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Abstract: Several problems in science and engineering are characterized by the interaction between
fluid flows and deformable structures. Due to their complex and multidisciplinary nature,
these problems cannot normally be solved analytically and experiments are frequently of limited
scope, so that numerical simulations represent the main analysis tool. Key to the advancement of
numerical methods is the availability of experimental test cases for validation. This paper presents
results of an experiment specifically designed for the validation of numerical methods for aeroelasticity
and fluid-structure interaction problems. Flexible filaments of rectangular cross-section and various
lengths were exposed to air flow of moderate Reynolds number, corresponding to laminar and
mildly turbulent flow conditions. Experiments were conducted in a wind tunnel, and the flexible
filaments dynamics was recorded via fast video imaging. The structural response of the filaments
included static reconfiguration, small-amplitude vibration, large-amplitude limit-cycle periodic
oscillation, and large-amplitude non-periodic motion. The present experimental setup was designed
to incorporate a rich fluid-structure interaction physics within a relatively simple configuration
without mimicking any specific structure, so that the results presented herein can be valuable for
models validation in aeroelasticity and also fluid-structure interaction applications.

Keywords: experiment; benchmark; validation; aeroelasticity; fluid-structure interaction; flexible;
filament; ribbon; string

1. Introduction

Fluid-structure interaction (FSI) problems, where a fluid flow and a movable or deformable
structure dynamically interact, are relevant in several fields of engineering including aeroelasticity,
biomechanics, flow control, and energy harvesting. Examples include aircraft wing design [1,2], flapping
wing propulsion [3–5], flexible turbomachinery [6,7], cardiovascular medicine [8–11], swimming
micro-organisms [12,13], piezoelectric wind energy harvesting [14,15], and several more. A flexible
structure exposed to fluid flow deforms owing to the fluid force acting along its surface. When the
deformation of the structure is large enough to affect the flow field, the resulting FSI problem is a
coupled, non-linear multi-physics problem where the flow and the structure dynamically interact and
modulate each other.

Despite their practical relevance, a comprehensive treatment of FSI problems remains a challenge
due to their intrinsic complexity and multidisciplinary nature. FSI problems are typically too complex
to solve analytically, and are therefore analyzed by means of experiments and numerical simulations.
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Frequently, conducting experiments at operating conditions representative of actual applications
may be challenging or impractical. In these cases, numerical modelling may be used as the main
design and analysis tool to investigate the fundamental physics of FSI problems. The development
of numerical methods for FSI problems has been an active area of research over the last decades,
and several numerical procedures have been proposed to account for large structural deformations
and faithfully reproduce the coupling between the structure and the fluid [16–19]. The effectiveness of
numerical FSI methods is normally assessed via verification and validation. Whilst the verification is
carried out by comparing the simulations with synthetic data generated with numerical experiments
(see, e.g., [20–24]), the validation relies on comparing the simulations with experimental test cases,
i.e., data originated from physical experiments. In order to be informative and, at the same time,
minimize the computational burden, the experimental test cases used to validate numerical FSI
methods do not normally mimic any realistic structure. Instead, these experimental test cases are
typically designed to incorporate a rich fluid-structure interaction physics within a relatively simple
configuration. For illustrative purposes, a non-exhaustive selection of popular experimental FSI test
cases is provided in Table 1.

Table 1. Experimental FSI validation test cases.

Reference Fluid Structure Motion

Pereira Gomez
et al. [25]

Polyethylene glycol
syrup in laminar flow

Flexible metal plate with rear mass at the trailing
edge, clamped behind a rigid circular cylinder free

to rotate around its axis, oriented in cross-flow
2D

Pereira Gomes
and Lienhart [26]

Water and polyethylene
glycol syrup in laminar

and turbulent flow

Flexible metal plate with rear mass at the trailing
edge, clamped behind a rigid cylindrical body
(circular or rectangular cross section) oriented

in cross-flow

2D

Kalmbach and
Breuer [27] Water in turbulent flow

Flexible rubber membrane with rear mass at the
trailing edge, clamped behind a rigid and fixed

circular cylinder oriented in cross-flow
2D

De Nayer
et al. [28] Water in turbulent flow Flexible rubber membrane clamped behind fixed

rigid circular cylinder oriented in cross-flow 2D/3D

Hessenthaler
et al. [29]

Aqueous glycerol
solution in laminar flow

Flexible cantilever-beam plate in merging flow
from two inlets 3D

This study Air in laminar and
turbulent flow

Flexible cantilever-beam filaments of variable
length in uniform flow 3D

As can be noted in Table 1, the experimental setups comprise an elastic structure of simple
geometry, such as a plate or a membrane, which undergoes large deformations with moderate motion
frequency whilst interacting with a flow of moderate Reynolds number, so that the complication
of simulating highly turbulent flows is avoided. Sometimes, the structure dynamics is restricted to
two-dimensional, so that the validation can be achieved by means of two-dimensional numerical
simulations, which are less demanding than three-dimensional simulations in terms of run-time and
computational resources. In addition to the structural dynamics, which is always resolved in validation
experiments, when practical also the flow field is measured. Faithfully resolving this latter is not
always feasible, however, particularly when the structural deformation is three-dimensional, so that
flow field measurements, when provided, are frequently of low resolution and of limited scope.

