

+ B
)

, if τ ≥ B
Re

∂U
∂z

= 0, if τ ≤ B
Re

,

while the non-dimensional form of U(z) is

U(z) =

1− (z− zS)
2

z2
S

, if 0 ≤ z ≤ zS,

1, if zS ≤ z ≤ 1,

where zS = DS/D is a positive number that represents the depth of the yield surface. Such depth can
be computed directly, using the velocity U0 and the Bingham number B, and solving the equation
Bz2

S = 2(1− zS), using the momentum conservation equation in the plug region, where we have
τ0 = |τw|, with τw the wall shear stress |τw| = τ(z = 1) in the yielded region. In non-dimensional
form, we have

B
Re(1− zS)

=
1

Re

[
∂U
∂z

]
z=0

+
B

Re
=

B
Re

[
1 +

2
BzS

]
⇒ B =

2(1− zS)

z2
S

⇒ zS =
2

1 +
√

1 + 2B
.
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We observe that in the limit when B tends to 0, the fluid becomes a Newtonian fluid, and zS tends
to 1. In such a limit case there is no plug region.

3. Linear Stability Analysis

In order to perform the linear stability analysis, as in [11–16], we introduce (εu, εp), infinitesimal
perturbations to the basic flow (U, p̄), with ε << 1 and |u| and p bounded. The linearised perturbation
equation are εut + ε[u · ∇U + U · ∇u]= −ε∇p +∇ · [τ(U + εu)− τ(U)],

∇ · u = 0 .
(5)

wherever the yield stress is exceeded, the effective viscosity of the perturbed flow is expanded about
the basic flow (see [14]). Denoting with µ the non dimensional effective viscosity, we have

µ(U(z) + εu(x, y, z, t)) = µ(U(z) + εu, εv, εw) =
1

Re

[
1 +

B√
A/2

]
, (6)

where
A = γ̇ij(U + εu(x, y, z, t))γ̇ij(U + εu(x, y, z, t)).

A simple calculation shows that

A = 4 (εux)
2 + 2

(
εuy + εvx

)2
+ 2 ((U(z) + εu)z + εwx))

2 + 4(εvy)
2 + 2(εvz + εwy)

2 + 4(εwz)
2, (7)

where A depends on the number ε, (u, v, w) are the components of u, and the subscript indicate partial
differentiation with respect to the variables. Expanding µ(U(z) + εu(x, y, z, t)) in powers of ε, we have

µ(U(z) + εu(x, y, z, t)) = µ(U(z)) +
∂

∂ε

(
µ(U(z) + εu(x, y, z, t))

)∣∣
ε=0 ε + O(ε2).

From (6) it follows that

∂µ

∂ε

∣∣
ε=0

= − B
4Re
· 1
(U′)2|U′| ·

∂A
∂ε

∣∣
ε=0

,

where U′ is the derivative of U with respect to z. Finally, at the first order in ε we have:

µ(U(z) + εu(x, y, z, t)) =
1

Re

[
1 +

B
|U′| −

B
|U′|U′ (uz + wx)ε

]
.

We recall that

τ(U + εu)− τ(U) = µ(U + εu)(γ̇(U) + εγ̇(u))− µ(U)γ̇(U).

Computing γ̇(U) and by observing that U′ ≥ 0, at the first order in ε, we have

τ(U + εu)− τ(U) = ε

[
1

Re

(
1 +

B
U′

)
γ̇(u)− (uz + wx)

B
Re(U′)2 γ̇(U)

]
.

From this relation, we easily obtain

1
ε
[τ(U + εu)− τ(U)]ij = βij, (8)
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with

βij =

Re−1
(

1 +
B

U′

)
γ̇ij(u) if (i, j) 6= (1, 3) or (3, 1)

Re−1γ̇ij(u) if (i, j) = (1, 3) or (3, 1).
(9)

Collecting (5), (8) and (9), we have{
ut + u · ∇U + U · ∇u= −∇p + (βij)i ej

∇ · u = 0
(10)

where we have used the convention 1 = x, 2 = y, 3 = z and e1 = i, e2 = j, e3 = k. The perturbation
Equation (10) in the open domain DS = R2 × (0, zS), written with respect to the components (u, v, w)

of u, are 

ut + wU′ + Uux = −px +
1

Re
∆u +

B
Re U′

(uxx + uyy − wxz),

vt + Uvx = −py +
1

Re
∆v +

B
Re

[
1

U′
(vxx + vyy + vzz) +

(
1

U′

)′
(vz + wy)

]
,

wt + Uwx = −pz +
1

Re
∆w +

B
Re

[
1

U′
(wyy + wzz + vyz + wzz) + 2

(
1

U′

)′
wz

]
,

(11)

where ∆ is the Laplacian. We assume that the perturbations u, p are periodic in x and y of periods
2π/a, 2π/b, with wave number a and b in the directions x and y. We will later consider the limit cases
of streamwise perturbations, i.e., perturbations which do not depend on x and are periodic only on y,
and spanwise perturbations, i.e., perturbations which do not depend on y and are periodic only on x.

