
Supplementary Material A. Computational Modeling of Bubbles in Reactive
Flows Using the Coupled Level Set - Volume of Fluid Method

In this supplementary material, we present a background of the volume of fluid (VOF) and level set (LS)

computational methods in section (A1). We also discuss the implementation of the coupled level set (LS) -

volume of fluid (VOF) method combined with transport of species in OpenFOAM in section (A2). Finally,

section (A3) presents the improvement of s-CLSVOF over VOF methods through capturing the interfacial

pressure of a stionary bubble compared to the theoretical Young-Laplace equation.

A1. Methods

The fundamentals of the VOF and LS methods are presented in sections (A1.1) and (A1.2), respectively.

A1.1. Volume of fluid method

One-fluid approaches, such as VOF, provide the computational ability to capture and model multiple

fluid phases and the interfaces between them. Particularly, VOF is an Eulerian, one-fluid method, in which

the interface is determined using a discrete scalar indicator function α that represents the volume fraction

of one of the phases [1]. For two-phase systems like bubbly flow, the value of α in a given cell has a value

of zero or one if the entire cell is entirely in the bubble or liquid phase, respectively. Cells where 0 < α < 1

contain both liquid and the bubble, which indicates that the interface passes through this cell. In an idealized

system, the value of α will have intermediate values only where the interface exists; however, in numerical

implementations of the volume of fluid method, the interface will “smear” meaning that there will be multiple

layers of cells with intermediate values near the interface.

There are two dominant VOF approaches that differ in how they identify the interface between the two

phases. The interface reconstruction approach uses different fitting methods to approximate the bubble

interface, and the algebraic approach is the standard approach that uses only the scalar value to approximate

the location of the interface as a set of cells [2]. The algebraic approach is used here due to its simple

implementation compared to the interface reconstruction approach. In the algebraic schemes, the interface is

presented by multiple cells with finite thickness [2]. These schemes of the VOF method model the interface

via a scalar advection transport of the volume fraction α.

The volume fraction α is modeled as a continuous property that satisfies the scalar advection equation:

∂α

∂t
+ u ·∇α = 0, (A1)

where u is the velocity field [3]. When initializing the problem, α is set to zero for cells with the cell center in

the bubble and one for cells with its center in the liquid. During the methods time marching, the position of
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the interface is updated based on the advection transport of α. To capture an accurate and sharp interface, a

smooth transition from α =0 to 1 is required. However, inherent to the VOF method is numerical diffusion,

which causes the interface smearing, and because α is coupled with the mass and momentum conservation

equations, this can cause errors in the interfacial forcing resulting in spurious velocities.

The VOF method has been used to study multiphase systems with different applications, such as bub-

bles [4], atomization [5], and water waves [6]. While the method is able to accurately conserve mass, better

precision in locating the interface between the two phases is necessary, and several developments in VOF

implementation have pursued this goal [7]. These developments include implementation of numerical schemes

to ensure the value of α is properly bounded and improved efficiency so that higher resolution grids can be

applied, which limits the impact of the smearing. Despite great effort, VOF still suffers from numerical diffu-

sion of the interface, which reduces the accuracy of capturing interfacial properties, especially for interfaces

that undergo large deformations such as bubble growth or shrinkage.

A1.2. Level set method

A precise and sharp interface can be achieved using the LS method. This method is also classified as

an Eulerian one-fluid approach, but the method captures the interface between two phases using a signed

distance function, ψ, called the level set function. If the interface is a closed curve Γ, the LS function has a

value of zero on the interface. In the bubble, ψ < 0 and in the liquid ψ > 0 with the magnitude equal to the

distance to the interface. The LS method models the interface by solving the evolution of the LS function

using the scalar advection transport equation:

∂ψ

∂t
+ u · n̂|∇ψ| = 0, (A2)

where n̂ is the vector normal to the interface. The advection of the LS is similar to VOF advection; however,

the LS interface is expressed by a sharp transition between the two different phases based on the sign of

ψ. While, the LS method accurately produces sharp, sophisticated interfaces, this method is not guaranteed

to conserve mass of the two phases because as time evolves ψ does not necessarily accurately maintain the

signed distance property resulting in errors in the interface position [2].