With the rapid development of numerical FSI methods, the demand for validation test cases
increases. The objective of this work is to contribute one such case. In particular, we tested six flexible
filaments of rectangular cross-section and varying length, which were exposed to air flow of moderate
Reynolds number corresponding to laminar and mildly turbulent flow conditions. In order to explore a
wider range of structural responses during the tests, besides varying the air flow velocity we also varied
the length of the elastic filaments. This was instrumental to observing structural responses as diverse
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as: (1) static reconfiguration, (2) small-amplitude vibration, (3) limit-cycle periodic oscillations, and (4)
non-periodic oscillations. The dynamics of the flexible filaments was generally three-dimensional,
though a two-dimensional structural response was sometimes observed during limit-cycle periodic
oscillations. Even though the focus here is clearly on three-dimensional large deformations of flexible
structures in air flow, the practical relevance of the work goes beyond aeroelasticity applications,
and the present results can be of interest for FSI applications in general.

The rest of this paper is organized as follows: the test set-up, the flexible filaments characterization,
the flow characterization and the experimental methodology are presented in Section 2, whilst the
measured results are presented and discussed in Section 3.

2. Materials and Methods

2.1. Flexible Filament Manufacturing and Characterization

The flexible filament was manufactured with commercial silicone rubber (density 1.00± 0.05 g/cm3)
using an additive manufacturing system (3D-Bioplotter by EnvisionTEC, https://envisiontec.com)
following a rectilinear path during printing to avoid any curvature or deformation, and therefore
produce a straight filament of uniform cross section and smooth surface finishing. The filament had
rectangular cross section with width w of 2.00 ± 0.05 mm and height h of 0.40 ± 0.05 mm (measured
with a digital caliper), and a linear mass density of 0.80 ± 0.16 g/m. Note that, in order to avoid the
large error that would have arisen from measuring directly the mass of the filament (which was on
the order of 0.1 g), the density of the silicon rubber provided above was deduced from measuring
the mass of a bigger chunk of silicon rubber. The linear mass density of the filament provided above
was therefore calculated as the product of the silicon rubber density times the width and height of
the filament cross-section. One portion of the filament was used for the mechanical characterization
described below, whilst another portion was used to realize the test piece for the FSI experiments
(described in Section 2.2).

The mechanical behavior of the filament was characterized with uniaxial tensile tests. The results
are provided in raw format in Figure 1a as filament elongation (measurement accuracy ± 0.5 mm)
versus applied force (measurement accuracy ± 1%), whilst the corresponding stress-strain curve is
provided in Figure 1b. The tensile strain ε and the tensile stress σ are calculated as indicated in
Equations (1) and (2), respectively:

ε =
∆L
L0

=
L− L0

L0
(1)

σ =
F
A

=
FL

A0L0
(2)

where ∆L is the filament elongation, L is the length of the filament when loaded, L0 is the initial length
of the filament (note that the filament used for the tensile test had an initial length of 52.0 ± 0.5 mm),
F is the applied force, and A is the area of the cross-section of the filament. As can be noted in
Equation (2), the tensile stress was calculated by assuming incompressible deformation, which is
an acceptable approximation for silicone rubber [29]. No permanent deformation was observed after
loading and the data in Figure 1b are linearly correlated, therefore indicating a linear-elastic behavior of
the flexible filament during the tensile tests. The experimental uncertainties, estimated with standard
single-sample error propagation [30], were on the order of ± 2% for the tensile strain, and ± 10% for
the tensile stress. The corresponding Young modulus of the filament, deduced from the slope of the
fitting line in Figure 1b, is E = 757 ± 91 kPa.

https://envisiontec.com
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Figure 1. Mechanical characterization of the flexible filaments. (a) Uniaxial tensile tests results;
(b) Stress-strain curve.

