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Abstract: The second-order velocity structure function statistics have been analysed using a DNS
database of statistically planar turbulent premixed flames subjected to unburned gas forcing.
The flames considered here represent combustion for moderate values of Karlovitz number from
the wrinkled flamelets to the thin reaction zones regimes of turbulent premixed combustion. It has
been found that the second-order structure functions exhibit the theoretical asymptotic scalings in
the dissipative and (relatively short) inertial ranges. However, the constant of proportionality for
the theoretical asymptotic variation for the inertial range changes from one case to another, and this
value also changes with structure function orientation. The variation of the structure functions for
small length scale separation remains proportional to the square of the separation distance. However,
the constant of proportionality for the limiting behaviour according to the separation distance
square remains significantly different from the theoretical value obtained in isotropic turbulence.
The disagreement increases with increasing turbulence intensity. It has been found that turbulent
velocity fluctuations within the flame brush remain anisotropic for all cases considered here and this
tendency strengthens towards the trailing edge of the flame brush. It indicates that the turbulence
models derived based on the assumptions of homogeneous isotropic turbulence may not be fully
valid for turbulent premixed flames.

Keywords: structure function; Kolmogorov scaling; premixed turbulent flames; direct
numerical simulations

1. Introduction

Velocity structure functions (SFs) take a central role in turbulence theory [1–6], where they are
mostly used to analyse the scale invariance of fully developed turbulence, characterized by a sequence
of scaling exponents [7]. They have been measured up to the eighteenth order [4], primarily to establish
the dependence on the order of the inertial range power-law exponent and to deduce information about
the energy transfer distribution in the inertial range. Velocity (and scalar) SFs have been considered in
a laboratory environment (see [8] for a summary of experimental results in various flow configurations)
for a range of Reynolds numbers [8,9], but also for atmospheric shear flows [9] or in astrophysics [10].
Kolmogorov [1] developed his theory of locally homogeneous, isotropic turbulence by analyzing
the second-order velocity SFs which forms the basis of many models used to close turbulence, thus
second-order SFs play a fundamentally important role in understanding turbulence. Although SFs are
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widely used in the turbulence community to analyse experimental or numerical data, its application
has been limited mostly to the analysis of non-reacting turbulent fluid flows.

The heat release rate due to combustion gives rise to flame normal acceleration and a
significant magnitude of mostly positive dilatation rate due to thermal expansion. These effects
lead to an augmentation of turbulence intensity within the turbulent premixed flame brush under
some conditions, whereas turbulence decays across the flame brush under some other conditions.
Furthermore, the flow field in turbulent premixed flames cannot be considered homogeneous and
isotropic because of thermal expansion and preferential flow acceleration locally normal to the flame.
The theoretical relations derived for homogeneous isotropic non-reacting turbulence are expected
to be rendered invalid in premixed turbulent combustion. This suggests that the second-order SF
behaviours in turbulent premixed flames can be significantly different from non-reacting flows.

SFs are commonly studied in conjunction with the correlation functions and their energy
spectra [2]. Kolmogorov’s famous −5/3 scaling law for the turbulent kinetic energy spectrum in
the inertial range (E(κ) ∝ κ−5/3 with E(κ) and κ being the turbulent kinetic energy spectrum and
wavenumber, respectively) is equivalent to the 2/3 scaling law for second-order structure functions
(i.e., SF ∝ r2/3 with r being the separation distance) in physical space [1]. Since the turbulence
is inherently inhomogeneous in turbulent premixed flames due to density change and preferred
directionality associated with flame normal acceleration, the energy spectrum evaluation can be a
challenging task. Although density-weighted correlation functions have been proposed [11], there are
remaining questions regarding the differences in the turbulent kinetic energy spectrum between
turbulent premixed flames and non-reacting flows [11]. As SFs depend only on velocity differences
separated by spatial distances and do not rely upon Fourier transform to present the information in the
spectral space, they have the potential to be more accessible than energy spectra to analyse turbulent
flow structures in premixed turbulent combustion [12–15].

