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Abstract: Rational Extended Thermodynamics theories with different number of moments are usually
introduced to study non-equilibrium phenomena in rarefied gases. Here, we use them to describe
one-dimensional acceleration waves in a rarefied monatomic gas. In particular, we focus on the
degeneracy of the acceleration wave to a shock wave, in order to test the validity of the models and
the role played by an increasing number of moments. As a byproduct, some peculiarities of the
characteristic velocities at equilibrium are analyzed as well.
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1. Introduction

Acceleration waves, also known as weak discontinuity waves, are propagating surfaces across
which all the field variables are continuous but some or all the first derivatives of the field variables
exhibit a jump [1–3]. In particular, this is the case for the velocity that presents a jump of acceleration,
hence the name acceleration wave. They can be generated by a small compressive disturbance in
a gas that occurs, for example, in a gas flow induced by the motion of a piston advancing with finite
acceleration. If the gas behavior is described by a set of hyperbolic conservation laws as those of the
Euler model, neglecting the effect of viscosity and conductivity, it is possible to show analytically that
the acceleration wave transforms into a shock wave in a finite time, independently from the amplitude
of the initial disturbance [3–5]. This mathematical prediction does not find evidence in experimental
data. In fact, experiments show that such discontinuity does not exist [6]. In this way, acceleration
waves can be used as a bench test for a gas theory. In order to have a prediction in accordance with
physical observations, it is necessary to describe the gas with a hyperbolic partial differential equation
(PDE) system, avoiding the paradox of infinite propagation velocity, typical of parabolic equation
systems. However, this is not a sufficient condition: many authors stressed that a suitable dissipation
is also required [3,4,7]. Under such conditions, the theory usually predicts the existence of a critical
amplitude Acr and a critical time tcr [2,3,5,7–9]. If the initial wave amplitude is greater than Acr,
the evolution of the weak discontinuity, after the time tcr, brings to the shock formation. In other
words, dissipation has a stabilizing effect on the acceleration wave, at least if the initial disturbance is
not “too big”. Of course, this effect is much more realistic if it predicts critical amplitude and critical
time compatible with physics.

Rational Extended Thermodynamics (RET) is a well-known theory, developed to describe
non-equilibrium phenomena in rarefied gases. Its new idea with respect to classical thermodynamics is
to consider as independent field variables not only the usual ones (mass density, momentum, energy)
but also non-equilibrium quantities like viscous tensor, heat flux, and others. The corresponding
equation system is composed by balance laws supplemented by local and instantaneous constitutive
equations that satisfy universal physical principles, like the entropy principle and the principle of
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relativity. Such constitutive relations are determined following different approaches. At a microscopic
level, one can refer to the Maximum Entropy Principle (MEP) [10–12], following a procedure that starts
from the construction of an infinite hierarchy of moments derived from the Boltzmann equation and
its subsequent truncation at some order n. The closure of the resulting truncated system is obtained
by prescribing the form of the suitable “truncated” distribution function through MEP. A simple
example of RET theory is the Grad 13-moment system [13] that was employed to describe various
physical phenomena. More in general, the hyperbolic PDE systems of RET, initially proposed by
Müller, Ruggeri and other researchers for monatomic gases, were capable of describing phenomena
far from equilibrium well, sometimes requiring a high number of moments (like in light scattering
phenomena) [10]. Recently, RET has been generalized also to rarefied polyatomic gases providing
relevant results and good agreement with experimental data [11,14].

In the present paper, we will consider different RET theories associated with n = 3, 4, . . . , 7
that consist of 20, 35, 56, 84, and 120 moments, respectively. They form a set of nesting theories such
that a model with M moments includes all the field variables of preceding theories with N moments
(if M > N). We stress that an increasing truncation order n and, consequently, an increasing number
of moments M could be required to describe physical phenomena further from equilibrium or more
rarefied gases.

In the past, the behavior of acceleration waves was already studied for the RET 13-moment
system by Ruggeri and Seccia, who show that the critical amplitude and decay coefficients of the
weak discontinuity waves are big enough to make a physical detection of the phenomena impossible.
Starting from these results, here we try to extend the investigation to RET systems with more moments,
in order to understand which is the effect of an increasing truncation order (or number of moments)
on the acceleration wave behavior. What we discover is in complete agreement with the experiments.
In addition, it shows a small effect due to the variation of n that is more evident on the decay behavior
of the fastest acceleration wave (which is the wave that propagates with the maximum characteristic
speed of the theory). To our knowledge, the complete analysis of the one-dimensional expression
of the present RET models in relation to the acceleration waves is available here for the first time.
The study shows, as a byproduct, a peculiar property of the characteristic velocities of the different RET
theories obtained with different truncation order, which confirms the elegant mathematical properties
of RET systems.

The paper is organized as follows: In Section 1, the procedure to construct a RET theory and
its properties are briefly summarized, while the theory of the acceleration waves is presented in
Section 2. The behaviors of the acceleration waves modeled by RET equations with 20, 35, 56, 84, and
120 moments are presented in Section 3 and analyzed and commented on in Section 4. The Appendix
contains some additional relations and calculations.

2. Rational Extended Thermodynamics Models for Monatomic Gases

As mentioned in the Introduction, different approaches could be employed to construct a Rational
Extended Thermodynamics theory for a monatomic rarefied gas. In fact, it is possible to write down the
field equations at a macroscopic level requiring the validity of universal principles such as the relativity
and the entropy principle. Alternatively, the technique introduced by Grad to obtain his famous
13-moment system [13] can be extended to a theory with many moments. Finally, starting from the
Boltzmann equation, one can construct an infinite hierarchy of moment equations that is truncated at
a certain order and closed through the Maximum Entropy Principle method (MEP) [10,11]. When many
moments are taken into account, as in the present work, this last procedure is the easiest to use and
implement [10,11,15,16].

It is well-known that at a microscopic level (kinetic theory) the state of a rarefied gas is described by
means of the phase density f (x, c, t), so that f (x, c, t)dc represents the number density of the monatomic
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molecules at point x = (x1, x2, x3) and time t with velocities between c and c + dc (c = (c1, c2, c3)).
In this framework, the Boltzmann equation describes the time evolution of f :

∂t f +
3

∑
j=1

cj∂xj f = Q, (1)

where Q denotes the collision term, and ∂t· = ∂ · /∂t, ∂xj · = ∂ · /∂xj. If m denotes the mass of the
monatomic molecule, the moments are defined as

F = m
∫

R3
f dc, Fi1i2···ik = m

∫
R3

ci1 ci2 · · · cik f dc with ik = 1, 2, 3 and k = 1, 2, · · · (2)

while the production terms are

Pi1i2···ik = m
∫

R3
ci1 ci2 · · · cik Qdc with ik = 1, 2, 3 and k = 1, 2, · · · , (3)

and the following infinite moment hierarchy is deduced from (1)

∂tF + ∂xj Fj = 0

↙
∂tFi1 + ∂xj Fji1 = 0

↙
∂tFi1i2 + ∂xj Fji1i2 = Pi1i2

↙
∂tFi1i2i3 + ∂xj Fji1i2i3 = Pi1i2i3

...

∂tFi1i2 ...ik + ∂xj Fji1i2 ...ik = Pi1i2 ...ik ,

...

(4)

where repeated indexes imply their sum, so for example here ∑3
j=1 is omitted. We recall that the first

five scalar equations correspond to the usual conservation laws of mass, momentum, and energy,
and we remark that the set of equations presents a very peculiar structure, since the flux of one
equation is equal to the density of the next equation. The infinite PDE system (4) is usually truncated at
a certain order n and closed, expressing the last flux and the productions as functions of the densities.
As anticipated before, a way to prescribe the a priori unknown constitutive relations between densities,
production terms, and last flux is to refer to MEP that fixes the form of the approximated phase density
corresponding to the truncated hierarchy

fn = exp(−1−mχn/kB) if χn =
n

∑
A=0

u′AcA , (5)

where kB denotes the Boltzmann constant, while the main field components u′A and the quantity cA
are [10,11]:

u′A =

{
u′ if A = 0
u′i1 ...iA

if 1 ≤ A ≤ n
, cA =

{
1 if A = 0
ci1 . . . ciA if 1 ≤ A ≤ n.

By construction, the closed truncated system turns out to be globally hyperbolic with a convex
extension. The previous relations and the previous results are valid only if integrals (2) are convergent,
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and this is a delicate question far from equilibrium. In particular, it was proven that in (5) n has to be
even [17].

At equilibrium, the phase density reduces to the Maxwellian one ( fM) and most frequently fn is
linearized in the neighborhood of an equilibrium state as

f (1)n = fM(1− m
kB

(χn − χn|E)), (6)

also taking into account that at equilibrium all the main field components vanish except the first five.
The approximation overcomes the convergence problems, so that, for example, a theory associated with
an odd truncation order is not allowed far from equilibrium, but its linearization in the neighborhood
of an equilibrium state can always be defined. This is the case of the Grad 13-moment system.

Unfortunately, for the linearized RET models expressed in the physical variables, the hyperbolicity
property is valid only locally [10,11,16].