2.2. Test Piece Description and Preliminary Characterization

As schematically shown in Figure 2a, the test piece for the FSI experiments comprises the flexible
filament, a support tube, and a support plate. The support tube, a rigid stainless-steel circular tube
with external diameter of 2.40 ± 0.05 mm and length of 140 ± 0.5 mm, was rigidly connected to the
support plate so that the test piece could be introduced from the top inside the wind tunnel for testing,
as shown in Figure 2c. The filament extremity was introduced inside the support tube and then glued,
so as to realize a cantilever boundary condition at the connection between the filament and the tube.
The length of the support tube was selected to place the filament in the middle of the wind tunnel
cross-section. During the tests, the filament was always oriented with the longer side of the rectangular
cross section facing the flow, as schematically shown in Figure 2b. The flexible filament protruding
from the support tube had an initial length L of 60 mm. The filament was progressively shortened
during the experiments, and tests were carried out for six different lengths: 60 mm, 50 mm, 40 mm,
30 mm, 20 mm, and 10 mm. These are referred to, in the following, as Filament 1 (60 mm) through
Filament 6 (10 mm), as indicated in Table 2.

Table 2. Flexible filaments used in the present FSI experiments.

Filament No. L (mm) f1(Hz) ζ1(-)

1 60.0 ± 0.5 2.5 ± 0.1 0.012 ± 0.002

2 50.0 ± 0.5 2.8 ± 0.1 0.015 ± 0.002

3 40.0 ± 0.5 3.3 ± 0.2 0.017 ± 0.002

4 30.0 ± 0.5 3.9 ± 0.3 0.021 ± 0.003

5 20.0 ± 0.5 6.3 ± 1.0 0.028 ± 0.004

6 10.0 ± 0.5 16 ± 3 0.035 ± 0.005
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Figure 2. (a) Schematic representation of the test piece; (b) Filament orientation during the tests in the
wind tunnel; (c) Schematic representation of the experimental wind tunnel setup.

Before running the FSI tests in the wind tunnel, the filaments were preliminary characterized
by measuring their natural vibration frequencies and damping ratios. The results are provided in
Table 2. In particular, first-mode natural vibration frequencies f1 were measured in forced vibration
shaker tests under single-frequency excitation. The test setup included an electromagnetic shaker
(of in-house design and construction) with control signal provided by a signal generator operated in
sine wave mode with frequency resolution of 0.1 Hz. During the tests, the filaments hang vertically
with the top extreme fixed to the shaker. Following common practice, the amplitude of response of
the filament was recorded (using a Panasonic Lumix DMC-FZ200 digital camera) as a function of the
excitation frequency, and the natural vibration frequency was identified as the peak in the response
(experimental uncertainty deduced from the full-width at half maximum of the peak in the amplitude
response). On the other hand, first-mode damping ratios ζ1 were deduced from free vibration tests
in stagnant air. Starting with the filament hanging vertically in equilibrium with the top extreme
fixed, the filament free-end was manually displaced (displacement small enough to trigger a mode-1
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response). The filament free-end was then released, and the free vibration of the filament was recorded
(using a Panasonic Lumix DMC-FZ200 digital camera). Following common practice, the damping
ratio was evaluated from the logarithmic decrement of the envelope of the displacement time-series
(experimental uncertainty deduced as standard deviation from repeated measurements). Natural
vibration frequencies of the filaments are presented in Figure 3a together with the predictions of
Equations (3) and (4):

fBeam =
1.8752

2π

√
E I

m L4
(3)

fString =
2.4048

4π

√
g
L

(4)

where E is the Young modulus of the filament, m is the total linear mass density of the filament (since
the density of the filament is 3 orders of magnitude larger than the density of air, the added mass is
negligible in the present case), g is the acceleration of gravity, and I is the second area moment of the
cross-section of the filament with respect to the axis aligned with the longer side (z-axis in Figure 2b):

I =
wh3

12
(5)

In particular, Equation (3) predicts the first-mode natural vibration frequency of a cantilevered
elastic beam according to standard Euler-Bernoulli beam theory, whereas Equation (4) predicts the
first-mode natural vibration frequency of a one-dimensional elastic and inextensible hanging string [31].
As can be noted in Figure 3a, whilst the natural vibration frequencies of the shorter filaments (Filaments
5 and 6) agree with Equation (3), those of the longer filaments (Filaments 1 through 4) agree with
Equation (4). This indicates that, from a structural point of view, the shorter filaments behave as
elastic beams, whereas the longer ones behave as elastic strings. Even though this conclusion, strictly
speaking, is only valid for the forced vibration tests discussed here, the FSI tests discussed later provide
similar results: the structural response of the filaments is modulated by their length. This highlights
the usefulness of using the filament length as control parameter during the experiments to explore
different structural responses. As can be noted in Figure 3b, the damping ratio decreases when
increasing the filament length, confirming previous observations with flexible filaments of circular
cross section [32,33].
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2.3. Wind Tunnel Flow Characterization

