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Abstract: The present work studies the interactions between fictitious-domain methods on structured
grids and velocity–pressure coupling for the resolution of the Navier–Stokes equations. The pressure-
correction approaches are widely used in this context but the corrector step is generally not
modified consistently to take into account the fictitious domain. A consistent modification of the
pressure-projection for a high-order penalty (or penalization) method close to the Ikeno–Kajishima
modification for the Immersed Boundary Method is presented here. Compared to the first-order
correction required for the L2-penalty methods, the small values of the penalty parameters do not lead
to numerical instabilities in solving the Poisson equation. A comparison of the corrected rotational
pressure-correction method with the augmented Lagrangian approach which does not require a
correction is carried out.

Keywords: Navier–Stokes equations; fictitious domain; velocity–pressure coupling; augmented
Lagrangian; pressure-correction methods; projection methods; fractionnal-step methods; penalty
method; penalization method; immersed boundary method; incompressible flows

1. Introduction

The simulation of real heat and mass transfers often implies interactions between multiphase
flows and complex obstacles. Many simulation codes based on structured grids have shown their
ability to deal with a large amount of physical phenomena. However, structured grids cannot generally
match complex interfaces due to their lack of flexibility, so the treatment of problems with complex
shapes is unnatural and uneasy with this approach. The fictitious-domain methods have been designed
to improve the performances of structured grid codes when complex shapes are necessary. A wide
literature is devoted to the subject during the last decades, especially the last twenty years with the
emergence of high-order methods (see for a review [1,2]).

The Immersed Boundary Method (IBM) was initially presented by Peskin [3,4]. Fictitious boundaries
are taken into account through a source term activated only near the boundaries. As the source term
is weighted with a discrete Dirac function with a non-zero support, the interface influence is spread
over some grid cells and a first order of spatial convergence is generally obtained. Another class of
IBM, the Direct-forcing (DF) methods, was initially proposed by Mohd-Yusof [5]. The idea here is to
impose a no-slip condition directly on the boundary using a mirrored flow over the boundary. In [6,7],
the correct boundary velocity is obtained by interpolating the solution on the boundary and far from
the boundary on grid points in the near vicinity of the interface. In [8], Tseng and Ferziger used the
same principle but extrapolate the solution in ghost cells inside the boundary.
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Originally presented in [9] for the conservation equations, the penalty (or from the French
designation, penalization) methods for fictitious domains consist in adding specific terms into the
conservation equations to play with the order of magnitude of existing physical contributions so as to
obtain at the same time and with the same set of equations various physical properties. The Volume
Penalty Method (VPM) ([10] and the references therein) is a simple way to impose a solution in a part of
the numerical domain. The methods imposing the solution are called the L2-penalty methods while the
H1-penalty methods allows a derivative of the solution to be imposed [11]. Classical penalty methods
are of first order only because they consider the projected shape of the interface on the Eulerian grid
to define the penalty parameters [12]. In [13,14], Sarthou et al. extended penalty methods to higher
orders by modifying the expression of the penalty term using implicit interpolations as used in [8] for
the Direct-Forcing Immersed Boundary Method (DF-IBM). The method is called the Sub-Mesh Penalty
Method (SMPM) and has been applied first to elliptic equations.

For the Navier–Stokes equations, the incompressibility of the flows has been ensured with
an augmented Lagrangian velocity–pressure coupling [15,16]. This method consists in solving
the momentum equation with an augmented Lagrangian term which enforces the divergence-free
constraint during an iterative process. Hence, the fulfillment of both incompressibility and boundary
constraints is obtained with the resolution of a unique equation. However, the augmented Lagrangian
method is not commonly used in the literature where pressure-correction methods are generally
used to impose the divergence-free constraint. Such methods require the resolution of an additional
elliptic equation to rise a pressure and to obtain a solenoidal field. The IBM for the Navier–Stokes
equations are generally used with the pressure-correction methods and modify the predictor step only
(where the momentum equation is solved). As no modification of the corrector step is performed, the
additional boundary constraint is not taken into account in the final velocity and pressure fields, and is
consequently no longer respected. This issue is the main topic of the present article.

In [17], Domenichini analyzed in detail the application of the DF-IBM to the fractional step solution
of the Navier–Stokes equations. To focus on the error induced by the non-consistent application of
the immersed boundary condition, a spectral solver is used. As can be expected, he noticed that
the boundary condition is not accurately imposed, even if sub-iterations of the time-splitting can be
performed to reduce this error.

This problem is not frequently tackled in the literature and fully satisfactory solutions have been
found only recently. In [18], the authors used a mass source and sink term in the pressure equation to
preserve the mass balance in the boundary cells but the desired velocity is not exactly imposed on the
wall. More recently, Taira and Colonius [19] considered both the boundary forcing of the Peskin IBM
and the pressure as Lagrange multipliers. Hence, the time-splitting procedure is applied in the same
time and in an equal manner to both quantities. It allows the rigid body and the incompressibility
constraints to be satisfied at the same time.

In [20], Ikeno and Kajishima proposed a consistent correction for a second-order DF-IBM.
The principle is to add the boundary term in the projection step in a consistent way. The update
equation of the velocity has to be modified too.

In [21], the authors proposed a simple and efficient discretization of the projection step.
This method is extended to the contact line problem in [22].

Concerning the L2-penalty methods, a solution for the first-order method is recalled in [23].
However, applying this modification to a high-order method is quite more challenging. Recently,
the correction of [20] has been applied successfully to the SMPM [2]. A correction for a direct-forcing
penalty method was introduced by Belliard et al. [24]. This semi-explicit method reach a second-order
in space for stationary cases only.

We propose here to reach an implicit second-order in space and a consistent correction for a
fully implicit high-order L2-penalty method is proposed here. The formulation is derived from the
penalized momentum equation and thus naturally obtained. Compared to [24], all steps of the method
take into account the high-order of the penalty term.
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The method is applied to the incremental Goda [25] and rotational [26] pressure-projection
methods coupled with the SMPM. These approaches are compared in time and space to the augmented
Lagrangian method.

In Section 2, the conservation equations and their discretization are presented. Then, the SMPM is
described. Section 3 focuses on the consistent correction for the time-splitting methods. In Section 4,
numerical tests are performed to study and compare the numerical convergence of the method. The last
section concludes the article with a discussion and perspectives are drawn.

2. Governing Equations and Base Discretization

2.1. Governing Equations

We consider the following form of the incompressible Navier–Stokes equations in a domain Ω:

∇ · u = 0 (1)

ρ

(
∂u
∂t

+ (u · ∇)u
)
= −∇p +∇ · [µ(∇u +∇Tu)] (2)

with u the velocity, ρ the fluid density which is constant by phase as in [16], p the pressure, and µ the
dynamic viscosity.