In the present paper, we will consider linearized theories obtained through the previous procedure
for different values of the truncation order n (see, for example, [10]) that correspond to RET models
with different number of moments M (denoted from now on by ETM). Often, not all the moments
associated with the prescribed order n are taken into account; this happens, for example, with the
ET13 that corresponds to n = 3, but only the trace of the third order tensor Fimm = ∑3

m=1,j=m Fijm is
included in the density components (for more details, see [10,11]). However, in the present work,
we will focus on the ETM models that consider as independent field variables all the moments of
order less or equal to the n. Such systems are also known as n-system and they contain a number of
moments, given by [10,11]:

M =
(n + 1)(n + 2)(n + 3)

6
. (7)

Denoting with F, Fj and P density, flux and production vectors [10,11]:

F ≡ (F, Fi1 , Fi1i2 . . . . Fi1i2 ...iN )
T , Fj ≡ (Fj, Fji1 , Fji1i2 . . . Fji1i2 ...in),

P ≡ (0, 0i1 , Pi1i2 , . . . Pi1i2 ...in)

(the 0i1 denotes the zero vector and the trace of Pi1i2 vanishes), the final set of balance laws of ETM can
be written in a very concise form:

∂tF + ∂xi F
i = P. (8)

We recall also that, in general densities, fluxes and production terms are determined under the
assumption of zero macroscopic gas velocity v obtaining the corresponding non-convective quantities
F̃i1i2···ik and P̃i1,i2,·,ik . After that, the dependence on the velocity is prescribed by the requirement
of Galilean invariance, as shown by Ruggeri in ([18]) where he introduced a general procedure
that allows for passing from the convective to the non-convective quantities in a very elegant way.
Boillat and Ruggeri [17,19] have also shown that there are strong relations between RET theory with
an increasing number of moments, since they constitute nesting theories. In fact, an RET theory with
M moments presents characteristic speeds that are contained in the interval between the minimum
and the maximum characteristic speed of a theory with N moments, if N > M and ETM is a subsystem
of ETN . This will be the case of our n-systems.

In the present paper, we will focus on one-dimensional phenomena that involve one-dimensional
field variables. If u is the vector of such variables, system (8) can be written as

C(u)∂tu + D(u)∂xu = P, (9)
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where for simplicity we denote x = x1 and v = v1, while C(u) = ∂uF and D(u) = ∂uF1 are square
matrices. The system can also be rewritten referring to the material time derivative ∗̇ = ∂∗

∂t + v ∂∗
∂x :

u̇ + B(u)∂xu = P′(u) (10)

and we will use this last form in the next sections. A final remark concerns a possible simplification of
the notation for this peculiar case under investigation. In fact, the one-dimensional ETM system will
involve only some of the M-moment components that we can denote by Fh,j and define

Fh,j =
∫

R3
ch

1c2j fndc, and F̃h,j =
∫

R3
Ch

1 C2j fndC, (11)

where h = 0, 1, · · · n and j = 0, 1, · · · n/2 with h + 2j ≤ n; moreover, F̃h,j indicates the non-convective
part of Fh,j and Ci = ci − vi the peculiar velocity. The non-equilibrium non-convective part of Fh,j will
be indicated from now on with

ρh,j = F̃h,j − F̃h,j

∣∣∣
E

, (12)

so that, for example, F̃0,0 = ρ, F̃0,1 = 3p, F̃2,0 = p + σ, F̃1,1 = 2q and, consequently, ρ0,0 = ρ0,1 = 0,
ρ2,0 = σ, ρ1,1 = 2q, if ρ is the mass density, p the pressure, σ the 1-component of the viscous tensor,
and q the 1-component of the heat flux.

3. Acceleration Waves

An acceleration wave, known also as weak discontinuity, is a propagating surface Γ across which
all the field variables are continuous, while the first derivatives of one or more field variables present
a jump. Let us suppose that the Cartesian equation of wave front Γ is ϕ(x, t) = 0 and that such
surface separates the space into two subspaces: in front, the field variables u0(x, t) are known and
unperturbed, while behind Γ the perturbed field variables u(x, t) are in general unknown. If we
consider an acceleration wave and denote by [[·]] = (.)ϕ=0− − (.)ϕ=0+ the jump across Γ, we have
[[u]] = 0, while [[ ∂u

∂ϕ ]] = A 6= 0. Here, we focus on the one-dimensional models and one-dimensional
acceleration waves. Under such assumptions, the field equations reduce to (10) if u = u(x, t) is the
M-dimensional vector of the field variables, B is the corresponding square M×M matrix, and P the
M-dimensional vector of the production terms.

Regarding the one-dimensional weak discontinuity waves, it is well known that [1–3]

• The normal velocity V = −ϕt/|∇ϕ| of the wave front coincides with a characteristic speed of
system (10) evaluated in the unperturbed field: V = λ(u0).

• The jump vector A is proportional to the right eigenvector r (of matrix B) corresponding to λ,
evaluated in u0, so that A = Ar(u0).

• The scalar amplitude A satisfies the Bernoulli equation, if d/dt denotes the time derivative along
the characteristic line (in our case, dx/dx = λ(u0) and a(t) and b(t) are suitable function of the
time t):

dA
dt

+ a(t)A2 + b(t)A = 0, (13)

whose solution can be written as

A(t) =
A(0) exp(−

∫ t
0 b(s)ds)

1 + A(0)
∫ t

0 a(s)exp(−
∫ s

0 b(χ)dχ)ds
. (14)
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For a one-dimensional space, it was shown that [3]

a(t) = ϕx (∂uλ · r)
∣∣∣
0
,

b(t) =
[

rT
(
(∂ul)T − ∂ul

)
· du

dt
+ (∂uλ · r)(l · ∂xu)− ∂u(l · P) · r

] ∣∣∣∣∣
0

,

dϕx

dt
+ (∂uλ · ∂xu)

∣∣∣
0
ϕx = 0 with ϕx(0) = 1,

(15)

where ϕx = ∂ϕ
∂x and l denote the left eigenvector of B, assuming that l · r = 1 For the sake of

completeness, we have also to recall that there are different acceleration waves. If ∂uλ · r = 0 ∀u
(hence also a vanishes), the wave is called exceptional, the Bernoulli equation reduces to a linear
differential equation whose solution decays in time if b > 0:

A(t) = A(0) exp(−
∫ t

0
b(s)ds). (16)

In contrast, if ∂uλ · r 6= 0, for suitable initial values A(0) (|A(0) > |Acr|), there exists a critical time
tcr such that the solution (14) diverges and the acceleration wave degenerates into a shock structure.
Accordingly, the field variables are no more continuous across the wave front.

In the cases studied in the next sections, the acceleration waves will propagate in an unperturbed
constant equilibrium state u0 = uE, in which the characteristic speed λ(uE) turns out to be constant,
so that ϕx = 1 ∀t > 0, and consequently a and b turn out to be constant as well:

a = (∂uλ · r)
∣∣∣
E

and b(t) = − (l · ∂uPr)
∣∣∣
E

, (17)

so the corresponding formula for A becomes

A(t) =
A(0) exp(−bt)

1− A(0) a
b (exp(−bt)− 1)

. (18)

Consequently, the value of the critical time is

tcr = −
1
b

ln
(

1 +
b

aA(0)

)
, (19)

if b > 0 (this will be true in all the following examples), tcr is positive if and only if the initial value
of the scalar amplitude satisfies the condition A(0) > −b/a for a < 0, or A(0) < −b/a for a > 0.
The choice of left and right eigenvectors deserves special notice. In principle, they are both defined
apart from an arbitrary factor. The arbitrary factor of the left eigenvector can be prescribed by the
condition l · r = 1, while for the right eigenvector the arbitrary factor is somehow absorbed by the scalar
amplitude A. However, if the characteristic speed λ|E does not vanish, one can choose the arbitrary
factor of r referring to the Hadamard relation, in order to obtain the time evolution equation for the
acceleration jump G [11]. In all the RET models analyzed in the next sections, the second component
of u corresponds to the velocity of the gas along the x direction, in other words A2 = Ar2 = [[ ∂v

∂x ]]

and, thanks to the Hadamard condition, the acceleration gap across the wave front has to satisfy the
following relation:

G =
[[∂v

∂t

]]
= −λ

∣∣∣
E

[[ ∂v
∂x

]]
= −λ

∣∣∣
E

Ar2. (20)
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Hence, if the second component of the right eigenvector is chosen as r2 = −1/λ|E, the scalar
amplitude A coincides with G. In what follows, we will take into account this idea for all the
acceleration waves that propagates with λ|E 6= 0.

A final remark concerns the fastest acceleration wave. In general, considering a certain equation
model, we will deal with different characteristic velocities and consequently with acceleration waves
that propagate with different speeds. If more waves are propagating simultaneously, the fastest one is
the only one that could propagate in an unperturbed constant state. For this reason, we will consider
all the non-exceptional waves, paying attention in particular to the fastest one that corresponds to the
characteristic velocity that exhibits the maximum absolute value.

4. Acceleration Waves in RET Theories

In what follows, we will consider different ETM systems in order to compare the behavior of the
acceleration waves for different RET models. In particular, we will introduce the case of ET20, ET35,
ET56, ET84, and ET120. As already stated, the analysis will be restricted to one-dimensional phenomena,
referring to equations and procedures described in Sections 1 and 2. To construct the set of balance laws
starting from a fixed tensorial order n, we refer to the method described in [10,11,15,16] and determine
the production terms through the Bhatnagar-Gross-Krook (BGK) approximation [20], assuming that
all the relaxation times are equal. Of course, this is a strong idealization of physical phenomena
related to rarefied monatomic gases, since in general different relaxation times can be observed.
Nevertheless, as we will verify in the next pages, the oversimplification of the production model
does not significantly change the behavior of the acceleration waves. In fact, the magic combination
of hyperbolicity and dissipation typical of RET models gives rise to a regularization of the weak
discontinuities, at least for an initial amplitude that is not too large.