Equation (11) must be completed with a set of boundary conditions. Since, for a yield stress
fluid U′ = −2(z− zS)/z2

S and 1/U′ is singular as z → zS, the effective viscosity goes to +∞ at the
yield surface. It follows that some care is required in deriving the boundary conditions at z = zS as
explained for example in [11,14]. As in [11], we assume that the yield surface z = zS is perturbed to
ẑ = zS + εh(x, y, t), with h(x, y, t) periodic in x and y of periods 2π/a, 2π/b. The boundary conditions
can be obtained as in [11,13–16] and turn out to be

u(x, y, 0, t) = v(x, y, 0, t) = w(x, y, 0, t) = 0,

u(x, y, zS, t) = v(x, y, zS, t) = w(x, y, zS, t) = 0,

∂v(x, y, zs, t)
∂z

=
∂w(x, y, zs, t)

∂z
= 0,

∂u(x, y, zs, t)
∂z

= −hU′′(zs).

The boundary conditions at z = 0 are rigid, as classically found in Newtonian fluids. The Dirichlet
boundary conditions u = 0 at the yield surface can be deduced from the fact that the unyielded plug
zone is constrained to move as a rigid body according to the Bingham model [13]. The Neumann
conditions come from linearisation of the condition γ̇ij(U + εu) = 0 at the perturbed yield surface,
onto the unperturbed yield surface position [13]. In particular, following [13], we note that the
conditions ∂zv(x, y, zs, t) = ∂zw(x, y, zs, t) = 0, are necessary due to the singular behaviour of 1/U′ on
z = zS in the non-Newtonian part of (11). These boundary conditions ensure that (11) are well-defined
as z → zS. We thus have that v and w are asymptotic at zS to (z− zS)

α, with α > 1. This fact will
be useful in the Lyapunov investigation, in particular when using the boundary conditions in the
periodicity cell Ω = [0, 2π/a]× [0, 2π/b]× [0, zS].

In order to study the linear stability with the spectral method, we assume that the perturbations
have the form

(u, v, w, p, h) = [u(z), v(z), w(z), p(z), h]ei(ax+by)+Ct,
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where C is a complex number whose real part gives the decay rate of the perturbation.
We observe that, in [13], Frigaard and Nouar prove a Squire-like (see [18]) theorem: “if the

equivalent eigenvalue bounds for a Newtonian fluid yield a stability criterion, then the same stability
criterion is valid for the Bingham fluid flow, but with reduced wavenumbers and Reynolds numbers”.
Assuming this, we consider in what follows only streamwise or only spanwise perturbations.

In the case of streamwise perturbations a = 0 and b 6= 0, we hence have

Cu + wU′(z) = Re−1(D2 − b2)u− Re−1 B
U′

b2u

Cv = −ibp + Re−1(D2 − b2)v + Re−1B

[
1

U′
(D2 − b2)v +

(
1

U′

)′
(v′ + ibw)

]

Cw = −p′ + Re−1(D2 − b2)w + Re−1B

[
1

U′
(−b2w + 2w′′ + ibv′) + 2

(
1

U′

)′
w′
]

ibv + w′ = 0.

An easy calculation proves that the streamwise perturbations are always stable (the real part of C
is always less than 0). For the spanwise perturbations a 6= 0 and b = 0, and we have

Cu + iaUu + wU′(z) = −iap + Re−1(D2 − a2)u− Re−1 B
U′

(a2u + iaw′)

Cv + iaUv = Re−1(D2 − a2)v + Re−1B

[
1

U′
(D2 − a2)v +

(
1

U′

)′
v′
]

Cw + iaUw = −p′ + Re−1(D2 − a2)w + 2Re−1B

[
1

U′
w′′ +

(
1

U′

)′
w′
]

iau + w′ = 0 .