The Navier–Stokes equations are discretized with implicit finite-volumes on a staggered Cartesian
grid. A second-order centered scheme is used to approximate the spatial derivatives while first-order
Euler and second-order Gear schemes are used for the time integration. All the terms are written at
time (n + 1)∆t, ∆t being the time-step, except for the non-linear term un+1 · ∇un+1 which is linearized
as un · ∇un+1 for the first-order Gear scheme and as (2un − un−1) · ∇un+1 for the second-order Gear
scheme. The modified semi-discrete form of the original Equation (2) is then

ρ

(
γ1un+1 + γ2un + γ3un−1

∆t
+
(
(γ4un + γ5un−1) · ∇

)
un+1

)
= −∇(γ4 pn + γ5 pn−1) +∇ · [µ(∇un+1 +∇Tun+1)]

(3)

with the additional constraint ∇ · un+1 = 0. The values of γi depend on the temporal scheme as

• γ1 = 1, γ2 = −1, γ3 = 0, γ4 = 1, γ5 = 0 for the Gear 1 or Euler scheme
• γ1 = 3

2 , γ2 = −2, γ3 = 1
2 , γ4 = 2, γ5 = −1 for the Gear 2 scheme.

In the next parts, the Euler scheme is generally written for the sake of simplicity.
The linear system resulting from the discretization is solved with a BiCG-Stab II solver [27],

preconditioned by a Modified and Incomplete LU method [28].

2.2. The Velocity–Pressure Coupling

The velocity–pressure coupling methods used in the present article are described in this section.
The correction proposed here is applied only to the pressure-correction approach and the augmented
Lagrangian method is used for the sake of comparison.

2.2.1. Pressure-Correction Methods

Most of the finite-volume CFD codes on Eulerian grids use pressure-correction (or fractional-step)
methods. The idea is to obtain first a predicted velocity u∗ satisfying the momentum equation only.
This field is not solenoidal as nothing constrains this condition. In a second step, the projection,
the pressure is risen with respect to the divergence of u∗. The third step consists in updating the
velocity according to the pressure gradient obtained with the second step.
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We consider RHS the sum of the convective and diffusive terms of Equation (2). The half
discretization in time gives:

ρ

(
un+1 − un

∆t

)
= RHSn+1 −∇pn+1. (4)

This equation is solved, but as here∇ · un+1 6= 0, the solution is denoted u∗. We define u′ such as
un+1 = u′ + u∗ and p′ such as pn+1 = p′ + p∗. Hence, the predictor step solves:

ρ

(
u∗ − un

∆t

)
= RHS∗ −∇pn. (5)

To obtain the final velocity, the following equation is used:

ρ

(
un+1 − u∗

∆t

)
= −∇p′. (6)

This equation can be constructed with two points of view. For the first one, we consider
Equations (4) and (5) while RHS′ is neglected (implementations which keep RHS′ are more difficult to
perform) introducing an additional error as the convective and diffusive terms are only considered
at step ∗. The second point of view uses the Hodge–Helmholtz orthogonal decomposition of
the space L2(Ω)d = H ⊕ H⊥ where H =

{
u ∈ L2(Ω)d,∇ · u = 0, u · n = 0 on ∂Ω

}
and H⊥ ={

∇φ, φ ∈ H1(Ω)
}

. Hence, the predicted velocity field can be corrected by a pressure gradient to
obtain a solenoidal field. Equation (6) is considered as the second step of a time-splitting where the
part of the solution deriving from a potential is added to the predicted field to obtain the solenoidal
solution. The pressure increment is practically obtained by solving the divergence of (6):

∇ · u∗ = ∇ · ∆t
ρ
∇p′. (7)

Once the pressure increment is obtained, velocity and pressure are updated:

pn+1 = p′ + pn (8)

un+1 = u∗ − ∆t
ρ
∇p′. (9)

In [26,29], the authors used a correction of this last step replacing Equation (8) by

pn+1 = p′ + pn − µ∇ · u∗. (10)

This correction gives a consistent pressure boundary condition while the standard incremental
algorithms gives an artificial Neumann boundary condition for the pressure. An overview of the
different projection methods is performed in [30]. Concerning the fictitious domains, the IBM applied
to the NS equations are generally designed for the predictor step only. As no modification of the
corrector step is performed, the additional boundary constraint is not taken into account and is then
not respected.

2.2.2. The Augmented Lagrangian Method

The augmented Lagrangian (AL) method [15] consists in adding a term ∇(dr∇ · u), with dr a
scalar parameter, to the momentum equation of the NS equations so as to enforce the divergence
free constraint. The pressure is updated with the Uzawa method [31]. The parameter dr sets the
magnitude of the constraint and must be chosen according to the magnitude of the other terms of the
equation to avoid low numerical performances of the solver and to obtain a suitable physical solution.



Fluids 2020, 5, 92 5 of 23

Iterative solvers can be very sensitive to the magnitude of dr (the condition number of the matrix
varies linearly with respect to dr [32] and the direct solvers allow higher values of dr to be taken) and
a high parameter implies an increase of the number of internal iterations of the solver. A too high
parameter penalizes the initial equation and leads to a strictly incompressible velocity field with no
respect to the initial momentum equation. Choosing a suitable parameter is not trivial. Furthermore,
multiphase flows [16] can induce strong variations of the densities and viscosities, and require dr to
vary accordingly. To tackle this issue, the parameter dr can be determined according to the physical
quantities [33] or the coefficients of the discretization matrix [16].

The base algorithm of the augmented Lagrangian method is now described. Starting with
u∗,0 = un and p∗,0 = pn, while ||∇ · u∗,m|| > ε , solve

(u∗,0, p∗,0) = (un, pn)

ρ

(
u∗,m − u∗,0

∆t
+ u∗,m−1 · ∇u∗,m

)
−∇(dr∇ · u∗,m)

= −∇p∗,m−1 +∇ · [µ(∇u∗,m +∇Tu∗,m)]

p∗,m = p∗,m−1 − dr∇ · u∗,m

(11)

Although the AL method is an iterative procedure, one iteration is generally acceptable to reach a
sufficiently small divergence. To enforce an immersed Dirichlet BC, the penalty term χ

ε (Πun+1 − uD)

(described in detail in Section 3) is added to the momentum equation, with uD the prescribed velocity
at the boundary. We obtain the following simplified formulation:

ρ

(
un+1 − un

∆t
+ un · ∇un+1

)
−∇(dr∇ · un+1)

= −∇pn +∇ · [µ(∇un+1 +∇Tun+1)] +
χ

ε
(Πun+1 − uD)

(12)

pn+1 = pn − dr∇ · un+1. (13)

This last equation is not a splitting in time. By taking the divergence of Equation (13), one can see
that ∇pn+1 is still present in Equation (12) as the sum of pn and dr∇ · un+1. This last term can be seen
as the implicit pressure increment.