4.1. The ET20 Model

If the moment hierarchy (4) described in Section 1 is truncated at order 3 and all the moments
of order less equal to 3 are taken into account, it is possible to obtain the ET20 theory. For the sake of
simplicity, we consider here only the case of one-dimensional space and fields, so that the independent
variables reduce to only 6: the mass density ρ, the component 1 of the velocity v along the x direction,
the temperature T, the (1,1) component of the viscous tensor σ, the component of the heat flux parallel
to the x direction q, and ρ3,0 = F̃3,0:

u(20) = (ρ, v, T, σ, q, ρ3,0) . (21)

Here, and in the next pages, we will assume that the pressure p is related to the mass density and to
the temperature by the relation p = kBρT/m. The corresponding field equations are deduced with the
MEP procedure described in Section 1 [10,11,15] and read

ρ̇ + ρ∂xv = 0,

v̇ +
kBT
mρ

∂xρ +
kB
m

∂xT − 1
ρ

∂xσ = 0,

Ṫ +
2
3

(
T − mσ

kBρ

)
∂xv +

2m
3kBρ

∂xq = 0,

σ̇ +
7σ− 4p

3
∂xv +

2
3

∂xq− ∂xρ3,0 = − 1
τ

σ,

q̇ +
kBTσ

mρ
∂xρ + (2q + ρ3,0)∂xv +

5kB(p− σ)

2m
∂xT − (p + σ)

ρ
∂xσ = − 1

τ
q,

ρ̇3,0 +
3pσ

ρ2 ∂xρ + 4ρ3,0∂xv +
3kB(p− σ)

m
∂xT − 3(p + σ)

ρ
∂xσ = − 1

τ
ρ3,0.

(22)



Fluids 2020, 5, 139 8 of 22

System (22) is written here explicitly in the form of (10) and therefore the expression of matrix B is
easily determined. Denoting the non-convective part of the characteristic speed as λ̃ (where λ = λ̃ + v),
the characteristic polynomial associated with (22) can be written after some calculations as

P20(λ̃) = α6λ̃6 + α5λ̃5 + α4λ̃4 + α3λ̃3 + α2λ̃2 + α1λ̃ + α0 (23)

where

α6 = 1 α5 = 0, α4 =
7σ− 21p

3ρ
, α3 = −4ρ3,0

ρ
, α2 =

9p2 − 6pσ

ρ2 ,

α1 =
(12p− 16σ)ρ3,0 + 24qσ

3ρ2 , α0 = −3p2(p− σ)

ρ3 .
(24)

At equilibrium, the previous characteristic polynomial reduces to

P20(λ̃)
∣∣∣
E
=

(kBT0 −mλ̃2
E)(3k2

BT2
0 − 6kBmT0λ̃2

E + m2λ̃4
E)

m3 (25)

and so the equilibrium characteristic velocities are

λ̃
(20)
1,2

∣∣∣
E
= ±

√
3−
√

6c0, λ̃
(20)
3,4

∣∣∣
E
= ±c0, λ̃

(20)
5,6

∣∣∣
E
= ±

√
3 +
√

6 c0, with c0 =

√
kBT0

m
, (26)

while the right and the left corresponding eigenvectors at equilibrium are

r(20)
i

∣∣∣
E
= r2

 ρ0

λ̃i

∣∣∣
E

, 1,−
2mT0λ̃i

∣∣∣
E

9kBT0 − 3mλ̃2
i

∣∣∣
E

,
4kBT0ρ0λ̃i

∣∣∣
E

9kBT0 − 3mλ̃2
i

∣∣∣
E

,−
3k2

BT2
0 ρ0

3kBmT0 −m2λ̃2
i

∣∣∣
E

,−
6k2

BT2
0 ρ0

3kmT0 −m2λ̃2
i

∣∣∣
E


T

(27)

l(20)
i

∣∣∣
E
=

si
r2

 kBT0

λ̃i

∣∣∣
E

ρ
, m, −

kBmλ̃i

∣∣∣
E

(3kBT0 −mλ̃2
i

∣∣∣
E
)

, −
m2λ̃i

∣∣∣
E

(−3kBT0 + mλ̃2
i

∣∣∣
E
)ρ0

, 0, − m2

(3kBT0 −mλ̃2
i

∣∣∣
E
)ρ0

 ,

with si =

(
−3kT0λ̃i

∣∣∣
E
+ mλ̃3

i

∣∣∣
E

)2

9k3
BT3

0 + 9k2
BmT2

0 λ̃2
i

∣∣∣
E
− 3kBm2T0λ̃4

i

∣∣∣
E
+ m3λ̃6

i

∣∣∣
E

,

(28)

where r2 is an arbitrary factor of the right eigenvector ri. We have considered a BGK approximation
for the productions terms, so that it holds

∂uP =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1/τ 0 0
0 0 0 0 −1/τ 0
0 0 0 0 0 −1/τ


. (29)

If r2 = −1/λi

∣∣∣
E

, the scalar amplitude A coincides with the acceleration jump G (see Section 2)

and one gets

a(20)
i =

(
∂uλ̃i · ri

) ∣∣∣
E
= −

81k4
BT4 + 36k3

BmT3λ̃2
i − 207k2

Bm2T2λ̃4
i + 82kBm3Tλ̃6

i − 18m4λ̃8
i

9mλ̃3
i (3kBT −mλ̃2

i )(9k2
BT2 − 14kBmTλ̃2

i + 3m2λ̃4
i )

∣∣∣∣∣
E

, (30)
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b(20)
i = − (li∂uPri)

∣∣∣
E
=

2kBmTλ̃2
i (9kBT + 2mλ̃2

i )

3τ(9k3
BT3 + 9k2

BmT2λ̃2
i − 3kBm2Tλ̃4

i + m3λ̃6
i )

∣∣∣∣∣
E

. (31)

Table 1 collects the quantities necessary to describe the time evolution of the acceleration waves
in terms of the relaxation time τ: ai, bi, Gcr = −bi/ai. The quantities related to the fastest acceleration
waves are presented in the last line.

Table 1. The values of a, b and Gcr of the acceleration waves propagating with different characteristic
velocities.

λ̃i

∣∣∣
E

ai bi Gcr

λ̃
(20)
1,2

∣∣∣
E

∓ 2.52727
c0

0.280584
τ ± 0.111023c0

τ

λ̃
(20)
3,4

∣∣∣
E

∓ 0.722222
c0

0.458333
τ ± 0.634615c0

τ

±λ̃
(20)
max = λ̃

(20)
5,6

∣∣∣
E

∓ 1.3862
c0

0.552749
τ ± 0.398751c0

τ

4.2. The ET35 Model

The RET theory with 35 moments is obtained when the truncation order of the moment
hierarchy (4) is equal to 4 and all the moments of order less equal to 4 are considered. If we
restrict our attention to one-dimensional space and one-dimensional field variables, we will deal
with nine components:

u(35) =
(

u(20), ρ0,2, ρ2,1, ρ4,0

)
, (32)

if F̃0,2 = ρ0,2 + 15 p2

ρ (ρ0,2 is often denoted by ∆ [10]), F̃2,1 = ρ2,1 + 5 p2

ρ and F̃4,0 = ρ4,0 + 3 p2

ρ .
The corresponding RET system reduces to

ρ̇ + ρ∂xv = 0,

v̇ +
kBT
mρ

∂xρ +
kB
m

∂xT − 1
ρ

∂xσ = 0,

Ṫ +
2
3

(
T − mσ

kBρ

)
∂xv +

2m
3kBρ

∂xq = 0,

σ̇ +
7σ− 4p

3
∂xv +

2
3

∂xq− ∂xρ3,0 = − 1
τ

σ,

q̇ +
kBTσ

mρ
∂xρ + (2q + ρ3,0)∂xv +

kB(5p + 2σ)

2m
∂xT +

(5p− 2σ)

2ρ
∂xσ +

1
2

∂xρ2,1 = − 1
τ

q,

ρ̇3,0 +
3pσ

ρ2 ∂xρ + 4ρ3,0∂xv +
3kB(p + σ)

m
∂xT +

3(p− σ)

ρ
∂xσ + ∂xρ4,0 = − 1

τ
ρ3,0,

ρ̇0,2 −
8pq
ρ2 ∂xρ +

(
ρ0,2 + 4ρ2,1 +

20kBTσ

m

)
∂xv +

20kBq
m

∂xT +
8q
ρ

∂xσ +
8kBT

m
∂xq = − 1

τ
ρ0,2,

ρ̇2,1 −
2p(2q + ρ3,0)

ρ2 ∂xρ +

(
2ρ4,0 + 3ρ2,1 +

4p(7p + 5σ)

3ρ

)
∂xv+

+
kB(2q + 7ρ3,0)

m
∂xT +

2(2q + ρ3,0)

ρ
∂xσ− 2p

3ρ
∂xq +

9p
ρ

∂xρ3,0 = − 1
τ

ρ2,1,

ρ̇4,0 −
4pρ3,0

ρ2 ∂xρ + [5ρ4,0 +
4p(2p + σ)

ρ
]∂xv +

6kBρ3,0

m
∂xT +

4ρ3,0

ρ
∂xσ− 4p

ρ
∂xq +

10p
ρ

∂xρ3,0 = − 1
τ

ρ4,0.