(12)

The variable v appears only in the second equation of system (12), and it can proven that v cannot
destabilize the basic motion. The remaining three equations depend only on u, w and on the pressure
p. Using the continuity equation, one can further eliminate the variables u, p and derive a system of
one equation in the variable w. This can be obtained by subtracting ia times the z-derivative of the
first equation of (12) and adding the third equation of (12) multiplied by a2 (this amounts to writing
the equation of the third component of the doube-curl of u). In this way one obtains the generalised
Orr–Sommerfeld equation

(C + i a U)(w′′ − a2w)− i a w U′′(z) = Re−1(w′′′′ − 2a2w′′ + a4w)− 4a2BRe−1

[
w′′

U′
+

(
1

U′

)′
w′
]

,

with boundary conditions

w(x, y, 0) = wz(x, y, 0) = 0, w(x, y, zS) = wz(x, y, zS) = 0.

Numerical calculations show that the linear perturbations are always stable, i.e., the real part
of C is negative for any Reynolds number. The Chebyshev collocation method has been used up to
100 polynomials for w. This transforms the differential equation in an algebraic generalized eigenvalue
system which also takes into account the given boundary conditions. Figure 2 shows that the maximum
real part of the spectrum of C is negative and decreasing with the Bingham number. Here, we have
considered the significative ranges a ∈ [0, 2.6], Re ∈ [1000, 11000]. We also obtain the expected fact that
as Re tends to 0, the real part of C tends to −∞.
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Figure 2. Real part of the time decay coefficient, Re(C), when a runs from 0 to 2.6, and the Reynolds
number Re is in the interval [1000, 11000]. The meshed plane corresponds to Re(C) = 0, the surfaces
corresponds to the set of points (a, Re, Re(C)), for sample Bingham values B = 0 (purple), B = 2
(green) and , B = 5 (cyan).

4. Linear-Energy Stability of Perturbations

In this section we use the linear Lyapunov method, also typically called energy-stability method.
In the periodicity cell Ω, we introduce the scalar product ( , ) and the L2(Ω) norm ‖ · ‖. We have the
energy identities:

d
dt

[
‖u‖2

2

]
+ (wU′, u) + (Uux, u) = −(px, u) +

1
Re

(∆u, u) +
B

Re

[(
1

U′
(uxx + uyy − wxz), u

)]
d
dt

[
‖v‖2

2

]
+ (Uvx, v) = −(py, v) +

1
Re

(∆v, v) +
B

Re

[(
1

U′
∆v, v

)
+

((
1

U′

)′
(vz + wy), v

)]
d
dt

[
‖w‖2

2

]
+ (Uwx, w) = −(pz, w) +

1
Re

(∆w, w) +
B

Re

[(
1

U′
(wyy + 2wzz + vyz) +

(
2

U′

)′
wz, w

)]
.

These identities can be simplified by applying integration by parts and using the boundary
conditions. Since the term (Uux, u) integrates to zero

(Uux, u) =
(

U,
∂

∂x
u2

2

)
= lim

z̄→zS

[
U

u2

2

]z̄

z=0
= 0.

We have the simplified identities

d
dt

[
‖u‖2

2

]
+ (wU′, u) = −(px, u)− 1

Re
‖∇u‖2 +

B
Re

[(
1

U′
(uxx + uyy − wxz), u

)]
(13)

d
dt

[
‖v‖2

2

]
= −(py, v)− 1

Re
‖∇v‖2 +

B
Re

[(
1

U′
∆v, v

)
+

((
1

U′

)′
(vz + wy), v

)]
(14)
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d
dt

[
‖w‖2

2

]
= −(pz, w)− 1

Re
‖∇w‖2 +

B
Re

[(
1

U′
(wyy + 2wzz + vyz) +

(
2

U′

)′
wz, w

)]
. (15)

4.1. Stability of Streamwise Perturbations

To prove that the linear streamwise perturbations are always stable, we begin observing that,
for streamwise perturbations, ∂x ≡ 0. The solenoidality of the kinetic perturbation hence reads
vy + wz = 0. From (14) and (15), we have

1
2

d
dt

[
‖v‖2 + ‖w‖2

]
= − 1

Re
(‖∇v‖2 + ‖∇w‖2)

+
B

Re

[(
1

U′
∆v, v

)
+

((
1

U′

)′
(vz + wy), v

)]
+

B
Re

(
1

U′
(wyy + wzz) +

(
2

U′

)′
wz, w

)
.