Hence, the AL methods allows large time steps to be used. Furthermore, no boundary conditions
are required for the pressure. A small number of AL iterations could be required to obtain an
acceptable divergence [16]. If a machine accuracy fulfillment of the divergence-free constraint is desired,
the number of required iterations can be prohibitive (especially with iterative solvers). A simple
solution is to use a penalty-projection method as presented in the next section.

3. The L2-Penalty Methods

The L2-penalty methods are a class of fictitious domain methods used to impose a Dirichlet
or Neumann boundary condition on a complex interface. To avoid confusion, we specify that the
penalty methods and the penalty-projection methods are not related except that both add a term in the
conservation equation to enforce a specific behavior of the solution.

3.1. Base Principle

Let us consider the original domain of interest denoted by Ω0, typically the fluid domain, which
is embedded inside a simple computational domain Ω ⊂ Rd. The auxiliary domain Ω1, typically a
solid particle or an obstacle, is then such that Ω = Ω0 ∪ Σ ∪Ω1 where Σ is an immersed interface
(see Figure 1). Let n be the unit outward normal vector to Ω0 on Σ. Our objective is to numerically
impose the adequate boundary or interface conditions on the interface Σ. The continuous L2-penalty
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method for the incompressible Navier–Stokes equations consists in adding a term χ
ε (u− uD) into the

momentum equation

ρ

(
∂u
∂t

+ (u · ∇)u
)
= −∇p + ρg +∇ · [µ(∇u +∇Tu)] +

χ

ε
(u− uD) (14)

where 0 < ε� 1 denotes the penalty parameter and χ is the Heaviside function such as

χ(x) =

{
1 if x ∈ Ω1

0 if x ∈ Ω0.

In Ω0, the penalty term vanishes and the original momentum equation is retrieved. In Ω1,
the equation tends to u = uD when ε −→ 0. One can notice that the term used in [34] uses a coefficient
similar to the penalty term but in the frame of a Chimera method where the coupling between two
overlapping grids is performed.

Figure 1. Definition of the domains.

3.2. Discretization

For the sake of simplicity, the method is described in 2D for a scalar equation. The computational
domain Ω is approximated with a curvilinear mesh Th composed of N ×M (×L in 3D) cell-centered
finite volumes (VI) for I ∈ E , E being the set of index of the Eulerian orthogonal curvilinear structured
mesh. Let xI be the vector coordinates of the center of each volume VI . The local characteristic space
step hI of the volume VI is defined as the maximum length of VI in each direction, whereas h denotes
the Eulerian mesh step: h = supI∈E hI . This grid is used to discretize the conservation equations.
A dual grid is introduced for the management of the penalty method (in finite-difference discretization,
the primal mesh is used). The grid lines of this dual cell-vertex mesh are defined by the network of the
cell centers xI . The volumes of the dual mesh are denoted by (KI). The Eulerian unknowns are noted
φI which are the approximated values of φ(xI), i.e. The solution at the cell centers xI .

The discrete interface Σh, hereafter called the Lagrangian mesh, is given by a discretization of the
original interface Σ. It is described by a piecewise linear approximation of Σ: Σh = {σl ∈ Pd−1

1 , l ∈ L f },
K being the cardinal of L f and L f being the set of index of the Lagrangian mesh. Typically, σl are
segments in 2D and triangles in 3D. The vertices of each face σl are denoted by xl,i for i = 1, d and the
set of all vertices is: {xl , l ∈ Lv}. The intersection points between the grid lines of the Eulerian dual
mesh and the faces σl of the Lagrangian mesh are denoted by {xi, i ∈ I} (see Figure 2).

The cell centers xI are sorted according to their location inside Ω0 or Ω1 with the discrete
Heaviside function χI = χ(xI). This function is computed from Σh with a thread ray-casting
method [35]. The principle is to cast a ray from each Eulerian nodes. If the number of intersections
between Σh and the ray is odd, the node is inside the object, otherwise outside. The algorithm needs
LMNK/ max(L, M, N) intersection tests and is faster than the classical ray-casting method [36] which
requires LMNK intersection tests. New sets of Eulerian points xI are defined near the interface
such as one neighbor xJ verifying χJ 6= χI exists, i.e., the segment [xI ; xJ ] is cut by Σh. These
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Eulerian “interface” points are also sorted according to their location inside Ω0 or Ω1. Two sets
{xI , I ∈ N0} and {xI , I ∈ N1} are so obtained, where N0 = {I, xI ∈ Ω0, ∃ neighb(xI) ∈ Ω1} and
N1 = {I, xI ∈ Ω1, ∃ neighb(xI) ∈ Ω0}.

Figure 2. Definition of the discretization kernels.

The spatial order of the L2-penalty method directly depends on the discretization of χ
ε (φ− φD).

The VPM [37] discretizes the term for a node φi as χi
ε (φi − φD) with φD the boundary value at the

vicinity of xi. As the solution is considered as constant in each penalized cells, the shape of the
immersed boundary is perceived by the fluid as being stair-stepped, or rasterized. This inaccurate
description of the interface implies a first-order of spatial convergence [38].

To reach a second-order of spatial accuracy, the sub-mesh penalty method (SMPM) [13,14]
discretizes the penalty term with χi

ε (Πiφ− φD(xl)) where Πi is a polynomial interpolator.
We consider a point xI with I ∈ N1 and only one neighbor xJ in Ω0. The Lagrangian point xl is

the intersection between [xI ; xJ ] and Σh (Figure 2). The solution φ = φl has to be satisfied at xl which
implies in a discrete point of view ΠIφ(xl) = φD(xl) with Π the P1

1-interpolator (one-dimensional
linear polynomial) between the Eulerian unknowns uI and uJ :

φl = αIφI + αJφJ with 0 < αI , αJ < 1 and αI + αJ = 1 (15)

The coefficients αI and αJ are determined such as ΠIφ(xI) = φI and ΠIφ(xJ) = φJ . If now xI has
a second neighbor xK in Ω0, the intersection xm between [xI ; xK] and Σh is considered. We choose xp,
a new point of Σh between xl and xm (see Figure 1). Practically, the barycenter between xm and xl is
used. The resulting point xp is not necessarily on Σh but it does not spoil the second-order precision of
the method since the distance d(xp, Σh) between xp and Σh is varying as O(h2). The solution φp(xp) is
then approximated using a P2

1-interpolation (two-dimensional linear polynomial) of the values φI , φJ
and φK:

φp = αIφI + αJφJ + αKφK , 0 < αI , αJ , αK < 1 , αI + αJ + αK = 1 (16)

We can also use a Q2
1-interpolation of φI , φJ , φK and φL, by extending the interpolation stencil

with the point xL which is the fourth point of the cell of the dual mesh defined by xI , xJ , and xK (see
Figure 2).