(33)
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where Equations (33)1−4 coincide with those in (22)1−4 of ET20, Equations (33)5,6 differ from (22)5,6

in some terms, while the last three equations of ET35 system (33)7−9 are new with respect to the
20-moment theory. The corresponding characteristic polynomial is determined after some calculations:

P35(λ̃) = −λ̃2[β7λ̃7 + β6λ̃6 + β5λ̃5 + β4λ̃4 + β3λ̃3 + β2λ̃2 + β1λ̃ + β0], (34)

where

β7 = 1 β6 = 0, β5 = −13p
ρ

, β4 = −2q + 3ρ3,0

ρ
,

β3 = −5ρ4,0ρ− 45p2 + 30pσ

ρ2 , β2 =
10p(2q + ρ3,0)

ρ2 , β1 = − (−15pρρ4,0 + 45p3 − 90p2σ)

ρ3 ,

β0 = − (−30ρqρ4,0 − 25ρρ4,0ρ3,0 + 30ρρ2,1ρ3,0 + 90p2q + 15p2ρ3,0 − 180pqσ + 60pρ3,0σ)

3ρ3 .

(35)

It is easily verified that at equilibrium the characteristic polynomial reduces to

P35(λ̃)
∣∣∣
E
=

λ̃3
E(3kBT0 −mλ̃2

E)(15k2
BT2

0 − 10kBmT0λ̃2
E + m2λ̃4

E)

m3 , (36)

and the characteristic velocities are

λ̃
(35)
1,2,3

∣∣∣
E
= 0, λ̃

(35)
4,5 = ±

√
5−
√

10 c0, λ̃
(35)
6,7

∣∣∣
E
= ±
√

3 c0, λ̃
(35)
8,9

∣∣∣
E
= ±

√
5 +
√

10 c0. (37)

A comparison between the spectrum of ET20 and ET35 at equilibrium shows a complete agreement
with the theory by Boillat and Ruggeri [19]. In the present work, we ignore the exceptional waves that

here correspond to the acceleration waves with zero characteristic velocity λ̃
(35)
1,2,3

∣∣∣
E

), since they decay

for any initial amplitude of the weak discontinuity.
In order to determine the characteristic quantities of the non-exceptional waves one can proceed

as in the previous case, starting from the calculation of right and left eigenvectors, when i = 4, 5, · · · , 9
and r2 is again an arbitrary non-zero real factor

ri

∣∣∣
E
=r2

[
ρ0

λ̃i|E
, 1,

2T0yiy′i
3λ̃i|E

,−
4kBT0yiy′iρ0

3mλ̃i|E
,

3k2
BT2

0 ρ0yi

m
,

6k2
BT2

0 yiρ0

m
,

24k3
BT3

0 yiρ0

m2λ̃i|E
,

4k2
BT2

0 yi(−10kBT0 + 7mλ̃2
i |E)ρ0

3m2λ̃i|E
,

8k2
BT2

0 yi(−kBT0 + mλ̃2
i |E)ρ0

m2λ̃i|E

]
,

with yi =
1

(−7kBT0 + mλ̃2
i |E)

, and y′i = (−4kBT0 + mλ̃2
i |E),

(38)

li

∣∣∣
E
=

1
y′′i yir2

[
kBT0λ̃i|B

yiρ0
,

mλ̃2
i |E

yi
, kBλ̃i|Ey′i ,−

mλ̃i|E(−10kBT0 + mλ̃2
i |E)

ρ0
, 0,

m2λ̃2
i |E

ρ0
, 0, 0,

m2λ̃i|E
ρ0

]
,

with y′′i = (105k3
BT3

0 + 25k2
BmT2

0 λ̃2
i |E − 11kBm2T0λ̃4

i |E + m3λ̃6
i |E).

(39)

In order to determine the behavior of the acceleration jump, we prescribe r2 = −1/λ̃i|E, we write
down the expression of ∂uP (that will be very similar to (29)), deriving the values of a, b

a(35)
i =

[
323

1071λ̃i
+

(2745mλ̃i)

1071(7kBT −mλ̃2
i )

+
(7mλ̃i(−18135k2

BT2 + 1838kBmTλ̃2
i + 2043m2λ̃4

i ))

1071(−135k3
BT3 + 225k2

BmT2λ̃2
i − 91kBm2Tλ̃4

i + 9m3λ̃6
i ))

] ∣∣∣∣∣
E

,

b(35)
i =

2kBT(68k2
BT2 − 7kBmTλ̃2

i + 2m2λ̃4
i )

3τ(105k3
BT3 + 25k2

BmT2λ̃2
i − 11kBm2Tλ̃4

i + m3λ̃6
i )

∣∣∣∣∣
E

.

(40)
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The numerical values of the coefficients a, b and Gcr are summarized in Table 2.

Table 2. The table collects the values of a, b and Gcr corresponding to the non-exceptional acceleration
waves of ET35.

λ̃i

∣∣∣
E

ai bi Gcr

λ̃
(35)
4,5

∣∣∣
E

∓ 1.68132
c0

0.343836
τ ∓ 0.204503c0

τ

λ̃
(35)
6,7

∣∣∣
E

∓ 0.529238
c0

0.401235
τ ∓ 0.758137c0

τ

±λ̃
(35)
max = λ̃

(35)
8,9

∣∣∣
E
∓ 1.53569

c0

0.800609
τ ∓ 0.521334c0

τ

4.3. The ET56 Model

Increasing to 5 the truncation order of the infinite hierarchy and keeping all the moments of order
less equal to 5, we face now the ET56 theory that under the assumption of one-dimensional space and
variables deals with 12 independent fields

u(56) =
(

u(35), ρ1,2, ρ3,1, ρ5,0

)
(41)

with F̃1,2 = ρ1,2, F̃3,1 = ρ3,1 and F̃5,0 = ρ5,0. The one-dimensional set of balance laws is composed now
by 12 equations that for the sake of simplicity are written in Appendix A (A1) and (A2), together with
the complete expression of the characteristic polynomial. It is easily verified that at equilibrium

(i.e., u(56)
1

∣∣∣
E
= ρ0, u(56)

2

∣∣∣
E
= v0, u(56)

3

∣∣∣
E
= T0, u(56)

j

∣∣∣
E
= 0 if j = 4, 5, · · · 12) the characteristic polynomial

reduces to

P56(λ̃)
∣∣∣
E
= P20(λ̃)

∣∣∣
E
×

(15k3
BT3

0 − 45k2
BmT2

0 λ̃2
E + 15kBm2T0λ̃4

E −m3λ̃6
E)

m3 (42)

and therefore the characteristic speeds at equilibrium turn out to be

λ̃
(56)
1,2

∣∣∣
E
= ±

√
3−
√

6c0 λ̃
(56)
3,4

∣∣∣
E
= ±c0,

λ̃
(56)
5,6

∣∣∣
E
= ±

√
3 +
√

6 c0, λ̃
(56)
7,8 = ±

√
5 + 2

√
10 cos

(
φ1 + 2π

3

)
c0,

λ̃
(56)
9,10 = ±

√
5 + 2

√
10 cos

(
φ1 + 4π

3

)
c0, λ̃

(56)
11,12 = ±

√
5 + 2

√
10 cos

φ1

3
c0,

(43)

with φ1 = arctan
√

3
2 . We remark that the equilibrium spectrum of ET56 contains all the eigenvalues

of ET20, together with other eigenvalues and in agreement with the conditions stated by Boillat and
Ruggeri [17,19]. As for the truncation order 3, no exceptional waves are observable in this case, so the
usual quantities a and b are determined for all the possible characteristic speeds. The increasing
number of moments gives rise to a more complicated expression of the left and right equilibrium
eigenvectors that we will not present explicitly, but can be deduced from the knowledge of matrix B.
After several calculations, the coefficients a and b can be determined as follows (we refer also in this
case to the behaviour of the acceleration jump G) if i = 1, 2, · · · , 12:
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a(56)
i =

[
− kBT

6mλ̃3
i
− 61

90λ̃i
+

2mλ̃i(−2168kBT + 59mλ̃2
i )

1245(15k2
BT2 − 12kBmTλ̃2

i + m2λ̃4
i )
+

+
mλ̃i(−14583k4

BT4 − 3186k3
BmT3λ̃2

i + 45246k2
Bm2T2λ̃4

i − 11806kBm3Tλ̃6
i + 561m4λ̃8

i )

747(135k5
BT5 − 555k4

BmT4λ̃2
i + 702k3

Bm2T3λ̃4
i − 318k2

Bm3T2λ̃6
i + 55kBm4Tλ̃8

i − 3m5λ̃10
i )

] ∣∣∣∣∣
E

,

b(56)
i =

2kBmTλ̃2
i (405k3

BT3 + 108k2
BmT2λ̃2

i − 27km2Tλ̃4
i + 2m3λ̃6

i )

(3τ(225k5
BT5 + 135k4

BmT4λ̃2
i − 60k3

Bm2T3λ̃4
i + 120k2

Bm3T2λ̃6
i − 21kBm4Tλ̃8

i + m5λ̃10
i ))

∣∣∣∣∣
E

(44)

The numerical values of the coefficients a, b, and Gcr for the acceleration waves of ET56 model are
collected in Table 3.

Table 3. Values of the coefficients ai and bi, together with the critical value of G(0) in the case of
one-dimensional ET56 theory.