To reduce these errors, reinitialization of the interface is possible, in which ψ is reinitialized during the

time marching to maintain the signed function property [8]. The reinitialization concept is introduced to

reduce the numerical errors due to the steeping and flattening effects in calculating the local gradients of ψ

that are inherent to the method [9]. Section 2.1 presents the governing equations of the reinitialization, which

can be done in between time steps to reconstruct the isocontours of ψ and then locate ψ = 0. Performing

the reinitialization calculations can be carried out periodically or at every time step during the simulation,

keeping in mind the additional computational cost [9].

The LS method is widely used in a variety of applications including multiphase flow [10], image process-

ing [11], flame propagation [12], and biophysics [13] due to its simplicity. Despite the advantage of performing
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Figure A1: Schematic algorithm of the s-CLSVOF solver for reactive two-phase flows

interface reinitialization to enhance the numerical results in capturing ψ = 0, the mass conservation issue

can still persist in LS implementations, especially for long time simulations.

A2. OpenFOAM implementation

To model a multiphase flow with transport of species, we implement the coupled solver s-CLSVOF in

OpenFOAM v4.1 [14]. OpenFOAM is an open source CFD toolbox that primarily uses C++ to simulate fluid

system. The existing packages provide a variety of solvers for many systems, and interFOAM is one package

that can be used for multiphase problems [15]. This package, which was developed for VOF modeling of

multiphase systems, provides a number of functions necessary for representing the interface and calculating the

interfacial properties using the volume fraction, α. In this work, we use the finite volume PIMPLE algorithm

to develop our multiphase s-CLSVOF bubbly flow method [14, 15]. The main advantage of the PIMPLE

algorithm is the numerical stability for unsteady flow problems and the small number of corrector steps

necessary to get converged time steps [14]. Within the explicit time marching loop, additional computational

steps are performed to implement the coupling of the LS approach and transport of species. The proposed

algorithm of the s-CLSVOF solver is presented in Fig. A1.

The algorithm begins by initializing the u, p, c, and α fields based on the defined initial and boundary

conditions of the particular problem. The initial one-fluid properties are determined based on the initial

bubble position and the particular fluid and chemical species properties. Then, the algorithm uses Eq. (5) to

calculate the initial level set function, ψ. Finally, the Courant-Friedrichs–Lewy (CFL) condition and Fourier
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conditions are imposed to determine the first time step to be taken.

For the rising bubble simulations, an adaptive time step condition is used that will depend on the mesh

resolution. The numerical stability is determined by the Courant number Co, which needs to satisfy the CFL

condition:

Co =

n∑
i=1

uxi
∆t

∆xi
≤ Comax, (A3)

where ∆t is the fixed time step size, n is spatial dimension, uxi
is the fluid velocity, ∆xi is the cell size, and

Comax is the maximum Courant number, which is Comax = 1 for the non-reactive simulations in section 3

and Comax = 0.25 for the reactive simulations in section 4. The lower Courant number is necessary to get

converged result when transport of species is incorporated.

Following the time stability confirmation, the explicit PIMPLE loop starts by first advecting α with the

velocity field. The advection of Eq. (17) is performed in OpenFOAM using the MULES technique, which is a

flux corrected transport technique [15]. This technique imposes an additional limiter cutoff on the face-fluxes

at the critical values to ensure the proper boundedness of the volume fraction independent of the numerical

scheme, mesh resolution, or any unphysical parameters [15, 16]. After updating the α field, ψ is reinitialized

using Eq. (5) and (6). The ψ field is then used to calculate all interfacial characteristics of the two phases

and the normal vector of the bubble interface. The normal vector points outward from the bubble and the

direction at a given computational face is expressed as follows:

n̂f =
(∇ψ)f

|(∇ψ)f + ε|
· Sf (A4)

where the subscript f stands for the computational face of the mesh cell, ε is a small (e.g. 10−10) user-defined

constant included to avoid division by zero, and Sf is the normal vector at the surface of the computational

cell. The computed normal vector at the interface is used to evaluate the interface curvature and determine

the surface tension forcing using Eq. (11). Then, the fluid and chemical species properties are updated

throughout the domain using Eq. (9), (10), and (14).