If Σh is regular enough, xI has almost never a third neighbor in Ω0. However, if it is the case, the
first-order L2-penalty term χI

ε (φI − φD(xl)) is used. In any case, by decreasing the Eulerian mesh step
h, we also decrease the number of points xI having more than two neighbors in Ω0.

It has to be noticed that the penalty term is only required for nodes xI with I ∈ N1, i.e., for the
nodes in Ω1 with at least one neighbor in Ω0. What happens inside Ω1 and far from Σ has no impact
on the flow in Ω0 and so is of secondary interest (practically, the parts of the discretization matrix
corresponding to these nodes are removed before the resolution of the linear system).

Concerning the application of the method to a Curvilinear grid, the computational domain can be
“unfold” into a Cartesian domain where most of the computations are performed. Hence, the penalty
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constraints are build from the Cartesian grid with the standard Cartesian routines. The curvilinear to
Cartesian projection is described in [35] .

4. Penalty Correction for the Pressure Correction Methods

4.1. First-Order Correction

For a first-order penalty term, such a correction is easy to perform [23]. Let us now write the
momentum Navier–Stokes equation with a first-order penalty term:

ρ
∂u
∂t

= +RHS−∇p +
χ

ε
(u− uD) (17)

In the standard method, Equations (4) and (5) are considered to obtain Equation (6). The same
operation is performed with the penalty term and Equation (6) becomes

ρ

(
un+1 − u∗

∆t

)
= −∇p′ +

χ

ε
(un+1 − u∗) (18)

while Equation (7) becomes

∇ · u∗ = ∇ · (∆t
ρ
− χ

ε
)−1∇p′. (19)

The velocity is then updated using Equation (18):

un+1 = u∗ − (
∆t
ρ
− χ

ε
)−1∇p′. (20)

It is important to notice that the correction terms due to the fictitious domain method appears
naturally with this walkthrough. The standard pressure update is not modified.

Remark 1. A classical problem with the elliptic Equation (19) in the penalized approach is that the diffusion
coefficient varies in O(ε−1) in Ω1. Hence, a strong imposition of the penalty constraint produces a very high
diffusion coefficient which leads to instabilities due to issues of numerical accuracy. In [24], with the assumption
that ρ is constant over the domain, the authors proposed the following correction to avoid numerical instabilities:

ρ

∆t
∇ · u∗ = ∇ · ε

ε + χ
∇pn+1 +

1
ε
(pn+1 − p0) (21)

where p0 is a prescribed pressure. The last term produces a L2-penalization of the pressure equation.

Remark 2. In [24], the authors used the non-incremental version of the scheme and a first-order correction for
the pressure equation. However, the boundary condition is explicitly chosen as being the linear extrapolation of
the solution and a second-order of spatial convergence is reached for a stationary case. In our approach, all the
terms due to the penalization are of second-order and implicit.

4.2. Higher-Order Correction

A fully implicit second-order correction is now proposed. A consistent correction following the
precedent walkthrough with a penalty term of higher order is much more delicate. The first-order
term χi

ε (ui − uD(xl)) is replaced by χi
ε (Πiu− uD(xl)) with Πiu = ∑

j/xj∈Neighb(xi)
αjuj. The pressure in

Equation (19) becomes, for each node xi:

∇ · u∗i = ∇ · ( ρ

∆t
− χi

ε
Πi)
−1∇p′ (22)
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which requires the calculation of the matrix corresponding to ( ρ
∆t −

χi
ε Πi)

−1 before the resolution of the
initial system. A more simple method is presented here even if it would be interesting to evaluate this
first method. We start back with Equation (6) with a penalty term by following the natural walkthrough
of the first-order correction:

un+1
i − u∗i = −∆t

ρ
∇p′ +

∆tχi
ρε

Πi

(
un+1 − u∗

)
(23)

developed as

(1− ∆tχi
ρε

Πi)(u∗ − un+1) =
∆t
ρ
∇p′. (24)

The key of this construction is to introduce Π′i, a new interpolator such as:

Π′iu = ∑
j/xj∈Neighb(xi),i 6=j

αjuj. (25)

Hence, Πiu = αiui + Π′iu and we have(
1− ∆tχi

ρε
(αi + Π′i)

)
(u∗ − un+1) =

∆t
ρ
∇p′. (26)

By construction, the nodes involved by Π′i are always in Ω0 where χ = 0 so the original
pressure-correction method occurs. Hence, using Equation (9), we have(

1− ∆tχiαi
ρε

)
(u∗i − un+1

i )−
(

∆tχi
ρε

Π′i
∆t
ρ
∇p′

)
=

∆t
ρ
∇p′ (27)

and we obtain

un+1
i = u∗i −

(
∆tχi

ρε− ∆tχiαi
Π′i

∆t
ρ
∇p′ +

∆tεi
ρε− ∆tχiαi

∇p′
)

. (28)

the equation of the velocity update. Using the divergence of Equation (28) and ∇ · un+1
i = 0 we obtain

the final correction equation

∇ · u∗i = ∇ ·
(

∆tχi
ρε− ∆tχiαi

Π′i
∆t
ρ
∇p′ +

∆tεi
ρε− ∆tχiαi

∇p′
)

. (29)

The parameter ε� 1 and we obtain at the limit:

∆tχi
ρε− ∆tχiαi

−→ 0 and
∆tε

ρε− ∆tχiαi
−→ ∆t

ρ
in Ω0 when ε −→ 0 (30)

as χ(xi) = 0 for xi ∈ Ω0 and

∆tχi
ρε− ∆tχiαi

−→ − 1
αi

and
∆tε

ρε− ∆tχiαi
−→ 0 in Ω1 when ε −→ 0. (31)

The pressure update is still pn+1 = pn + p′(−µ∇ · u∗). Using Equation (23) to build the velocity
update, the standard in Equation (9) is recovered in Ω0.