To date, the structure function behaviors in premixed flames have received relatively limited
attention [12–15]. Sabelnikov et al. [12,14] analysed second-order SFs for weakly turbulent premixed
flames in the corrugated flamelets regime [16] and analysed the SFs conditional upon different
events (e.g., two points in reactants, two points in products, two points in the flame, one point
in reactants and the other point in products). Recently, Brearley et al. [15] extended the analysis of
Sabelnikov et al. [12,14] for flames belonging to the thin reaction zones regime [16] and revealed that
the effects of heat release, which play key roles in the wrinkled flamelets regime, survive even for high
Karlovitz number conditions in the thin reaction zones regime. In another study, Whitman et al. [13]
analysed SFs conditioned on the flame normal and tangential directions for high turbulence intensities
representative of high Karlovitz number, thin reaction zones regime combustion and indicated that
Kolmogorov-type SF scaling laws might retain some validity in turbulent premixed flames. However,
the scaling of the second-order velocity SFs within the flame brush belonging to different regimes of
combustion are yet to be analysed in detail, and thus are investigated in this paper. Furthermore, the SF
scaling constants for small and moderate separations associated with the inertial range according
to Kolmogorov’s theory [1] for homogeneous, isotropic turbulence have not yet been evaluated in
turbulent premixed flames. Therefore, the differences in statistical behaviours of the second-order
SFs in a turbulent premixed flame brush in comparison to the well-known asymptotic behaviours
for non-reacting homogeneous isotropic turbulence are of fundamental importance from a modelling
perspective, which motivates the current analysis.

A Direct Numerical Simulation (DNS) database [15,17,18] of statistically planar flames ranging
from the wrinkled flamelet to thin reaction zone regimes of premixed combustion has been considered
for this analysis. The unburned gas turbulence is subject to isotropic forcing, which ensures desired
values of both turbulence intensity and integral length scale upstream of the flame.
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2. Mathematical Background and Numerical Implementation

The second-order SFs are defined as [2,3]:

Dij(x, r, t) = 〈[ui(x + r, t)− ui(x, t)][uj(x + r, t)− uj(x, t)]〉 (1)

where r is the vector separating the points x and x + r with magnitude r = |r|, t is time and 〈. . . 〉
refers to a suitable averaging operation. Equation (1) signifies the second moment of the velocity
difference corresponding with eddies of size r. Numerous expressions can be derived from Eq.
(1) for different flow configurations. For example, Dij(x, r, t) is independent of x in homogeneous
turbulence, therefore Dij(r, t) = 2〈u′iu′j〉 − Rij(r, t) − Rji(r, t) where u′i = ui − 〈ui〉 is the velocity
fluctuation in direction i and Rij(r, t) = 〈u′i(x + r, t)u′j(x, t)〉 is the two-point correlation tensor. Rij(r, t)
approaches zero for r � `, with ` being the integral length scale. Consequently, when r � `,
Dij = 2〈u′iu′j〉 in homogeneous turbulence which can be simplified further to Dij = 2u′2δij in isotropic

turbulence, where u′ =
√
〈u′iu′i〉/3. Under homogeneous, incompressible turbulence, Dij(r, t) can

be expressed completely in terms of the longitudinal SF DLL(r, t) = 〈[uL(x + r, t) − uL(x, t)]2〉 as
Dij(r, t) = DTT(r, t)δij + [DLL(r, t)− DTT(r, t)]rirj/r2, where the transverse SF DTT(r, t) = 〈[uT(x +

r, t) − uT(x, t)]2〉 for homogeneous, incompressible turbulence is given by DTT(r, t) = DLL(r, t) +
0.5r[∂DLL(r, t)/∂r], where uL = (u · r)r/r2 is the component of the velocity in the direction of r,
and uT = u − uL is the velocity vector normal to r. According to Kolmogorov’s inertial range
theory [1], one obtains DLL(r, t) = CL〈εr〉2/3 and DTT(r, t) = 4DLL(r, t)/3 for η < r < `, with the
universal constant CL ≈ 2.0 [2]. The kinetic energy dissipation rate is ε = µ(∂ui/∂xj)(∂ui/∂xj)/ρ,
with µ and ρ being dynamic viscosity and density, respectively.