The experiments were performed in a horizontal-axis commercial wind tunnel (by Armfield
Limited, Ringwood, UK (armfieldonline.com)) of octagonal cross-section with height and width of
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300 mm, operated with air at ambient conditions (air pressure and temperature during the experiments
were 101 ± 1 kPa and 293 ± 2 K, respectively). The blockage ratio associated with the present test piece
was on the order of 0.5%, so that wind tunnel flow confinement effects can be ignored. The free-stream
flow velocity was measured (to within ± 2% accuracy) with a hot-wire anemometer (by Dantec
Dynamics, Bristol, UK (www.dantecdynamics.com); probe type 55P15: 5 µm diameter tungsten wire of
2 mm length), calibrated prior to the tests and operated in constant temperature mode with a sampling
frequency of 10 kHz. As shown schematically in Figure 2c, the hot-wire anemometer (HWA) was
located downstream of the test piece in the same vertical plane of the filament but at a lower vertical
elevation, so as to avoid any interference between the anemometer and the wake of the filament.

The uniformity of the free-stream velocity profile and the extension of the boundary layer in
the wind tunnel were assessed before introducing the flexible filaments in the tunnel for testing.
The boundary layer thickness was of about 5 mm at the lowest wind speed considered, whilst the
velocity profile (excluding the boundary layer) was uniform to within ± 2%, i.e., velocity variations
were within the present experimental resolution. This assures that the flexible filaments were always
exposed to a fully-developed velocity profile during the tests. The free-stream wind tunnel flow was
further characterized by estimating the streamwise component of the turbulence intensity Tu and the
streamwise macro Λ and micro λ turbulence length scales [34]:

Tu =

√
u2

U
(6)

Λ =

[
E( f )U

4u2

]
f→0

(7)

λ =

[
2π2

U2u2

∫
∞

0
f 2E( f )d f

]−2

(8)

where u2 is the mean square fluctuating velocity, U is the mean flow velocity, and E( f ) is the energy
spectrum of the velocity signal as function of the frequency f . Equations (7) and (8), in particular,
are valid under the assumption of homogeneous and isotropic turbulence, which is normally acceptable
for wind tunnel flow experiments [34]. As is well known, the turbulence intensity measures the relative
intensity of the velocity fluctuation. On the other hand, the turbulence macroscale can be considered
as a measure of the largest eddy size in the flow, whilst the turbulence microscale can be considered
a measure of the smallest eddies in the flow, which are responsible for the dissipation of turbulence
energy. Turbulence intensity and length scales estimates are presented as functions of the wind speed in
Figure 4. As can be noted, the turbulence intensity is mild and ranges between 1% and 2.5%, whilst the
macro and micro length scales range between 1−30 mm and 0.02−0.38 mm, respectively. The estimates
provided in Figure 4 were generated from five-seconds long hot-wire velocity measurements of the flow,
sampled at 10 kHz. The free-stream flow is not further characterized at this stage, but raw free-stream
flow data are included as Supplementary Materials for future reference and further analysis.

www.dantecdynamics.com
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2.4. Experimental Procedure

During the FSI tests, the free-stream flow velocity was gradually and stepwise varied between
1 m/s and 15 m/s, corresponding to a Reynolds number in the range of 133−2027. The Reynolds number,
in particular, is based on the filament width w:

Re =
ρUw
µ

(9)

where ρ and µ are the air density and viscosity. With cylinders in cross-flow, the vortex street becomes
turbulent for Reynolds numbers above about Re ≈ 200− 300 [35]. The Reynolds number range explored
here, therefore, covers laminar (flow velocity up to ~1.5 m/s), transitional (flow velocity from ~1.5 m/s
up to ~2.5 m/s), and mildly turbulent (flow velocity above ~2.5 m/s) flow conditions. Measurements
were taken for both increasing and decreasing flow velocity, observing no hysteresis in the response of
the filaments.

The motion of the filaments was recorded simultaneously in the horizontal and vertical planes using
two synchronized digital cameras (Panasonic Lumix DMC-FZ200, recording frequency: 200 frames
per second, image resolution: 480 × 640 pixels), located at the front and at the top of the wind
tunnel as shown in Figure 2c. The digital cameras provided a spatial resolution of 0.20 mm/pixel,
which is appropriate to resolve the large displacements of interest here. The videos (15 s recording)
were synchronized and post-processed with the Image Processing Toolbox of MATLAB (version
R2015a), using a tracking methodology previously developed for flexible fluid-structure interaction
and flow-induced vibration applications [32,33,36–38].