A major advantage of this formulation is that the diffusion coefficient in the pressure in
Equation (29) has generally an absolute value of magnitude ∆t/ρ which avoid the numerical instability
of the first-order method. Critical values appears when the interface is very close to the penalized node
or a neighbor of the penalized node. If we consider the case where a node xI ∈ Ω1 has one neighbor
xJ ∈ Ω0, the penalty constraint is αIuI + (1− αI)uJ = uD(xl), and here Π′Iu = (1− αI)uJ . Hence, the
diffusion coefficient is (αI − 1)∆t/(αIρ) and is critical if the interface Σh is close to the penalized node.
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In this case, the coefficient is very small and the same problem as with the first-order correction occurs.
However, we noticed that a correct solution can be obtained with a diffusion coefficient of magnitude
10−10. If the interface position leads to a smaller value, one can slightly move the interface to decrease
αI . The case αI � 1 provides a large diffusion coefficient and produces a H1-penalty term [11], that is
to say a Neumann boundary condition in the considered cell.

4.3. Comparison to the Ikeno–Kajishima Correction

This approach was proposed by Hikeno and Kajishima [20] for a DF-IBM method and is presented
here for our interpolator Π. They propose the following velocity update

un+1
i = u∗i −

(
(1− χi)

∆t
ρ
∇p′ − χi

Π′i
∆t
ρ ∇p′

αi

)
(32)

which is directly introduced and not obtained from the solved momentum equation (the consistency
of the method is demonstrated afterwards). In our formulation, all the method is derived from the
original momentum equation and the prediction equation so the consistency is naturally deduced.
From Equation (32) and the incompressibility constraint, the following equation is obtained:

∇ · u∗i = ∇ ·
(
(1− χi)

∆t
ρ
∇p′ − χi

Π′i
∆t
ρ ∇p′

αi

)
. (33)

and the pressure is updated as in the standard method

pn+1 = p′ + pn. (34)

The method is applied too to the non-incremental fractional step method.
As can be seen, the equations obtained are different than with the present approach. Obviously, it

is due to the way the boundary condition is imposed (penalty term with a coefficient 1/ε of dominant
magnitude in our case or IBM direct-forcing term with Dirac function in [20]). However, the final
pressure correction equation with the penalized correction in Equation (29) tends to Equation (33)
when ε tends to zero. The same result is obtained with the corresponding velocity updates.

Remark 3. For this correction (and the penalty correction presented here when ε→ 0), the velocity in Ω1 is
updated as

un+1
i = u∗i +

Π′i
∆t
ρ ∇p′

αi
(35)

By construction of the interpolator Πiu = αiui + Π′iu, no node of Ω1 is involved in Π′i. Hence, as the
pressure correction in Ω0 is

un+1
i = u∗i −

∆t
ρ
∇p′, (36)

one can replace
∆t
ρ
∇p′ by (u∗i − un+1

i ) to obtain

un+1
i = u∗i −

Π′i(u
∗
i − un+1

i )

αi
. (37)

Considering the initial interpolator Πi, we obtain

Πiun+1
i = Πiu∗i (38)
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and the boundary constraint obtained in the predictor step is conserved. It induces as well that Πiu′i = 0.
The update of the velocity near the velocity is not necessarily null contrary to the linear combination of
these velocities.

4.4. Temporal Accuracy for the Incremental Pressure-Correction

We study here the temporal accuracy of the pressure for the penalized incremental
pressure-correction method with a first-order Euler scheme. The temporal accuracy for the base
method is O(∆t) [30]. The ideal equation system to solve is:[

A G
D 0

] [
un+1

pn+1

]
=

[
r
0

]
(39)

with G the gradient operator, D the divergence operator, and A the following sub-matrix

A =
{ ρ

∆t
+ N −V − χ

ε
Π
}

(40)

with N the linearized discretization of the inertial term and V the discretization of the viscous term.
The second member r is defined as

ri =
∆t
ρ

u∗i −
χi
ε

Πiu∗. (41)

The velocity update in Equation (28) allows writing[
I BG
0 I

] [
un+1

pn+1

]
=

[
u∗

pn+1

]
(42)

with I the identity matrix and B the matrix such as

B =

{
∆tχi

ρε− ∆tχiαi
Π′i

∆t
ρ

+
∆tε

ρε− ∆tχiαi

}
. (43)

At last, the pressure elliptic equation yields[
A 0
D −DBG

] [
u∗

pn+1

]
=

[
r
0

]
. (44)

As first noticed by Perot [39], the two systems in Equations (42) and (44) are a block LU
decomposition of the system [

A ABG
D 0

] [
un+1

pn+1

]
=

[
r
0

]
(45)

which allows us to write the error of the scheme using Equation (39):

AB =

{( ρ

∆t
+ N −V − χ

ε
Π
)( ∆tχ

ρε− ∆tχα
Π′

∆t
ρ

+
∆tε

ρε− ∆tχα

)}
. (46)

We study the error in Ω0. We consider the matrices N0, N1, V0 and V1 such as V = V0 + V1 and
N = N0 + N1. The matrix N0 is such that {N0}i,j = {N}i,j if xj ∈ Ω0, else {N0}i,j = 0. The same
occurs for V0. It is necessary to split these contributions as the value of χ varies in B. Hence, we have

AB =

{( ρ

∆t
+ N0 −V0

) ∆t
ρ

+ (N1 −V1)

(
∆t

ρε− ∆tα
Π′

∆t
ρ

+
∆tε

ρε− ∆tα

)}
(47)
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which tends to term in {1 +O(∆t)} when ε tends to zero. The first order is retrieved. We consider now
the error in Ω1:

AB =
{(

N0 −V0 − 1
ε Π′

)
∆t
ρ +

(
ρ

∆t + N1 −V1 − 1
ε α
) (

∆t
ρε−∆tα Π′ ∆t

ρ + ∆tε
ρε−∆tα

)}
= {(N0 −V0)

∆t
ρ +

(
− 1

ε +
ρ

ρε−∆tα −
∆tα

ε(ρε−∆tα)

)
Π′ ∆t

ρ

+(N1 −V1)
(

∆t
ρε−∆tα Π′ ∆t

ρ + ∆tε
ρε−∆tα

)
+ ρε

ρε−∆tα −
∆tα

ρε−∆tα}

=
{
(N0 −V0)

∆t
ρ + (N1 −V1)

(
∆t

ρε−∆tα Π′ ∆t
ρ + ∆tε

ρε−∆tα

)
+ 1
} (48)

which also tends to a term in {1 + O(∆t)} when ε tends to zero. Hence, the order of the original
method is retrieved. The same result with a quite similar analysis is obtained by [20].

4.5. Value of the Penalty Parameter

The value of the penalty parameter ε has an influence on the solution as the solution u∗ obtained
with the momentum equations converges toward the desired solution for the L2-norm with an
order ≤3/4 in ε [11].

For the first-order method, the value of the parameter is more critical. In the present approach,
the empirical value ε ≈ 10−10 is used. This value can vary depending on the linear solver. Nonetheless,
taking ε ≈ 10−20 in Equation (20) ensures the desired velocity inside the obstacle. For the second-order
correction, ε can be taken sufficiently small to ensure Πu∗ = uD at machine accuracy when the
high-order penalty term is used. The converged correction can be also directly implemented.