λ̃i

∣∣∣
E

ai bi Gcr

λ̃
(56)
1,2

∣∣∣
E

∓ 0.854423
c0

0.55994
τ ± 0.655343c0

τ

λ̃
(56)
3,4

∣∣∣
E

∓ 0.33333
c0

0.813333
τ ± 2.44c0

τ

λ̃
(56)
5,6

∣∣∣
E

∓ 0.528062
c0

0.383322
τ ± 0.725904c0

τ

λ̃
(56)
7,8

∣∣∣
E

∓ 2.9081
c0

0.409518
τ ± 0.14082c0

τ

λ̃
(56)
9,10

∣∣∣
E

∓ 1.51194
c0

0.497643
τ ± 0.329141c0

τ

±λ̃
(56)
max = λ̃

(56)
11,12

∣∣∣
E
∓ 1.60945

c0

0.926172
τ ± 0.575458c0

τ

4.4. The ET84 Model

The ET84 theory is obtained considering all the moments of order less or equal to 6. Taking into
account once again a one-dimensional space and one-dimensional field variables, the number of the
independent variables reduces to 16:

u(84) =
(

u(56), ρ0,3, ρ2,2, ρ4,1, ρ6,0

)
, (45)

with F̃0,3 = ρ0,3 +
105p3

ρ2 , F̃2,2 = ρ2,2 +
35p3

ρ2 , F̃4,1 = ρ4,1 +
21p3

ρ2 and F̃6,0 = ρ6,0 +
15p3

ρ2 . The corresponding

set of 16 balance laws can be found in the Appendices (A5) and (A6). At equilibrium (i.e., u(84)
1 |E = ρ0,

u(84)
2 |E = v0, u(84)

3 |E = T0, u(84)
j |E = 0 ∀j = 4, 5, · · · , 16), the characteristic polynomial reduces to:

P84(λ̃)|E = P35(λ̃)|E ×
λ̃E(105k3

BT3
0 − 105k2

BmT2
0 λ2

E + 21kBm2T0λ̃4
E −m3λ̃6

E)

m3 , (46)

and the characteristic velocities at equilibrium are

λ̃
(84)
1,2,3,4

∣∣∣
E
= 0, λ̃

(84)
5,6 = ±

√
5−
√

10 c0, λ̃
(84)
7,8

∣∣∣
E
= ±
√

3 c0, λ̃
(84)
9,10

∣∣∣
E
= ±

√
5 +
√

10 c0

λ̃
(84)
11,12

∣∣∣
E
= ±

√
7 + 2

√
14 cos(

φ2 + 2π

3
)c0,

λ̃
(84)
13,14

∣∣∣
E
= ±

√
7 + 2

√
14 cos(

φ2 + 4π

3
)c0, λ̃

(84)
15,16

∣∣∣
E
= ±

√
7 + 2

√
14 cos

φ2

3
c0,

(47)
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with φ2 = arctan
(√

5
2

)
. Once again, the equilibrium spectrum of ET35 is clearly contained in the

corresponding spectrum of ET84, while the characteristic speeds differ from those of ET20 and ET56.
Following the procedure described in detail for ET20, we determine the coefficients a and b for the
analysis of the acceleration jumps in the case of non-exceptional waves:

a(84)
i =

aN(84)
i

aD(84)
i

, bi = −
bN(84)

i

bD(84)
i

, (48)

aN(84)
i =(118125k8

BT8 + 1751400k7
BmT7λ̃2

i − 3226230k6
Bm2T6λ̃4

i + 2245500k5
Bm3T5λ̃6

i − 798576k4
Bm4T4λ̃8

i +

+ 157728k3
Bm5T3λ̃10

i − 17202k2
Bm6T2λ̃12

i + 956kBm7Tλ̃14
i − 21m8λ̃16

i )
∣∣∣
E

aD(84)
i =6λ̃i(57k2

BT2 − 18kBmTλ̃2
i + m2λ̃4

i )(4725k6
BT6 − 14175k5

BmT5λ̃2
i + 14070k4

Bm2T4λ̃4
i

− 6150k3
Bm3T3λ̃6

i + 1269k2
Bm4T2λ̃8

i − 119kBm5Tλ̃10
i + 4m6λ̃12

i )
∣∣∣
E

(49)

bN(84)
i =2kBT(3528k4

BT4 − 603k3
BmT3λ̃2

i + 384k2
Bm2T2λ̃4

i − 51kBm3Tλ̃6
i + 2m4λ̃8

i )
∣∣∣
E

,

bD(84)
i =3τ(5985k5

BT5 + 315k4
BmT4λ̃2

i − 1176k3
Bm2T3λ̃4

i + 348k2
Bm3T2λ̃6

i − 33kBm4Tλ̃8
i + m5λ̃10

i )
∣∣∣
E

(50)

In Table 4, the numerical vales of the main coefficients are summarized for the non-exceptional waves.

Table 4. The values of a, b, and Gcr corresponding to the non-exceptional acceleration waves of ET84.

λ̃i

∣∣∣
E

ai bi Gcr

λ̃
(84)
5,6

∣∣∣
E

∓ 0.642969
c0

0.519028
τ ± 0.807236c0

τ

λ̃
(84)
7,8

∣∣∣
E

∓ 0.3849
c0

0.797101
τ ± 2.07093c0

τ

λ̃
(84)
9,10

∣∣∣
E

∓ 0.497686
c0

0.38631
τ ± 0.776212c0

τ

λ̃
(84)
11,12

∣∣∣
E

∓ 1.82855
c0

0.435448
τ ± 0.238139c0

τ

λ̃
(84)
13,14

∣∣∣
E

∓ 1.49312
c0

0.688412
τ ± 0.461057c0

τ

±λ̃
(84)
max = λ̃

(84)
15,16

∣∣∣
E
∓ 1.69454

c0

0.97614
τ ± 0.576051c0

τ

4.5. The ET120 Model

ET120 corresponds to a truncation order equal to 7. In this case, the number of independent
one-dimensional field variables is 20:

u(120) =
(

u(120), ρ1,3, ρ3,2, ρ5,1, ρ7,0

)
, (51)

where F̃1,3 = ρ1,3, F̃3,2 = ρ3,2, F̃5,1 = ρ5,1 and F̃7,0 = ρ7,0. The one-dimensional set of field equations has
a complicated structure and can be found in Appendix A (A10) and (A11).

In addition, the characteristic polynomial presents a very complicated expression and for the sake
of simplicity, we report here only its expression at equilibrium. As for the previous cases, the field
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components that do not vanish at equilibrium are only u(120)
1 |E = ρ0, u(120)

2 |E = v0 and u(120)
3 |E = T0,

so the equilibrium characteristic polynomial reduces to

P120(λ̃)|E = P56(λ̃)|E ×
(105k4

BT4
0 − 420k3

BmT3
0 λ̃2

E + 210k2
Bm2T2

0 λ̃4
E − 28kBm3T0λ̃6

E + m4λ̃8
E)

m4 , (52)

and the characteristic speed at equilibrium is

λ̃
(120)
1,2

∣∣∣
E
= ±

√
3−
√

6 c0, λ̃
(120)
3,4

∣∣∣
E
= ±c0,

λ̃
(120)
5,6

∣∣∣
E
= ±

√
3 +
√

6 c0,

λ̃
(120)
7,8 = ±

√
5 + 2

√
10 cos

(
φ1 + 2π

3

)
c0,

λ̃
(120)
9,10 = ±

√
5 + 2

√
10 cos

(
φ1 + 4π

3

)
c0,

λ̃
(120)
11,12 = ±

√
5 + 2

√
10 cos

φ1

3
c0,

λ̃
(120)
13,14 = ±

√√√√7−
√

14 + h−
√

28− h− 56√
14 + h

c0,

λ̃
(120)
15,16 = ±

√√√√7−
√

14 + h +

√
28− h− 56√

14 + h
c0,

λ̃
(120)
17,18 = ±

√√√√7 +
√

14 + h−
√

28− h +
56√

14 + h
c0,

λ̃
(120)
19,20 = ±

√√√√7 +
√

14 + h +

√
28− h +

56√
14 + h

c0,

(53)

with h = 2
√

70 cos(φ3/3) and φ3 = arctan
(√

3/7
)
. It is easily verified that no exceptional waves are

predicted by this model. Again, ET120 presents the equilibrium characteristic speeds of ET56 together
with four new eigenvalues that behave as predicted in [17,19]. No characteristic speeds of ET35 and
ET84 are observable for the 120-moment system.

Following the procedures described in Sections 1 and 2 and presented in details for ET20, one can
determine the coefficients a and b corresponding to the acceleration jump G:

a(120)
i =

aN(120)
i

aD(120)
i

, b(120)
i =

bN(120)
i

bD(120)
i

, (54)
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with

aN(120)
i =

[
− 1488375k13

B T13 + 4068225k12
B mT12λ̃2

i + 30230550k11
B m2T11λ̃4

i − 177007950k10
B m3T10λ̃6

i +

+ 395140095k9
Bm4T9λ̃8

i − 482337405k8
Bm5T8λ̃10

i + 349324020k7
Bm6T7λ̃12

i − 154092468k6
Bm7T6λ̃14

i +

+ 42307383k5
Bm8T5λ̃16

i − 7316169k4
Bm9T4λ̃18

i + 790870k3
Bm10T3λ̃20

i − 51422k2
Bm11T2λ̃22

i +

+ 1825kBm12Tλ̃24
i − 27m13λ̃26

i

]∣∣∣
E

;

aD(120)
i =

[
6mλ̃3

i (−7kBT + mλ̃2
i )(15k2

BT2 − 18kBmTλ̃2
i ++m2λ̃4

i )(−23625k9
BT9 + 181125k8

BmT8λ̃2
i−

− 510300k7
Bm2T7λ̃4

i + 674820k6
Bm3T6λ̃6

i − 457950k5
Bm4T5λ̃8

i + 169182k4
Bm5T4λ̃10

i −

− 34860k3
Bm6T3λ̃12

i + 3940k2
Bm7T2λ̃14

i − 225kBm8Tλ̃16
i + 5m9λ̃18

i )
]∣∣∣

E
;

(55)

bN(120)
i =

[
2kBmTλ̃2

i (27405k5
BT5 + 8442k4

BmT4λ̃2
i − 4866k3

Bm2T3λ̃4
i + 1028k2

Bm3T2λ̃6
i−

− 79kBm4Tλ̃8
i + 2m5λ̃10

i )
]∣∣∣

E
;

bD(120)
i =

[
3τ(11025k7

BT7 − 315k6
BmT6λ̃2

i + 6195k5
Bm2T5λ̃4

i + 12075k4
Bm3T4λ̃6

i − 5229k3
Bm4T3λ̃8

i +

+ 775k2
Bm5T2λ̃10

i − 47kBm6Tλ̃12
i + m7λ̃14

i )
]∣∣∣

E
.