Representative envelopes of motion for Filament 1 at three different Reynolds numbers (Re = 202,
Re = 410, and Re = 804) are presented in Figure 5. Except at the lowest Reynolds number value
(Re = 202), when the motion of the filament is two-dimensional and confined to the vertical plane,
the motion of the filament is clearly three-dimensional, with significant displacements in both the vertical
and horizontal planes. Not surprisingly, the free-end is the point along the filament that experiences
the largest displacement. As shown in previous research on flexible filaments in cross-flow [32,33],
the dynamics of the filament free-end is representative of the dynamics of any point along the flexible
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filament, meaning that the dynamics of any point along the flexible filament is qualitatively similar to
the dynamics of the filament free-end, despite the different amplitude of motion. In the present study,
therefore, the response of the filaments was characterized by analyzing the dynamics of the filament
free-end, which experiences the largest displacement and therefore maximizes the signal-to-noise ratio.
On account of the filament motion being mostly three-dimensional, the filament free-end dynamics
was characterized by analyzing the displacement time-series Ay(t) and Az(t) recorded in the vertical
plane (front view in Figure 2c) and horizontal plane (top view in Figure 2c), and by analyzing the
filament free-end total displacement time-series Atot(t):

Atot(t) =
√

Ay(t)
2 + Az(t)

2 (10)
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The total displacement combines the vertical and horizontal motions of the filament free-end,
and can therefore be used to characterize both planar and three-dimensional dynamics. In particular,
the recorded time-series were not filtered prior to the analysis. Flapping frequencies in the vertical
and horizontal planes were identified as the dominant frequencies in the power spectral densities
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(computed using the Welch method [39] and MATLAB built-in functions) of the corresponding
displacement time-series.

The total displacement time-series was used to compute the autocorrelation function and to
reconstruct the system trajectory in phase-space, which together provide a thorough characterization
of the filament free-end dynamics. Whilst the autocorrelation function was computed using MATLAB
built-in functions, the trajectory of the system in phase-space (i.e., the system attractor) was reconstructed
using the delayed vector method [40]: a methodology developed for nonlinear time-series analysis that
is particularly useful for fluid-structure interaction problems. The topology of the reconstructed attractor
of the filament free-end, in fact, gives a useful qualitative characterization of the filament dynamics,
which completes and corroborates the quantitative information provided by the displacements and
flapping frequency. The concept of phase-space representation, rather than a classic analysis in time or
frequency domain, is the key point in nonlinear time-series analysis. The topology of the trajectory in
phase-space of a nonlinear system, in fact, provides important qualitative information regarding the
fundamental dynamics of the systems being investigated. The problem is that, in experimental studies,
one normally observes a time-series of scalar measurements of some quantity that depends on the
current state of the system, and not the trajectory of the system in phase-space. The delayed vectors
method [40] allows reconstructing the trajectory of the system in phase-space from a time-series of
scalar measurements, and can therefore be used in experimental studies such as the present one where
only time-series of scalar measurements of some quantity (the instantaneous total displacement in
the present case) are available. In the present case, the trajectory in phase-space was reconstructed by
plotting the time-delayed instantaneous total displacement Atot(t + τ) versus Atot(t). If the delay τ is
chosen properly (on the order of 5-30 ms in the present case, the lower the delay the higher the flow
velocity and Reynolds number), then the topology of the reconstructed attractor is representative of
the underlying system dynamics [40].

As noted previously, experimental FSI test cases should always include the structural dynamics
and, when feasible, also the measurement of the flow field. Measuring the flow field in the present
case would require a three-dimensional flow visualization with sub-millimeter space resolution
and high-frequency (on the order of several kHz) time resolution. Even for the simplest test case
documented here, which corresponds to Filament 6 statically reconfigured at a flow velocity of 1 m/s
(corresponding to a Reynolds number of Re = 133), measuring the flow field would require the
resolution of a vortex street where vortices of sub-millimetric size are shed at a frequency of about
100 Hz [41]. As previously noted, in FSI test cases it is normally preferred to have flexible structures
which undergo large deformations with moderate motion frequency whilst interacting with a flow
of moderate Reynolds number, thereby avoiding the complications of simulating highly turbulent
flows. The small size and high flexibility of the present filaments were instrumental in achieving large
displacements and relatively small oscillation frequencies and, at the same time, keep the Reynolds
number small. Unfortunately, the details of the flow field scale with the size of the structure, so that
the smaller the structure the smaller the space resolution that is needed to faithfully resolve the flow
field. In the present case, the requirements for a faithful flow field visualization were beyond our
experimental capabilities, and the flow field was therefore not measured.