5. Numerical Experiments

The performances of the modified pressure-correction are evaluated here. The method is
compared to the augmented Lagrangian method which does not require a correction. It is also an
opportunity to compare the approaches in a more general point of view. When no analytical solution
is available, a Richardson extrapolation is used to compute a reference solution [40]. We consider three
values h1, h2, and h3 of a numerical parameter verifying consecutive ratios of two. The convergence
rate θ and the reference solution fext are given by:

θ =

ln
(

fh1
− fh2

fh2
− fh3

)
ln
(

h1
h2

) (49)

fext =

(
h2
h3

)θ
fh3 − fh2(

h2
h3

)θ
− 1

(50)

The asymptotical convergence zone has to be reached to obtain a relevant extrapolation.

5.1. Cylindrical Couette Flow

We consider a Couette flow between two cylinders of radius R1 = 0.5 m and R2 = 3 m.
Their angular velocities are ω1 = 0 rad·s−1 and ω2 = 2 rad·s−1. The solution is

vθ(r) =
ω2R2

2 −ω1R2
1

R2
2 − R2

1
r +

(ω1 −ω2)R2
2R2

1
R2

2 − R2
1

1
r

(51)

for the velocity and

p(r) = ρa2 r2

2
− b2

2r2 + 2ab log(r) (52)
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for the pressure with

a =
ω2R2

2 −ω1R2
1

R2
2 − R2

1
and b = (ω1 −ω2)

R2
1R2

2
R2

2 − R2
1

.

The NS equations are solved in a domain Ω = [−2 ; 2+ 0.1
√

2 ]× [−2 ; 2+ 0.2
√

2 ]. The analytical
solution is imposed on ∂Ω. The SMP method is used to impose a Dirichlet BC on the inner circle.
For the augmented Lagrangian method, a value of the parameter dr = 10 is chosen.

The convergence study of the L2 relative spatial error for the second-order correction is given in
Table 1 and plotted in Figure 3. These results are obtained with the rotational pressure-correction (same
results with a negligible differential on the L2 error are obtained with the AL method) demonstrating
the spatial accuracy of the modification. As expected for such a case [14], a second order is obtained for
the velocity. The convergence rate for the pressure error is around 1.5. These results are compared with
the first-order correction (Table 2) where an order slightly superior to one is obtained for the velocity
and a 0.5 order is obtained for the pressure. For both tables, the average number of solver iterations for
the 30 first iterations is shown. The additional cost for the high-order method varies according to the
mesh as critical cases occur (when a diagonal term is very small compared to extra-diagonal terms,
i.e., when αI � αJ in [15]) depends on the position of Σh with respect to Th. For the present case, the
higher overcost for the pressure equation obtained with the 2562 mesh is greatly compensated by the
higher accuracy of the solution. On can notice that critical cases can be removed at the expend of a
slight loss of accuracy by slightly moving the interface.

Mesh

R
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at
iv

e
L²

-e
rro

r

101 102 103

10-6

10-5

10-4

10-3

10-2

U NC
P NC
U COR
P COR
Order 1
Order 2

Figure 3. Evolution of the spatial error for the velocity u and the pressure p with (COR) and without
(NC) the second-order correction for the Couette flow.
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Table 1. L2 relative errors in space and corresponding orders for the velocity and the pressure—
rotational pressure-correction method with second-order correction.

Mesh L2 Rel. Error. u Order L2 Rel. Error. p Order Iter NS Iter SPT

16 3.409× 10−3 5.898× 10−3 8.77 31.9
32 4.708× 10−4 2.86 4.222× 10−3 0.48 19.2 67.0
64 1.307× 10−4 1.85 1.269× 10−3 1.73 38.7 115
128 3.314× 10−5 1.98 3.979× 10−4 1.67 91.6 384
256 8.032× 10−6 2.04 1.339× 10−4 1.57 195 2036
512 2.111× 10−6 1.93 5.040× 10−5 1.41 430

1024 5.281× 10−7 2.00 2.040× 10−5 1.30 1072 1059

Table 2. L2 relative errors in space and corresponding orders for the velocity and the pressure—
rotational pressure-correction method with first-order approach.

Mesh L2 Rel. Error. u Order L2 Rel. Error. p Order Iter NS Iter SPT

16 2.374× 10−2 7.796× 10−2 8.35 14.7
32 1.317× 10−2 0.85 5.620× 10−2 0.47 19.0 28.4
64 5.239× 10−3 1.33 3.471× 10−2 0.69 64.6 59.8
128 2.357× 10−3 1.15 2.479× 10−2 0.49 77 114
256 1.043× 10−3 1.18 1.955× 10−2 0.34 156 223
512 4.420× 10−4 1.24 1.342× 10−2 0.54 323 472

1024 2.057× 10−4 1.10 9.597× 10−3 0.48 696 1100

Table 3 gives the same convergence study for the rotational method without immersed-boundary
correction for the pressure for a time step ∆t = 1 s. As can be seen in Figure 3, the lack of correction
has almost no influence on the pressure. The convergence rate for the velocity is lower but acceptable.
A factor ten is obtained between the solution with and without the correction for the finest mesh.

Table 3. L2 relative errors in space and corresponding orders for the velocity and the
pressure—rotational pressure-correction method without correction for the pressure.

Mesh L2 Rel. Error. u Order L2 Rel. Error. p Order

16 5.652× 10−3 9.144× 10−3

32 1.451× 10−3 1.96 4.376× 10−3 1.06
64 5.242× 10−4 1.47 1.322× 10−3 1.73
128 1.412× 10−4 1.89 4.052× 10−4 1.71
256 5.260× 10−5 1.42 1.357× 10−4 1.58
512 1.673× 10−5 1.65 5.036× 10−5 1.43

1024 5.687× 10−6 1.56 2.039× 10−5 1.30

The time evolution of the solution is now evaluated. For a case with Dirichlet boundary conditions,
the authors of [30,41] gave for the rotational method a rate of O(∆t2) for the velocity and O(∆t

3
2 ) for

the pressure.
Simulations with a 64× 64 mesh are conducted with different time steps and velocity–pressure

coupling methods. The instant Tp when the L2 error on the pressure reaches 1.5 × 10−3 and
the instant Tv when the L2 error on the velocity reaches 1.5 × 10−4 are considered to study the
convergence. Table 4 shows the convergence of these values for the augmented Lagrangian and
rotational pressure-correction methods, and for the Euler temporal schemes. The reference values are
computed with the Richardson extrapolation using the three more refined values. A clear first-order
convergence is obtained for the velocity and the pressure for both velocity–pressure coupling methods.
Except for the larger time-steps, both methods give the same results.
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Table 4. Temporal convergence of the error on the velocity and the pressure for the augmented
Lagrangian and the rotational pressure-correction methods—Gear 1 scheme for the Couette flow.