(16)

From (16), we have(
1

U′
∆v, v

)
=

(
1

U′
(vyy + vzz), v

)
=

= −
(

1
U′

vy, vy

)
+ lim

z̄→zS

[
1

U′
vzv
]z̄

z=0
−
((

1
U′

)′
vz, v

)
−
(

1
U′

vz, vz

)

= −
∫

Ω

v2
y + v2

z

U′
dΩ−

∫
Ω

(
1

U′

)′ ∂

∂z

(
v2

2

)
dΩ

= −
∫

Ω

v2
y + v2

z

U′
dΩ− lim

z̄→zS

[(
1

U′

)′ v2

2

]z̄

z=0

+
∫

Ω

(
1

U′

)′′ v2

2
dΩ.

We observe that as z̄→ zS we have

1
U′

v ' (z̄− zS)
α−1, and

(
1

U′

)′
v2 ' (z̄− zS)

2(α−1).

Hence, the boundary terms vanish. Proceeding in the same way for the other terms,
we easily obtain:

1
2

d
dt

[
‖v‖2 + ‖w‖2

]
= − 1

Re
(‖∇v‖2 + ‖∇w‖2)− B

Re

[∫
Ω

1
U′

(v2
y + w2

y + v2
z + w2

z)dΩ +
∫

Ω

(
1

U′

)′′
w2dΩ

]
.

Since

1
U′

= − z2
s

2(z− zS)
> 0 and

(
1

U′

)′′
= −

z2
S

(z− zS)3 > 0 in 0 < z < zS,

Poincaré inequality allows us to prove that ‖v‖ and ‖w‖ decay exponentially to 0 as t → +∞.
By using (13), it easy to see that also ‖u‖ goes to 0 as t→ +∞. Therefore, the energy norm of the kinetic
perturbation tends to 0 for any Reynolds and Bingham number. We conclude that the streamwise
perturbations are always linearly stabilizing.
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4.2. Stability of Spanwise Perturbations

To investigate the spanwise perturbations we begin observing that, in this case, ∂y ≡ 0. It follows
that the solenoidality of the kinetic perturbation reads ux + wz = 0. From (14), integrating by parts,
and using the boundary conditions as before, we have:

d
dt

[
‖v‖2

2

]
= −Re−1‖∇v‖2 + Re−1B

[(
1

U′
∆v, v

)
+

((
1

U′

)′
vz, v

)]

= −Re−1‖∇v‖2 − Re−1B
∫

Ω

1
U′

(v2
x + v2

z)dΩ.

Applying the Poincaré inequality and observing that 1/U′ = −z2
s /(2(z− zS)) > 0 for z < zS,

we have that ‖v‖ goes exponentially to 0 as t→ +∞. The energy equations of ‖u‖ and ‖w‖ become:

d
dt

[
‖u‖2

2

]
= −(wU′, u)− (px, u)− 1

Re
‖∇u‖2 − 2B

Re

∫
Ω

1
U′

u2
xdΩ,

d
dt

[
‖w‖2

2

]
= −(pz, w)− 1

Re
‖∇w‖2 − 2B

Re

∫
Ω

1
U′

w2
zdΩ.

Adding the two equations together we have

d
dt

[
‖u‖2

2
+
‖w‖2

2

]
= −(wU′, u)− 1

Re
(‖∇u‖2 + ‖∇w‖2)− 2B

Re

∫
Ω

1
U′

(u2
x + w2

z)dΩ.

From this equation, we infer that the critical Reynolds number for spanwise perturbations is
greater than the critical Reynolds number for Newtonian fluid (cf. [2]). Indeed, the term multiplied by
the Bingham number is always non-positive, hence that term is always stabilizing.

The linear energy stability can be studied as in [1,2] using the classical energy

V(t) =
1
2
[‖u‖2 + ‖v‖2 + ‖w‖2].

In order to obtain sufficient stability condition, we use the Orr–Reynolds energy identity:

V̇ = −(wU′, u)− 1
Re
‖∇u‖2 − 2B

Re

∫
Ω

1
U′

(u2
x + w2

z)dΩ− B
Re

∫
Ω

1
U′

(v2
x + v2

z)dΩ = I − 1
Re
D,

where V̇ is the orbital time derivative (i.e., the Lagrangian derivative computed along the solutions
of (11), where now ∂y ≡ 0), and

I = −(wU′, u) and D = ‖∇u‖2 + 2B
∫

Ω

1
U′

(u2
x + w2

z)dΩ + B
∫

Ω

1
U′

(v2
x + v2

z)dΩ.