(56)

The numerical values of the coefficients corresponding to the different characteristic speeds are
shown in Table 5.

Table 5. The values of a, b and Gcr corresponding to the acceleration waves of ET120.

λ̃i

∣∣∣
E

ai bi Gcr

λ̃
(120)
1,2

∣∣∣
E

∓ 0.813203
c0

0.78892
τ ± 0.970139c0

τ

λ̃
(120)
3,4

∣∣∣
E

∓ 2.83333
c0

0.869608
τ ± 0.30692c0

τ

λ̃
(120)
5,6

∣∣∣
E

∓ 0.398372
c0

0.742313
τ ± 1.86337c0

τ

λ̃
(120)
7,8

∣∣∣
E

∓ 1.11852
c0

0.614625
τ ± 0.549497c0

τ

λ̃
(120)
9,10

∣∣∣
E

∓ 0.593506
c0

0.491156
τ ± 0.827551c0

τ

λ̃
(120)
11,12

∣∣∣
E

∓ 0.447707
c0

0.361391
τ ± 0.807203c0

τ

λ̃
(120)
13,14

∣∣∣
E

∓ 3.27138
c0

0.487302
τ ± 0.148959c0

τ

λ̃
(120)
15,16

∣∣∣
E

∓ 1.56393
c0

0.513738
τ ± 0.328492c0

τ

λ̃
(120)
17,18

∣∣∣
E

∓ 1.52887
c0

0.839253
τ ± 0.548936c0

τ

±λ̃
(120)
max = λ̃

(120)
19,20

∣∣∣
E
∓ 1.78365

c0

0.993041
τ ± 0.556746c0

τ
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5. Results, Conclusions, and Final Remarks

The investigation of RET models with different numbers of moments presented in the previous
sections allows the comparison and the identification of the main features of acceleration waves
described by ETM balance laws. All the non-exceptional acceleration waves decade quickly with
a coefficient that is inversely proportional to the common relaxing time. As already stressed, this is
an oversimplification, since in a more realistic case it is necessary to take into account the presence of
different relaxation times that could speed up the decay of the wave amplitude for increasing values
of M. This fact is in accordance with a previous result about ET13 by Ruggeri and Seccia, ref. [9] and
can be seen as its generalization. All the non-exceptional acceleration waves also exhibit a critical
time, due to the hyperbolicity property of the equation set that is a time in which, for certain large
values of the initial amplitude, the weak discontinuity wave becomes a strong discontinuity wave.
However, this is more a mathematical question than a physical one, since in all the previous cases
the initial critical amplitude is inversely proportional to τ, i.e., |Gcr| ' 1011m/s2 for helium at room
temperature and usual pressure [8,9]. It is practically impossible to figure out an experiment where
such a big discontinuity in the field derivative is generated, without a discontinuity in the field variables
themselves. The result is in complete agreement with the experimental evidence: no formation of
shock waves from an acceleration wave was ever observed.

The behavior of all the non-exceptional acceleration waves is completely studied for ET20, ET35,
ET56, ET84 and ET120 models, and the stabilizing effect of dissipation is confirmed once again. For any
fixed M, a special role is played by the fastest wave that propagates into the equilibrium unperturbed
state with the maximum characteristic speed. In all the previous examples, this wave exhibits the
fastest decay and the decay coefficient increases when n (and hence M) is increased. We can conjecture
that these properties are valid for all RET theories, since a higher number of moments corresponds
to a higher number of dissipation terms. In other words, the acceleration waves described by RET
balance laws are in perfect agreement with the experimental observations: in a time comparable with
the inverse of the relaxation time, the amplitude decreases exponentially and becomes undetectable by
a physical measurement apparatus. In fact, no acceleration waves were revealed during experiments.
Figure 1 shows the coefficients b of the fastest wave as a function of n. It is easily verified that b
increases slowly together with the truncation order.

3 4 5 6 7

n

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

b
 

Figure 1. The coefficient b of the fastest acceleration wave, multiplied by the relaxation time τ is
plotted as a function of n. The values were calculated in the previous sections and reported in the
previous tables.
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A distinct general remark has to be addressed to the results concerning the equilibrium
characteristic speeds of the different theories. Boillat and Ruggeri have demonstrated a “nesting
property” for the characteristic speeds of RET model with an increasing number of moments [19]
that we have described in Section 1 and verified in our examples. However, in Section 3, we have
found a more peculiar behavior of the spectrum of the equilibrium matrix B|E. In fact, the equilibrium
characteristic speeds of an n-system coincide with some equilibrium eigenvalues of the (n + 2)-system.
This leads to a distinction between two “families” of systems and their sets of eigenvalues: those for
an odd truncation order and those for an even truncation order. We conjecture that this is a general
property valid for any n-system and related to the symmetric structure of RET systems of balance
laws [10,11,19].

Author Contributions: Conceptualization, F.B. and L.S.; methodology, F.B. and L.S.; validation, F.B. and L.S.;
investigation, F.B.; writing—original draft preparation, F.B.; writing—review and editing, F.B. and L.S. All authors
have read and agreed to the published version of the manuscript.

Funding: The paper was supported by Gruppo Nazionale di Fisica Matematica (GNFM) dell’INdAM and in
part (F.B.) by the Italian research Project PRIN 2017 No. 2017YBKNCE “Multiscale phenomena in Continuum
Mechanics: singular limits, off-equilibrium and transitions”.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The present Appendix collects the equation systems and the characteristic polynomials of ET56,
ET84 and ET120.

Appendix A.1. The ET56 Case

The one-dimensional set of balance laws is composed now by 12 equations: the first six are the
same as (33)1−6 and we will not write down them here, while the remaining six are given by

ρ̇0,2 −
8pq
ρ2 ∂xρ + (ρ0,2 + 4ρ2,1 +

20kBTσ

m
)∂xv− 8kBq

m
∂xT +

8q
ρ

∂xσ− 20kBT
m

∂xq + ∂xρ1,2 = − 1
τ

ρ0,2

ρ̇2,1 −
2p(2q + ρ3,0)

ρ2 ∂xρ +

(
2ρ4,0 + 3ρ2,1 +

4p(7p + 5σ)

3ρ

)
∂xv−

− kB(2q + ρ3,0)

m
∂xT +

2(2q + ρ3,0)

ρ
∂xσ− 20p

3ρ
∂xq + ∂xρ3,1 = − 1

τ
ρ2,1

ρ̇4,0 −
4pρ3,0

ρ2 ∂xρ +

(
5ρ4,0 +

4p(2p + σ)

ρ

)
∂xv− 4kBρ3,0

m
∂xT +

4ρ3,0

ρ
∂xσ− 4p

ρ
∂xq + ∂xρ5,0 = − 1

τ
ρ4,0

(A1)
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and

ρ̇1,2 +
p
ρ
(−ρ0,2 − 4ρ2,1 + 4v(−4q + 2ρ3,0 + 2pv + vσ)) ∂xρ+

+ 2
(

2ρ3,1 + ρ1,2 + 2v(−2ρ4,0 + 2ρ2,1 − 2qv + ρ3,0v +
4p2

ρ
)

)
∂xv+

+
1

m3

(
70k3

BT2ρ + 2kBm(7ρ2,1 + kBT(4v2ρ + 63σ) + 2mv(−4q + 2ρ3,0 + vσ)
)

∂xT+

+
1

m2ρ

(
98k2

BT2ρ + m(mρ0,2 + 4mρ2,1 − 4v(−4mq + 2mρ3,0 + 2kBTvρ + mvσ))
)

∂xσ+

+
p
ρ

∂xρ0,2 +
18p

ρ
∂xρ2,1 = − 1

τ
ρ1,2

ρ̇3,1 −
kBT
mρ

(2ρ4,0 + 3ρ2,1)∂xρ + 2(ρ5,0 + 2ρ3,1)∂xv+

+
3kB
m

(
3m2ρ4,0 + m2ρ2,1 + 2kBT(7kBTρ + 18mσ)

)
∂xT +

(
75k2

BT2

m2 +
2ρ4,0 + 3ρ2,1

ρ

)
∂xσ+

+
6kBT

m
∂xρ2,1 +

11kBT
m

∂xρ4,0 = − 1
τ

ρ3,1

ρ̇5,0 −
5kBTρ4,0

mρ
∂xρ + 6ρ5,0∂xv +

10kB
m3

(
m2ρ4,0 + 3kBT(kBTρ + 3mσ)

)
∂xT +

60p2 + 5ρρ4,0

ρ2 ∂xσ+

+
15kBT

m
ρ4,0 = − 1

τ
ρ5,0

(A2)

After some tedious calculations, the characteristic polynomial can be explicitly written as