∆t Tu AL Order Tp AL Order Tu SPT Order Tp SPT Order

Ref. 2.107 1.863 2.107 1.863

128× 10−3 5.168× 10−1 5.172× 10−1 6.402× 10−1 1.034× 100

64× 10−3 2.591× 10−1 1.00 2.584× 10−1 1.00 2.835× 10−1 1.18 2.968× 10−1 1.80
32× 10−3 1.315× 10−1 0.98 1.304× 10−1 0.99 1.353× 10−1 1.07 1.381× 10−1 1.10
16× 10−3 6.630× 10−2 0.99 6.539× 10−2 1.00 6.651× 10−2 1.02 6.654× 10−2 1.05
8× 10−3 3.328× 10−2 0.99 3.268× 10−2 1.00 3.299× 10−2 1.01 3.259× 10−2 1.03
4× 10−3 1.665× 10−2 1.00 1.636× 10−2 1.00 1.640× 10−2 1.01 1.614× 10−2 1.01
2× 10−3 8.339× 10−3 1.00 8.185× 10−3 1.00 8.182× 10−3 1.00 8.019× 10−3 1.01
1× 10−3 4.177× 10−3 1.00 4.096× 10−3 1.00 4.082× 10−3 1.00 3.984× 10−3 1.01

Figure 4 shows the evolution of the spatial error with respect to the number of time iterations for
∆t = 0.1 s, ∆t = 1 s, and ∆t = 10 s while Table 5 gives the values of Tv and Tp for these time steps. Due to
its strong implicitation, the AL method is always converging faster than the pressure-corrections. One can
notice that the temporal evolution of the solution for the rotational method without correction is quite
similar to the evolution of the corrected methods up to an error of 10−3 on the velocity. For this case,
the interest of the correction seems to be minor. Figure 4 shows that the convergence of the incremental
pressure-correction is much slower than with the other methods. For the present case, reaching the same
level of error as with the two others methods is prohibitive.
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Figure 4. Evolution of the L2-norm of the spatial error for ∆t = 0.1 s, ∆t = 1 s, and ∆t = 10 s for
the Couette flow for the augmented Lagrangian (AL), the incremental pressure-correction (PC), the
rotational pressure-correction (RPC), and the uncorrected the rotational pressure-correction (RPC NC).
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Table 5. Temporal convergence of the error on the velocity and the pressure for the augmented
Lagrangian and the rotational pressure-correction methods for large time steps for the Couette flow.

∆t Tv AL Tp AL Tv SPT Tp SPT

10 42.27 47.76 439.8 538.2
1 5.801 5.811 24.18 29.99

0.1 2.506 2.266 2.573 2.4214

The curves of convergence for the second-order Gear scheme are shown in Figure 5 (the error
convergence for the velocity with the augmented Lagrangian method and for the first-order temporal
scheme is given for comparison). The values are given in Table 6. An irregular convergence is observed
for the velocity. For time steps inferior to 0.01s, the error is under the Euler scheme error for all
values and the asymptotical convergence zone seems to be reached. A first order of convergence rate is
obtained for the pressure. An order of about 0.8 is obtained for the velocity with the pressure-correction
which is far from the theoretical order of 2. The augmented Lagrangian method has lower errors but
its convergence rate is about 0.5 in the asymptotical zone. Studies conducted in [32] suggest that the
augmented Lagrangian should reach a first order for the velocity and the pressure. The same behavior
is obtained in [42]. As the convergence rates are better for the first-order temporal scheme, a saturation
effect can be involved. Compared to the classical studies, the immersed boundary correction could
cause this saturation. The value of the parameter ε is not involved here as the converged equations in ε

gives the same results. In this case the theoretical error study suggests a first order of convergence for
the pressure. The use of a relatively coarse mesh seems not to be involved as we use the Richardson
extrapolation to compute the solution so one can suppose that the spatial error does not mix with
the temporal error. This point has to be investigated further. Figure 5 shows the convergence for
the augmented Lagrangian method with dr = 100. The error on the pressure is close to the other
methods. For the smallest time steps, the error on the velocity oscillates around a value so we cannot
use the Richardson extrapolation. This values is different from the value obtained with the other
methods, so another saturation effect seems to be involved. For this reason, the reference value of the
pressure-correction and the augmented Lagrangian with dr = 10 is taken. Even if the convergence is
stopped for the smaller time steps, an excellent error (compared to the other methods) is obtained.

Table 6. Temporal convergence of the error on the velocity and the pressure for the augmented
Lagrangian and the rotational pressure-correction methods—Gear 2 scheme for the Couette flow.

∆t Tu AL Order Tp AL Order Tu SPT Order Tp SPT Order

Ref. 2.107 1.863 2.107 1.863

128× 10−3 1.918× 10−1 8.743× 10−1 3.852× 10−2 6.724× 10−1

64× 10−3 2.531× 10−2 2.92 4.095× 10−2 4.42 6.041× 10−3 2.67 3.887× 10−2 4.11
32× 10−3 3.569× 10−3 2.83 2.356× 10−2 0.80 1.157× 10−3 2.38 1.846× 10−2 1.07
16× 10−3 2.769× 10−4 3.69 1.290× 10−2 0.87 1.802× 10−3 −0.64 9.048× 10−3 1.03
8× 10−3 6.918× 10−4 −1.32 6.687× 10−3 0.95 1.251× 10−3 0.53 4.632× 10−3 0.97
4× 10−3 5.336× 10−4 0.37 3.428× 10−3 0.96 7.212× 10−4 0.80 2.326× 10−3 0.99
2× 10−3 3.756× 10−4 0.51 1.753× 10−3 0.97 4.120× 10−4 0.81 1.168× 10−3 0.99
1× 10−3 2.645× 10−4 0.51 8.976× 10−4 0.97 2.357× 10−4 0.81 5.862× 10−4 0.99

To finish with this case, Table 7 shows the spatial errors for various time steps with the rotational
method without correction. Contrary to the corrected methods, the error at the stationary state depends
on the time step even if its influence is small here. A quite surprising result is that the error decreases
when the time step increases while Domenichini [17] noticed the contrary (but for different cases and
with a spectral solver).
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Figure 5. Time evolution of the L2-norm of the spatial error for the velocity and the pressure with the
Gear 2 scheme for the augmented Lagrangian method with dr = 10 (AL 10) and dr = 100 (AL 100) and
for the rotational pressure-correction (RPC).