3. Results and Discussion

The results for Filament 1 are presented in Figures 6–9. In particular, displacements and flapping
frequencies in the horizontal and vertical planes are presented in Figure 6 as functions of the Reynolds
number, whilst the trajectory of the filament free-end (as seen by an observed located downstream of the
filament and facing the flow), the autocorrelation function and the reconstructed attractor (computed
from the total displacement of the filament free-end) are provided, for all Reynolds number values
tested, in Figures 7–9. Each data point presented in the paper has been generated from averaging
one video recording of 15 seconds, corresponding to 3000 frames. Selected data points were repeated,
showing good repeatability.
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It is evident that the filament response gradually changes as the Reynolds number is progressively
increased. For low values of the Reynolds number (Re . 333) the filament motion is small-amplitude
and mostly confined to the vertical plane, with a rapidly decaying autocorrelation function and
a blob-like attractor. These are typical features of a small-amplitude vibration: a random and
not self-sustained motion confined around the equilibrium position corresponding to the statically
reconfigured filament.
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For Reynolds numbers beyond about Re = 360, the filament motion becomes large-amplitude and
three-dimensional, with displacements in the horizonal and vertical planes of comparable magnitude.
For Reynolds numbers in the range of 413− 533, in particular, the autocorrelation function becomes
periodic and slowly decaying and the attractor is ring-like, indicating that the filament motion is a
large-amplitude limit-cycle oscillation where the filament free-end describes a figure-eight shaped (or
∞-shaped) trajectory.
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Figure 9. Reconstructed attractor in phase-space for the total displacement of the free-end of Filament
1 at different Reynolds number values.

Notably, the transition from the small-amplitude vibration to the large-amplitude limit-cycle
oscillation is gradual and not abrupt: at Re = 360 the filament motion is large-amplitude,
the autocorrelation function is already periodic and slowly decaying, though the attractor is
still blob-like, thus indicating a dynamic intermediate between a small-amplitude vibration
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and a large-amplitude limit-cycle oscillation. For Reynolds number beyond about Re = 667,
the filament motion is large-amplitude, the autocorrelation function decays rapidly and the attractor
becomes blob-like, indicating a large-amplitude non-periodic oscillation. Again, the transition from
large-amplitude limit-cycle oscillation to large-amplitude non-periodic oscillation is gradual, as can be
noticed at Re = 600 where the autocorrelation function is still periodic and rather slowly decaying,
though the attractor is already blob-like. Finally, the dominant frequency of oscillation gradually
increases with increasing Reynolds number.

Plots for Filaments 2, 3, 4, and 5 analogous to those for Filament 1 included in Figures 6–9 are
provided in the Appendix A. As can be noted, the dynamics of Filaments 2−3 is qualitatively similar to
that observed with Filament 1: as the flow velocity gradually increases, the structural response gradually
evolves from a small-amplitude vibration to a large-amplitude limit cycle oscillation, and then into a
large-amplitude non-periodic motion. With Filaments 4−5, on the other hand, the small-amplitude
vibration evolves directly into a large-amplitude non-periodic motion. Whilst with Filament 4 there is
a range of Reynolds number values where the large-amplitude oscillation becomes periodic, limit-cycle
oscillations are no longer observed with Filament 5. In general, the Reynolds number values where the
filament response changes gradually increase with decreasing filament length, indicating that higher
flow velocities are required to trigger a change in structural response as the filament gradually shortens.

The Reynolds number range where limit-cycle oscillations are sustained widens when moving
from Filament 1 (413–533) to Filament 2 (533–733) and then to Filament 3 (587-960), then contracts
with Filament 4 (1053–1333). As previously noted, during limit-cycle oscillation with Filament 1 the
filament free-end describes a figure-eight shaped trajectory. This is also the case with Filaments 2 and 3
but only for low Reynolds number values: for high Reynolds numbers the filament motion during
limit-cycle oscillation tends to become two-dimensional and confined to the vertical plane. Notably,
this is always the case with Filament 4, where the figure-eight shaped trajectory is not observed and
limit-cycle oscillations are always two-dimensional.

Finally, the structural response of Filament 6 was reduced to a static deflection, i.e., the Filament
6 deflected, as the flow velocity was gradually increased, always maintaining a static equilibrium
configuration. Static deflection angles of Filament 6 are provided in Figure 10 as function of the
Reynolds number (the static deflection angle is defined as indicated in the insert in Figure 10).
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As can be noted in Figure 10, the static deflection angle decreases with increasing Reynolds
number following a sigmoidal trend, similarly to previous observations with circular cross-section
filaments [42]. The sigmoidal trend of the static deflection angle indicates that the incremental change
in inclination gradually decreases, as the flow velocity gradually increases. This trend can be explained
by considering that, as the deflection gradually increases, the filament exposes a gradually smaller
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frontal area to the flow, and consequently becomes gradually more streamlined. A qualitatively similar
behavior has been observed with flexible plates [43,44] and flexible vegetation [45].