P56(λ̃) =
12

∑
k=0

γkλ̃k, (A3)

where

γ12 = 1, γ11 = 0, γ10 = −
22k2

BT
m

, γ9 = 0, γ8 = − 1
3ρ2 [11ρ4,0ρ + 6ρρ2,1 − 477p2 + 108pσ],

γ7 = − 1
3ρ2 [18ρ ρ5,0 − 180pρ3,0], γ6 = − 1

3ρ3 [−56pρρ4,0 − 96pρρ2,1 + 1404p3 − 1008p2σ],

γ5 = − 1
3ρ3 [−126pρρ5,0 + 1260p2ρ3,0], γ4 = − 1

3ρ4 [360p2ρρ2,1 − 1665p4 + 2520p3σ],

γ3 = − 1
3ρ4 [(−36ρ2ρ5,0ρ2,1 + 360pρρ2,1ρ3,0 − 12ρ4,0(3ρ2ρ5,0 − 5ρ2ρ3,1 + 15pρ(2q + ρ3,0))+

162p2ρρ5,0 − 1620p3ρ3,0 − 36p(13ρρ5,0m− 10(ρρ3,1 − 6pq + 4pρ3,0))σ)],

γ2 = − 1
3ρ5 [60p3ρ ρ4,0 − 360p3ρ ρ2,1 + 810p5 − 2160p4σ]

γ1 = − 1
3ρ5 [36p ρ2ρ5,0ρ2,1 − 360p2 ρ ρ2,1ρ3,0 + 12pρρ4,0(3ρ ρ5,0 − 5ρρ3,1+

+ 15p(2q + ρ3,0))− 54p3ρρ5,0 + 540p4ρ3,0 + 36p2(13ρρ5,0 − 10(ρ ρ3,1 − 6pq + 4pρ3,0))σ],

γ0 = − 1
3ρ6 [−15ρ p4 ρ4,0 + 90ρ p4 ρ2,1 − 135p6 + 540p5 σ].

(A4)
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Appendix A.2. The ET84 Case

Tedious calculations are required for the one-dimensional PDE system of ET84 that is composed
of 16 equations: the first six are given by (33)1−6, the next three are those of (A1), the following three
equations are a modification of (A2)

ρ̇1,2 +
kBT
mρ

(−ρ0,2 − 4ρ2,1 + 4v(−4q + 2ρ3,0 + 2pv + vσ)) ∂xρ+

+ 2
(

2ρ3,1 + ρ1,2 + 2v(−2ρ4,0 + 2ρ2,1 − 2qv + ρ3,0v +
4p2

ρ
)

)
∂xv+

+
1

m3

(
70k3

BT2ρ + kBm(−mρ0,2 − 4mρ2,1 + 4mv(−4q + 2ρ3,0 + 2pv + vσ)
)

∂xT+

+
1

m2ρ

(
35k2

BT2ρ + m(mρ0,2 + 4mρ2,1 − 4v(−4mq + 2mρ3,0 + 2kBTvρ + mvσ))
)

∂xσ+

+ ∂xρ2,2 = − 1
τ

ρ1,2,

ρ̇3,1 −
kBT
mρ

(2ρ4,0 + 3ρ2,1)∂xρ + 2[ρ5,0 + 2ρ3,1]∂xv−

− kB

m2 (2mρ4,0 + 3mρ2,1 + 42kBTp) ∂xT + [
21k2

BT2

m2 +
2ρ4,0 + 3ρ2,1

ρ
]∂xσ + ∂xρ4,1 = − 1

τ
ρ3,1,

ρ̇5,0 −
5kBTρ4,0

mρ
∂xρ + 6ρ5,0∂xv− 5kB

m2 (mρ4,0 − 6kBTp) ∂xT +
15p2 + 5ρρ4,0

ρ2 ∂xσ + ∂xρ6,0 = − 1
τ

ρ5,0,

(A5)

while the remaining ones are new with respect to the previous theories:

ρ̇0,3 −
2kBT
m3ρ

(
2ρ3,1m2 + ρ1,2m2 + 28k2

BT2vρ + 2vm(mρ0,2 − 2mρ4,0 + mρ2,1 − 8mqv + 4mvρ3,0 + 4kBTv2ρ+

+2mv2σ)
)

∂xρ + (4ρ4,1 + 2ρ2,2 + ρ0,3 − 8vρ5,0 + 4v(ρ3,1 + ρ1,2 + 2v(2ρ4,0 − 2ρ2,1 + 2qv− vρ3,0))−

−
2k2

BT2(28kBTρ + 16mv2ρ− 105mσ)

m3

)
∂xv− kB

m3

(
4m2ρ3,1 − 25m2ρ1,2 + 56k2

bT2vρ + 4kBmT(189q + 4ρv3)+

+4m2v(ρ0,2 − 2ρ4,0 + ρ2,1 + 2v(−4q + 2ρ3,0 + vσ))
)

∂xT +
1

m2ρ

(
4m2ρ3,1 + 2m2ρ1,2 + 56k2

BT2vρ+

+4mv(mρ0,2 − 2mρ4,0 + mρ2,1 − 8mqv + 4mvρ3,0 + 4kBTv2ρ + 2mv2σ)
)

∂xσ−

−
588k2

BT2

m2 ∂xq +
27kBT

m
∂xρ1,2 = − 1

τ
ρ0,3,

ρ̇2,2 −
2kBT
m2ρ

[2mρ3,1 + mρ1,2 + 4v2(−4mq + 2mρ3,0 + 2kBTvρ + mvσ)]∂xρ + [4ρ4,1+

+
1

m3 (3m3ρ2,2 + 84k3
BT3ρ + 8mv2(2m2ρ4,0 − 2m2ρ2,1 + 2m2qv−m2vρ3,0 − 4k2

BT2ρ) + 70k2
BmT2σ)]∂xv+

+
kB

m2 [18mρ3,1 + mρ1,2 − 2kBT(108q + 99ρ3,0 + 8v3ρ)− 8mv2(−4q + 2ρ3,0 + vσ)]∂xT+

+
1

mρ

(
4mρ3,1 + 2mρ1,2 + 8v2(−4mq + 2mρ3,0 + 2kBTvρ + mvσ)

)
∂xσ−

−
178k2

BT2

m2 ∂xq−
99k2

BT2

m2 ∂xρ3,0 +
3kBT

m
∂xρ1,2 +

22kBT
m

∂xρ3,1 = − 1
τ

ρ2,2,

ρ̇4,1 −
2kBT
mρ

(ρ5,0 + 2ρ3,1) ∂xρ +

(
2ρ6,0 + 5ρ4,1 +

6k2
BT2

m3 (12kBTρ + 7mσ)

)
∂xv+

+
kB

m2 (11mρ5,0 + 6mρ3,1 − 20kBT(3q + 11ρ3,0)) ∂xT +
2(ρ5,0 + 2ρ3,1)

ρ
∂xσ−

72k2
bT2

m2 ∂xq−

−
110k2

BT2

m2 ∂xρ3,0 +
10kBT

m
∂xρ3,1 +

13kBT
m

∂xρ5,0 = − 1
τ

ρ4,1,

ρ̇6,0 −
6kBTρ5,0

mρ
∂xρ +

(
7ρ6,0 +

30k2
BT2(2p + σ)

m2

)
∂xv +

15kB

m2 (mρ5,0 − 14kBρ3,0T) ∂xT+

+
6ρ5,0

ρ
∂xσ−

30k2
BT2

m2 ∂xq−
105k2

BT2

m2 ∂xρ3,0 −
21kBT

m
ρ5,0 = − 1

τ
ρ6,0.

(A6)



Fluids 2020, 5, 139 20 of 22

The corresponding characteristic polynomial is expressed as

P84(λ̃) = λ̃3
13

∑
k=0

δkλ̃k (A7)

where

δ13 = 1, δ12 = 0, δ11 = −
34k2

bT
m

, δ10 = 0, δ9 =
423k2

BT2

m2 ,

δ8 = − 1
3mρ2 [13mρρ5,0 + 10mρρ3,1 − 60pq− 220pρ3,0],

δ7 = − 1
3mρ2 [21mρρ6,0 − 315mpρ4,0 + 7380kBTp2 − 945kBTpσ],

δ6 = − 1
3mρ2 [−102mpρ5,0 − 240mpρ3,1 + 1440kBTpq + 3180kBTpρ3,0],

δ5 = − 1
3m2ρ2 [−273m2 pρ6,0 + 4095kBTpmρ4,0 − 21105k2

BT2 p2 + 12285k2
BT2 pσ],

δ4 = − 1
3m2ρ2 [−126kBmTpρ5,0 + 1680kBmTpρ3,1 − 10080k2

BT2 pq− 13860k2
BT2 pρ3,0],

δ3 = − 1
3m3ρ2 [945kBTm2 pρ6,0 − 14175k2

BT2mpρ4,0 + 28350k3
BT3 p2 − 42525k3

BT3 pσ],

(A8)

δ2 = − 1
3m6ρ2 [−49m6ρ5,0ρ6,0 + 105m6ρ5,0ρ4,1 − 70m6ρ6,0ρ3,1 − 420m5kBTρ4,0ρ5,0 + 1050kBm5Tρ4,0ρ3,1−

− 630kBm5Tρ5,0ρ2,1 + 420kBm5Tqρ6,0 + 1120kBm5Tρ3,0ρ6,0 − 1050kBm5Tρ3,0ρ4,1 − 6300k2
BT2m4qρ4,0−