Table 7. L2 relative errors in space for the non-corrected rotational pressure-correction method for
various time steps for the Couette flow.

∆t L2 Rel. Error. u L2 Rel. Error. p

10−2 7.421× 10−4 5.954× 10−3

10−1 5.593× 10−4 1.929× 10−3

1 5.242× 10−4 1.322× 10−3

10 5.197× 10−4 1.288× 10−3

102 5.196× 10−4 1.287× 10−3

5.2. Flow Past a Cylinder

The instationary flow past a cylinder of unit diameter is now simulated to study the temporal
order of the method for an instationary case. We consider a cylinder of diameter D in a domain
Ω = [−10R ; 15R ]× [−10R ; 10R ]. The inlet velocity V and the fluid properties are set such that the
Reynolds number is equal to 100.

The computational mesh is composed of 175 × 150 cells with an inner zone of dimensions
[−D ; 2D ]× [−D ; D ] with a constant space step covered by 75× 50 cells. Figure 6 shows the mesh
and the position of the cylinder. The cylinder is the immersed boundary and is located in the zone
with constant step size as the method has not been implemented yet for irregular meshes. An Orlanski
open boundary condition [43] is imposed for the outflow.
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Figure 6. Mesh for the case of the flow past a cylinder at Re = 100.

The vorticity and the pressure are shown in Figure 7. On can see that the vorticity in the periodic
Bénard–von Kármán vortex street is strongly decaying in the X direction compared to the standard
solution of the literature. This difference is due to the coarseness of the mesh. However, the aim here is
not to compare our results with the literacy so the size of the computational mesh is relatively moderate.
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Figure 7. Pressure and vorticity contours for the case of the flow past a cylinder at Re = 100.

Tables 8 and 9 gives the values of a period of oscillation (a-dimensionalized by the minimum time
step) for different time steps with the augmented Lagrangian an rotational methods with the first and
second-order Gear schemes for the time derivatives. The convergence order is determined with the
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Richardson extrapolation performed with the three more refined time steps. The results in term of
relative error are given in Figure 8.
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Figure 8. Evolution of the temporal error for the period of oscillation for the flow past a cylinder at
Re = 100.
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Table 8. Period of the oscillations with the rotational pressure-correction (RPC) and the augmented
Lagrangian (AL) with a Gear 1 temporal scheme for the flow past a cylinder at Re = 100.

∆t/∆tmin Period/∆tmin (RPC) Order Period/∆tmin(AL) Order

Ref. 4.667× 102 4.694× 102

128 1.137× 103 1.043× 103

64 7.973× 102 1.02 7.506× 102 1.02
32 6.282× 102 1.03 6.241× 102 0.86
16 5.493× 102 0.96 5.530× 102 0.88
8 5.107× 102 0.90 5.134× 102 0.92
4 4.896× 102 0.94 4.920× 102 0.96
2 4.785× 102 0.96 4.806× 102 1.00
1 4.726× 102 0.96 4.750× 102 1.00

Table 9. Period of the oscillations with the rotational pressure-correction (RPC) and the augmented
Lagrangian (AL) with a Gear 2 temporal scheme for the flow past a cylinder at Re = 100.

∆t/∆tmin Period/∆tmin (RPC) Order Period/∆tmin(AL) Order

Ref. 4.673× 102 4.691× 102

128 1.083× 103 1.016× 103

64 7.386× 102 1.18 7.278× 102 1.08
32 5.671× 102 1.44 5.762× 102 1.27
16 5.051× 102 1.40 5.102× 102 1.39
8 4.832× 102 1.25 4.853× 102 1.36
4 4.740× 102 1.23 4.760× 102 1.27
2 4.701× 102 1.18 4.722× 102 1.21
1 4.685× 102 1.18 4.706× 102 1.21

For both time schemes, the differences between AL and the rotational methods are non-negligible
for the larger time steps, with a greater accuracy for the AL. As for the precedent case, it shows the
advantage of the AL to deal with larger time steps. For the other time steps, both methodologies reach
a similar accuracy. For the smaller time steps (where the asymptotic convergence seems to be reached),
the convergence orders on the velocity and the pressure are about 1 for the Euler scheme and about
1.2 for the second-order Gear scheme. From [41], the rate of error for the L2-norm of the velocity of
O(∆t

3
2 ) is expected.

6. Conclusions

The correction of the first-order L2-penalty method for the pressure-correction methods was
extended to a second-order with the Sub-mesh penalty method. The correction converges toward
the Ikeno and Kajishima [20] correction, which is designed for a direct-forcing IBM method.
The consistency of the method is directly deduced from its construction.

A brief theoretical analysis proved that the temporal error of the pressure correction method
with a first-order Gear scheme was not altered. Again, this point is similar to the Ikeno–Kajishima
correction. A study with higher integration schemes is now desirable.

Numerical experiments were carried out. The correction was compared to the augmented
Lagrangian method and the same results were obtained in space for the cylindrical Couette flow.
For this first case, convergence rates of 2 and 1.3 in the L2-error norm for the velocity and the pressure
were obtained. It corresponds to the known performances of the rotational method with Dirichlet
boundary conditions. Concerning the flow past a cylinder at Re = 100, the study showed a maximum
convergence order for both augmented Lagrangian and rotational methods of 1.20. Those results
are close to the literature where a convergence rate between O(∆t) and O(∆t

3
2 ) is expected [30].

A combination with the second-order open boundary conditions of [44] could be investigated.
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As for a small enough penalty parameter ε, the present methodology is equivalent to a corrected
direct-forcing IBM, especially the method of [8]; the conclusions of this study can be extended to this
method.

This work is also a more general comparison between the rotational pressure-correction and
the augmented Lagrangian methods (and this last method can a priori be applied to any DF-IBM
method). The results show that the spatial accuracy is the same for both methods. Concerning the
time accuracy, the AL approach seems to be more efficient with very-high time steps. For moderate
and low time-steps, one cannot conclude. Almost no differences were obtained with the case of
the flow past a cylinder. For the Couette flow, quite similar results were obtained for the pressure.
For the velocity, the results depend on the time step. For the smaller time steps, the convergence of
the AL method decreases while the absolute temporal accuracy is still better than with the rotational
method. It was shown that the value of the penalty parameter dr has an influence on the convergence
rate. The influence of the number of sub-iterations could be evaluated too. Increasing the number of
sub-iteration generally enhances the convergency at the expense of the computational cost. All these
considerations show the complexity of a comparative study between those methods (with and without
immersed boundary modification). A future work devoted to an extended comparison would be of
high interest, especially if simulations of multiphase flows are performed.
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