In order to better compare the structural responses of Filaments 1−5, the measurements are
provided in aggregated form in Figure 11, where the displacements and frequencies are presented in
dimensionless form as functions of the Reynolds number. The dimensionless displacement, in particular,
is defined as follows:

A∗ =
A
L

(11)

where A is the displacement (in either the horizontal or the vertical plane) and L is the length of the
filament (from Table 2). The dimensionless frequency, on the other hand, is defined as follows:

f ∗ =
f
f1

(12)

where f is the flapping frequency (in either the horizontal or the vertical plane) and f1 is the mode-1
fundamental frequency of vibration for each filament (from Table 2). As can be seen from the plot of the
dimensionless displacement in the vertical direction (A∗y in Figure 11a), the onset of large-amplitude
motion progressively occurs at higher Reynolds numbers as the length of the filament is decreased.
The dimensionless displacement then increases as function of Reynolds number and levels off at a
certain maximum. This maximum dimensionless displacement is progressively higher as the filament
length is decreased. Moreover, it can be noted that, regardless of the Reynolds number for the onset
of large-amplitude motion or the amplitude of motion, the dimensionless frequency in the vertical
direction ( f ∗y in Figure 11c) exhibits a linearly increasing trend as function of the Reynolds number,
indicating that at a higher wind speed corresponds a stronger fluid forcing and, therefore, a faster
dynamic. As highlighted in Figure 11c, the onset of vibration in the vertical plane occurs at around
fy/ f1 = 1, therefore indicating that the filaments start vibrating (in the vertical plane) with a frequency
that is comparable with their mode-1 natural vibration frequency. As can be seen from the plot of the
dimensionless displacement in the horizontal direction (A∗z in Figure 11b), the Reynolds number ranges
where the filaments motion tends to become two-dimensional and confined to the vertical plane are
clearly recognizable. Other than this, the trends in Figure 11b are similar to those observed in Figure 11a,
particularly so for Filament 1 whose dynamics is always three-dimensional. Dimensionless frequencies
in the horizontal plane ( f ∗z in Figure 11d) grow approximately linearly with increasing Reynolds
number, similarly to what observed in the vertical plane (Figure 11c). The spikes in dimensionless
frequency observed in Figure 11d correspond to harmonics of the lowest peak frequency from the
power spectral density, approximately corresponding to double of the lowest peak frequency. Similar
to the case of vertical motion, the onset of large-amplitude motion for Filaments 1−3 occur at around
fz/ f1 = 1, indicating that these filaments start vibrating also in the horizontal plane with a frequency
that is comparable with their mode-1 natural vibration frequency. Notably, for Filaments 4 and 5 the
onset of motion is close to fz/ f1 = 2, so that these filaments start vibrating in the horizontal plane
with a frequency that is approximately twice their mode-1 natural vibration frequency.
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Figure 11. Dimensionless displacements and frequencies for Filaments 1−5 vs. Reynolds number.
(a) Dimensionless displacement in the vertical plane; (b) Dimensionless displacement in the horizontal
plane; (c) Dimensionless frequency in the vertical plane; (d) Dimensionless frequency in the horizontal
plane. Legend: Filament 1 (white 4); Filament 2 (red �); Filament 3 (green �); Filament 4 (blue #);
Filament 5 (black 5).

A condensed representation of the observed filaments response is presented in the dynamics map
provided in Figure 12a, where the observed filament dynamics is displayed as function of the filament
length and Reynolds number, and in the stability map in Figure 12b, where the observed filament
dynamics is displayed as function of the Scruton number Sc and reduced velocity U∗:

Sc =
2mζ1

ρL2 (13)

U∗ =
U
f1L

(14)

where f1 and ζ1 are the first-mode natural vibration frequency and damping ratio of the filament (values
provided in Table 2). Whilst the Scruton number can be regarded as a dimensionless representation of
the filament damping, the reduced velocity be regarded as the ratio of the time-scale of the structural
movement to the time-scale of the flow. As noted previously, the natural vibration frequency and the
damping ratio of the filaments depend on the filament length. Accordingly, the filament length is used
here as the representative linear dimension in place of the filament diameter, which is normally used
with cross-flow-induced vibration. Even though the information conveyed by the dynamic map and the
stability map in Figure 12 is essentially the same, the former is of more direct use for numerical methods
validation, whereas the latter is more frequently used in the fluid-structure interaction literature.
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Figure 12. Condensed representation of the observed structural response of the flexible
filaments. (a) Dynamic map; (b) Stability map. Legend: SD = static deflection;
SAV = small-amplitude vibration; LCO = large-amplitude limit-cycle oscillation with two-dimensional
trajectory; LCO-8 = large-amplitude limit-cycle oscillation with three-dimensional figure-eight-shaped
trajectory; NPO = large-amplitude non-periodic oscillation; TR = transition.