− 5250k2
Bm4T2ρ3,0ρ4,0 + 6300k2

BT2m4ρ3,0ρ2,1 + 1470k3
Bm3T3ρρ5,0 − 4200k3

Bm3T3ρρ3,1+

+ 25200k4
Bm2T41ρq + 23100k4

BT4m2ρ3,0 − 3465k2
Bm4T2σρ5,0 + 3150k2

Bm4T2σρ3,1 − 18900k3
Bm3T3qσ+

+ 6300k3
Bm3T3σρ3,0],

δ1 = − 1
3m6ρ2 [−945k3

Bm3T3ρρ6,0 + 14175k4
BT4m2ρρ4,0 − 14175k6

BT6ρ2 + 42525k5
BT5mρσ],

δ0 = − 1
3m6ρ2 [147kBm5Tρ5,0ρ6,0 − 315kBm5Tρ5,0ρ4,1 + 210kBTm5ρ5,0ρ4,1 + 210kBTm5ρ6,0ρ3,1+

+ 1260k2
BT2m4ρ4,0ρ5,0 − 3150k2

BT2m4ρ4,0ρ3,1 + 1890k2
BT2m4ρ5,0ρ2,1 − 1260k2

Bm4T2qρ6,0 − 3360k2
BT2m4ρ3,0ρ6,0+

+ 3150k2
BT2m4ρ3,0ρ4,1 + 18900k3

Bm3T3qρ4,0 + 15750k3
Bm3T3ρ3,0ρ4,0 − 18900k3

BT3m3ρ2,1ρ3,0 − 1575k4
Bm2T4ρρ5,0+

+ 3150k4
Bm2T4ρρ3,1 − 18900k5

BT5mρq− 12600k5
BmT5ρρ3,0 + 10395k3

Bm3T3σρ5,0 − 9450k3
Bm3T3σρ3,1+

+ 56700k4
BT4m2qσ− 18900k4

Bm2T4ρ3,0σ].

(A9)
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Appendix A.3. The ET120 Case

Several calculations are required in order to write down the one-dimensional set of balance laws
that is composed of 20 equations: the (33)1−6, (A1), (A5) that coincide with equations of previous
models, (A10), which is a modification of (A6)

ρ̇0,3 −
2kBT
m3ρ

(2ρ3,1m2 + ρ1,2m2 + 28k2
BT2vρ + 2mv(ρ0,2m− 2ρ4,0m + ρ2,1m− 8mqv + 4mρ3,0v + 4kBTv2ρ+

+ 2mv2σ))∂xρ +
(

4ρ4,1 + 2ρ2,1 + ρ0,3 − 8ρ5,0v + 4v(ρ3,1 + ρ1,2 + 2v(2ρ4,0 − 2ρ3,1 + 2qv− ρ3,0v))−

−
8k2

BT2(7kBT + 4mv2)ρ)

m3 +
210k2

BT2σ

m2

)
∂xv− 1

m3 2kB(2ρ3,1m2 + ρ1,2m2 + 28k2
BT2vρ + 2mv(ρ0,2m−

− 2ρ4,0m + ρ2,1m− 8mqv + 4mρ3,0v + 4kBTv2ρ + 2mv2σ))∂xT +
1

m2ρ
(4ρ3,1m2 + 2ρ1,2m2+

+ 56k2
BT2vρ + 4mv(ρ0,2m− 2ρ4,0m + ρ2,1m− 8mqv + 4mρ3,0v + 4kBTv2ρ + 2mv2σ))∂xσ−

−
210k2

BT2

m2 ∂xq + ∂xρ1,3 = − 1
τ

ρ0,3,

ρ̇2,2 −
2kBT(2mρ3,1 + mρ1,2 + 4v2(−4mq + 2mρ3,0 + 2kBTvρ + mvσ))

m2ρ
∂xρ+

+
(

4ρ4,1 + 3ρ2,2 +
1

m3 (84k3
BT3ρ + 8mv2(m2(2ρ4,0 − 2ρ2,1 + 2qv− ρ3,0v)− 4k2

BT2ρ) + 70k2
BmT2σ)∂xv−

− 2kB(2ρ3,1m + ρ1,2m + 4v2(−4mq + 2mρ3,0 + 2kBTvρ + mvσ))

m2 ∂xT+

+
4mρ3,1 + 2mρ1,2 + 8v2(−4mq + 2mρ3,0 + 2kBTvρ + mvσ)

mρ
∂xσ−

70k2
BT2

m2 ∂xq + ∂xρ3,2 = − 1
τ

ρ2,2,

ρ̇4,1 −
(2(ρ5,0 + 2ρ3,1)kBT)

mρ
∂xρ +

(
2ρ6,0 + 5ρ4,1 +

6k2
BT2(12kBTρ + 7mσ)

m3

)
∂xv−

− 2kB(ρ5,0 + 2ρ3, 1)
m

∂xT +
2(ρ5,0 + 2ρ3,1)

ρ
∂xσ−

42k2
BT2

m2 ∂xq + ∂xρ5,1 = − 1
τ

ρ4,1

ρ̇6,0 −
6ρ5,0kBT

mρ
∂xρ +

(
7ρ6,0 +

30k2
BT2(2kTρ + mσ)

m3

)
∂xv− 6ρ5,0kB

m
∂xT +

6ρ5,0

ρ
∂xσ−

30k2
BT2

m2 ∂xq + ∂xρ7,0 = − 1
τ

ρ6,0,

(A10)

and the four new equations

ρ̇1,3 +
kBT
m3ρ

(−6ρ2,2m2 − ρ0,3m2 + v(6ρ3,1m2 − 6ρ1,2m2 + 70k2
BT2vρ + mv(5ρ0,2m− 10ρ4,0m + 5ρ2,1m−

− 64mqv + 32mρ3,0v + 32kBTv2ρ + 16mv2σ)))∂xρ +
(

6ρ3,2 + 2ρ1,3 + v(−6ρ4,1 + 6ρ2,2 + v(10ρ5,0 − 5(ρ3,1 + ρ1,2)+

+ 32(−ρ4,0 + ρ2,1)v + 16(−2q + ρ3,0)v2) +
4k2

BT2(21kBT + 16mv2)ρ

m3

)
∂xv +

kB

m4

(
27ρ2,2m3 −

− 594ρ2,1kBm2T + 6ρ3,1m3v− 6ρ1,2m3v− 10ρ4,0m3v2 + 5ρ2,1m3v2 − 64m3qv3 + 32m3ρ3,0v3+

+ ρ0,2m2(−54kBT + 5mv2) + 945k3
BT3ρ + 70k2

BmT2v2ρ + 32kBm2Tv4ρ− 2079k2
BmT2σ + 16m3v4σ

)
∂xT+

1
m3ρ

(6ρ2,2m3 + ρ0,3m3 − 378k3
BT3ρ−mv(6ρ3,1m2 − 6ρ1,2m2 + 70k2

BT2vρ + mv(5ρ0,2m− 10ρ4,0m+

+ 5ρ2,1m− 64mqv + 32mρ3,0v + 32kBTv2ρ + 16mv2σ)))∂xσ−
27k2

BT2

m2 ∂xρ0,2−

−
297k2

BT2

m2 ∂xρ2,1 +
kBT
m

∂xρ0,3 +
33kT

m
∂xρ2,2 = − 1

τ
ρ1,3,

ρ̇3,2 +
kBT(−4mρ4,1 − 3mρ2,2 + 12v3(−4mq + 2mρ3,0 + 2kBTvρ + mvσ))

m2ρ
∂xρ+

4(ρ5,1 + ρ3,2 + 3v3(−2ρ4,0 + 2ρ2,1 − 2qv + ρ3,0v +
4k2

BT2ρ

m2 ))∂xv +
kB

m4 (22ρ4,1m3 + 3ρ2,2m3 − 6ρ0,2kBm2T−

− 286ρ4,0kBm2T − 264ρ2,1kBm2T − 48m3qv3 + 24m3ρ3,0v3 + 567k3
BT3ρ + 24kBm2Tv4ρ− 1782k2

BmT2σ+

+ 12m3v4σ)∂xT +
(
−

405k3
BT3

m3 − 24kBTv4

m
+

4ρ4,1 + 3(ρ2,2 − 4v3(−4q + 2ρ3,0 + vσ))

ρ

)
∂xσ−

−
3k2

BT2

m2 ∂xρ0,2 −
132k2

BT2

m2 ∂xρ2,1,−
143k2

BT2

m2 ∂xρ4,0 +
6kBT

m
∂xρ2,2 +

26kBT
m

ρ4,1 = − 1
τ

ρ3,2,
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ρ̇5,1 −
(2ρ6,0 + 5ρ4,1)kBT

mρ
∂xρ + 2(ρ7,0 + 3ρ5,1)∂xv+

+
kB(13ρ6,0m3 + 5(2ρ4,1m3 + 81k3

BT3ρ− 3kBmT(26ρ4,0m + 6ρ2,1m + 99kBTσ)))

m4 ∂xT−

−
(

360k3
BT3

m3 − 2ρ6,0 + 5ρ4,1

ρ

)
∂xσ−

45k2
BT2

m2 ∂xρ2,1 −
195k2T2

m2 ∂xρ4,0 +
15kBT

m
∂xρ4,1 +

15kBT
m

∂xρ6,0 = − 1
τ

ρ5,1,

ρ̇7,0 −
7ρ6,0kBT

mρ
∂xρ + 8ρ7,0∂xv +

21kB(ρ6,0m3 + 5kBT(−4ρ4,0m2 + 3kBT(kBTρ− 4mσ)))

m4 ∂xT−

−
(

315k3
BT3

m3 − 7ρ6,0

ρ

)
∂xσ− 210k2T2

m2 ∂xρ4,0 +
28kBT

m
∂xρ6,0 = − 1

τ
ρ7,0.

(A11)
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