Having calculated all the necessary properties and fields, we can begin solving the governing equations,

so the algorithm moves to solve Eq. (2), and then Eq. (12). The computed concentration field is then used to

evaluate ṁi by Eq. (15). At this stage, we use the evaluated mass transfer and the computed interfacial area,

A to calculate the volumetric source terms α̇s and v̇s by solving Eq. (18) and Eq. (20), respectively. Finally,

the later is used in solving the continuity constraint Eq. (19). Then, the pressure convergence condition is

evaluated to determine if time marching can continue or if the algorithm must perform another iteration.

As part of modeling and solving the governing equations of the s-CLSVOF solver, we implemented some

numerical changes to interFoam. The largest change is the incorporation of the level set reinitialization,

but another important change is the inclusion of the source term in Eq. (19). This source impacts the

momentum equation since the phase conservation and continuity equations are coupled. To satisfy this

condition, OpenFOAM evaluates the momentum, Eq. (2), in a semi-discretized fashion in which Eq. (19) is
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Figure A2: The interfacial pressure change of a stationary bubble inside a liquid domain normalized by the theoretical Young-
Laplace equation (black line), for the two (blue) and three (red) dimensional s-CLSVOF simulation and the two (green) and
three (gray) dimensional OF VOF simulation. The inset (right) focuses on the pressure change at the interface where each dot
represents a cell center. In both cases, the x-axis shows the radial distance from the bubble center.

incorporated in the pressure equation, which is given in the form of the Poisson equation

∇ ·
(

1

aD
∇p′

)
= ∇ · u− v̇s, (A5)

where p′ is the corrected pressure, aD is the pressure matrix equation coefficients [17]. If the pressure

convergence is achieved, the solver exits the PIMPLE loop and moves to the next time step till the simulation

is complete. Otherwise, it returns to the volume of fraction advection to perform another iteration of the

PIMPLE loop.

A3. Young-Laplace pressure

This initial study investigates a stagnant bubble in the fluid to demonstrate that the steady-state pressure

difference across the bubble interface closely matches the theoretical Young-Laplace equation. This study

serves to establish the improvement of s-CLSVOF in capturing the interface as compared to the VOF method.

At the interface between the two fluid phases, the capillary pressure between two static fluids is described

by the Young-Laplace equation, which relates the pressure jump to the curvature of the interface. For this

equilibrium state, the pressure difference across the interface is ∆p = σ/Ro and ∆p = 2σ/Ro for two and

three-dimensional bubbles, respectively, where ∆p is the pressure difference across the interface, σ is the

surface tension, and Ro is the bubble radius. It should be noted that for the Young-Laplace equation the

curvature is ∇ · n̂.
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For this study, we simulate a stationary bubble in both two and three-dimensional liquid domains using

both the VOF and the s-CLSVOF methods with a bubble Ro = 0.01 m, σ = 1 N m−1, square domain

with edge length of L = 4Ro, and a uniform Cartesian mesh resolution of ∆x/Ro = 0.05. The density and

viscosity ratios between the two phases are 10 and 1, respectively, to match the conditions used in a previous

applications of the VOF method [18]. The top and bottom boundaries have zero transverse velocity and zero

normal gradient for pressure, velocity, and volume fraction. At the side walls, the boundary conditions for

the velocity, pressure, and volume fraction are, respectively, no slip, zero flux, and zero normal gradient. The

level set function has a to zero normal gradient boundary condition at all boundaries.

The resulting pressure profiles of the simulations are presented in Fig. A2. The pressure profile calculated

by the s-CLSVOF method is closer to the theoretical prediction than the VOF method. Compared to the

Young-Laplace pressure, the estimated error for the two and three-dimensional s-CLSVOF simulations are

6% and 2%, respectively, and the VOF simulations underestimate the pressure by 12% for both domains.

The VOF results are close to the previously reported 9% error simulated with similar parameters [18].

The inset in Fig. A2 demonstrates that the interface thickness is three cells thick for both calculations

though the s-CLSVOF supports larger pressure gradients. The interfaces are of similar thickness because the

simulations are only for a small number of time steps, and the bubble is not deforming in any way. Greater

smearing occurs for the rising bubble simulated using the VOF method. Despite similar thicknesses, the

calculation of the LS function provides a more accurate approximation of the interface position and shape,

which is the reason the s-CLSVOF method has a higher internal pressure. Additionally, the s-CLSVOF has

reduced the presence of spurious velocities that are produced due to the numerical diffusion of α in the VOF

simulation, which also contributes to the more accurate pressure in the s-CLSVOF simulations.
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