It is evident that the observed filament responses are well separated and clustered in the dynamic
and stability maps in Figure 12, thereby indicating that the structural response of the filaments is
controlled by the Reynolds number (i.e., by the air flow velocity) and by the length of the filament or,
equivalently, by the reduced velocity and Scruton number. The filament length clearly plays a central
role in the structural response: as the filament length decreases the damping increases and so does
the Scruton number, so that the excitation needed to trigger a transition or sustain a large-amplitude
response increases, as it is evident in the corresponding increase of the Reynolds number and reduced
velocity. For the shortest Filament 6, in particular, the damping is large enough to suppress any dynamic
response within the flow velocity range explored, so that the structural response is reduced to a static
deflection. The results highlight the importance of the filament damping ratio, which is modulated
by the filament length, as a controlling parameter for the structural response. The importance of the
filament length was already noted previously, when discussing the mode-1 natural vibration frequency
and damping which also depend on the filament length. Finally, as it is evident from the reduced
velocity values in Figure 12b (from about 5 up to about 130), the time-scale of the structure is much
bigger than that of the flow, thereby indicating that the flow changes faster than the movement of the
filaments. The interaction between the flow and the structure is not one-way, however, because the
structural movement is large enough to significantly modify the flow field. The present results are in
qualitative agreement with documented observations of flexible filaments of circular cross-section in air
flow [32,33]. A notable difference is that the large-amplitude limit-cycle oscillation where the filament
free-end describes a figure-eight-shaped trajectory documented here was not observed with circular
cross-section filaments, which suggests that reducing the symmetry of the filament cross-section may
yield a richer dynamic.

4. Conclusions

We presented results of an experiment specifically designed for the validation of numerical
methods for aeroelasticity and FSI problems, and intended to complement and extend available
benchmark validation test cases. The experiments were conducted in a wind tunnel, using flexible
filaments of rectangular cross-section and varying length whose dynamics was recorded via fast-video
imaging. The Reynolds number range covered corresponds to laminar and mildly turbulent flow
conditions. The structural response of the filaments is modulated by the Reynolds number (i.e., by the
air flow velocity) and by the filament length, and includes: (1) static reconfiguration, (2) small-amplitude
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vibration, (3) large-amplitude limit-cycle periodic oscillation, and (4) large-amplitude non-periodic
motion. The damping of the flexible filaments, which is controlled by the filament length, plays a central
role in the structural response. The experimental results presented herein are valuable for the validation
of numerical methods for aeroelasticity and, more generally, for fluid-structure interaction applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-5521/5/2/90/s1,
Raw wind speed time series (unit m/s) from flow characterization stored in comma-separated value file
‘free_stream_raw_data.dat’. Each column of csv file ‘free_stream_raw_data.dat’ corresponds to a fixed wind speed
setting (in m/s). Sampling time: 5 seconds; sampling frequency: 20 kHz.

Author Contributions: Conceptualization, J.S.-L. and A.C.; experiments, J.S.-L.; formal analysis, J.S.-L. and A.C.;
writing—original draft preparation, J.S.-L. and A.C.; writing—review and editing, J.S.-L. and A.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Andrew Kennaugh from the Department of Mechanical, Aerospace and Civil Engineering of
the University of Manchester (UK) is gratefully acknowledged for his technical support.
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Figure A1. Displacements and flapping frequencies measured for Filament 2. (a) Displacement
in the vertical plane; (b) Displacement in the horizontal plane; (c) Frequency in the vertical plane;
(d) Frequency in the horizontal plane.
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Figure A8. Reconstructed attractor in phase-space for the total displacement of the free-end of Filament
3 at different Reynolds number values.
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Figure A9. Displacements and flapping frequencies measured for Filament 4. (a) Displacement
in the vertical plane; (b) Displacement in the horizontal plane; (c) Frequency in the vertical plane;
(d) Frequency in the horizontal plane.
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Figure A10. Trajectory of the free-end of Filament 4 as seen by an observer located downstream of the
filament and facing the flow (Y-Z plane in Figure 2c).
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Figure A13. Displacements and flapping frequencies measured for Filament 5. (a) Displacement
in the vertical plane; (b) Displacement in the horizontal plane; (c) Frequency in the vertical plane;
(d) Frequency in the horizontal plane.
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