We have

V̇ = I − 1
Re
D =

(
I
D −

1
Re

)
D ≤

(
1
R̄
− 1

Re

)
D,

where
1
R̄

= max
S

I
D

and S is the space of the kinematically admissible fields

S = {u, v, w ∈ H1(Ω), u = v = w = 0 on z = 0 and z = zS, ux + vy + wz = 0, D(u, v, w) > 0}.
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In the definition of S , the space H1(Ω) is the Sobolev space of all functions which are in L2(Ω)

together with their first generalized derivatives. The Euler–Lagrange equation of this maximum
problem is given by

R̄(U′(z)wi + U′(z)uk)− 2∆u− 4B

[
1

U′
uxxi +

1
U′

wzzk +

(
1

U′

)′
wzk

]
= ∇λ, (17)

where λ is a Lagrange multiplier.
Since, for spanwise perturbations, v ≡ 0 and ∂y ≡ 0, by taking the third component of the

double-curl of (17) and by using the solenoidality condition ux + wz = 0, we obtain the generalised
Orr equation [5]

R̄
2
(
U′′(z)wx + 2U′(z)wxz

)
+ ∆∆w + 4B

[
1

U′
wxxzz +

(
1

U′

)′
wxxz

]
= 0, (18)

with boundary conditions w = wz on z = 0 and z = zs. We solve this boundary value problem with
the Chebyshev collocation method, and we obtain the critical energy-linear Orr Reynolds number, Rc.

In Figure 3 we have plotted the critical Orr-Reynolds number as a function of the Bingham
number. The graphic shows the stabilizing effect of yield stress (Bingham). We note that in the limiting
case as B → 0 we obtain the critical value for the Newtonian fluid (note that here the depth of the
layer is D while in [2] it is 2D, therefore in the limiting case we obtain a critical value which is twice
the size of the corresponding critical value of the Orr–Reynolds number obtained with the same
boundary conditions).

Figure 3. Critical Orr–Reynolds numbers versus Bingham number. The plot shows the stabilizing
effect of the Bingham number.

5. Conclusions

In this article, we study the linear stability of laminar Bingham–Poiseuille flows for an inclined
sheet of fluid (open channel) with constant slope angle β. The basic flow is parabolic in the shear region
(the fluid there behaves like a Newtonian fluid) and is constant in the plug region. In the horizontal
case, this problem has been investigated by many authors. In this work we follow the approach of
Frigaard, Nouar and co-workers and we perform a novel investigation of the linear stability of the
laminar solution which takes into account the inclination of the channel and a novel investigation of
the critical value for energy stability, which possibly may suggest an experimental instability threshold.
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The time evolution of linear perturbations of the basic solution is investigated both with spectral
methods and with energy Lyapunov methods and assuming that the more destabilizing perturbations
are two-dimensional (Squire-like Theorem). By using a Chebyshev collocation method, we prove
that both the streamwise and the spanwise perturbations are stable for any Reynolds and Bingham
numbers. We also show that the Bingham number has a stabilizing effect. This stability result, in the
inclined channel, is similar to that of the Newtonian case [2] for the classical Couette motion in the
horizontal layer.

The experiments show turbulence when the Reynolds numbers are sufficiently large (cf. also [19]),
this turbulence cannot be accounted for by the spectral methods. The energy methods, instead,
indicate the possible insurgence of instability for large enough Reynolds numbers (Couette paradox).
In [1] we have already approached this question by introducing the energy method for a particular
set of tilted perturbations, with tilt angles that appear in the experiments, and we have found a good
agreement with the experimental data. We also apply to this problem the same ideas, and we obtain
that the streamwise perturbations are always energy stable, while the spanwise perturbations are
energy stable if the Reynolds number is less than a critical number which depends on the Bingham
number. This suggests that there could be oblique perturbations that may physically destabilize the
basic motion at the onset of instability.

The energy methods are also very important in the investigation of the nonlinear equations, since
the nonlinear terms could be crucial in developing instabilities. For this reason we think that it is
important, in a future work, to study the nonlinear stability problem and look for the most physical
destabilizing perturbations and their possible relation with landslides.

Finally, we note that if we had introduced a Reynolds number independent of the inclination β,
we would have obtained stability results with a different Reynolds number, inversely proportional to
sin β. This means that small inclinations, as expected, are stabilizing.
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