In premixed flames, the velocity field cannot be regarded as statistically homogeneous or
isotropic and the assumption of incompressibility is invalid. Thus, it is not straightforward to have
one-to-one correspondence between the correlation functions and second-order SFs in premixed
flames. However, it is worthwhile to consider the relations based on non-reacting homogeneous
isotropic turbulence so that it can be ascertained if DLL(r, t)/〈εr〉2/3 and DTT(r, t)/〈εr〉2/3 remain
independent of r for η < r < ` where η = [µ3/ρ3〈ε〉]1/4 is the Kolmogorov length scale. Furthermore,
it is important to evaluate if the ratios DLL(r, t)/〈εr〉2/3 and DTT(r, t)/〈εr〉2/3 are equal to CL and
4CL/3 according to Kolmogorov’s theory [1] in turbulent reacting flows. For small separation distances
(i.e., r < η), one obtains Dij ∝ (∂ui/∂xk)(∂uj/∂xl)rkrl , which implies that DLL = C′L[ρ〈ε〉/µ]r2 and
DTT = 2C′L[ρ〈ε〉/µ]r2 with C′L = 1/15 for homogeneous isotropic turbulence [1,2].

The simulations comprising the current DNS database have been carried out using the
well-known DNS code SENGA+ [19]. The simulation configuration consists of inlet and outlet
boundaries in the direction of mean flame propagation, with the transverse boundaries being
periodic. A tenth-order finite difference scheme has been used to calculate the spatial derivatives
for the internal grid points. The scheme gradually reduces to second-order and one-sided at the
non-periodic boundaries. An explicit, third-order Runge-Kutta scheme has been used for time
advancement. The mean inlet velocity Umean has been gradually adjusted to match the turbulent
flame speed for each case so the flame remains statistically stationary within the computational
domain. The turbulent flame speed values are provided elsewhere [17] for this database and thus
are not repeated here. The outflow boundary is assumed to be partially non-reflecting. Table 1
shows, from left to right, the root-mean-square turbulent velocity fluctuation in the unburned mixture
normalised by the unperturbed laminar flame speed u′/SL, the integral length scale normalised
by thermal flame thickness `/δth, the Damköhler number Da = `SL/u′δth, the Karlovitz number
Ka = (u′/SL)

3/2(`/δth)
−1/2, the heat release parameter τ = (Tad − T0)/T0, the physical size of the

domain in terms of the flame thickness, the equidistant Cartesian grid used for discretization and finally,
the corresponding regime of premixed combustion. In these equations, δth = (Tad − T0)/ max |∇T|L
is the thermal flame thickness with Tad, T0 and T being the adiabatic flame temperature, the unburned
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gas temperature and dimensional temperature respectively. The Cartesian grid provides at least 10 grid
points within δth and 1.5 grid points within the Kolmogorov length scale η for all cases. The turbulence
intensity u′/SL and integral length scale `/δth are maintained upstream of the flame using a modified
bandwidth filtered physical space forcing method [20]. The cases considered in this analysis range
from the wrinkled flamelet regime to the thin reaction zones regime, as shown in the Borghi-Peters
diagram in Figure 1 [16]. In the present analysis, the chemical reaction is simplified by a single-step
Arrhenius type reaction for the purpose of computational economy. As the analysis focuses on the
velocity statistics, the simplification related to the chemical reaction is not expected to play a major role.
This follows from the fact that the fluid velocity is affected by thermal expansion arising from heat
release, and not by the intermediate steps of a chemical reaction. For example, the enstrophy transport
characteristics obtained from simplified chemistry DNS [21,22] of turbulent premixed flames have
been found to be qualitatively consistent with detailed chemistry results [23,24]. Thus, the findings
regarding the SF statistics are likely to be qualitatively valid in the presence of detailed chemistry
and transport. The Lewis number of all the species is taken to be unity and the specific heat of all
the species is considered to be identical for the purpose of simplicity. These assumptions do not
alter the qualitative nature of the heat release characteristics in turbulent premixed flames [25,26]
and the SF statistics are unlikely to be affected by these assumptions. The reaction progress variable
is defined using the suitably normalised reactant mass fraction YR by c = (YR0 − YR)/(YR0 − YR∞),
where the subscripts 0 and ∞ refer to the quantity in the unburned and burned mixture, respectively.
The simulations were continued until the turbulent kinetic energy k, integral length scale `, turbulent
flame speed ST and flame surface area AT reach statistically stationary values. This duration was
found to be longer than the throughpass time (i.e., tsim > Lx/Umean) and 10 eddy turn over times (i.e.,
tsim > 10`/u′) for each case. The contours of c for the DNS database considered have been provided
elsewhere [17,18] and are not repeated here.

Table 1. The properties of the DNS database considered in this analysis.

Case u′/SL `/δth Da Ka τ Domain Grid Regime

A 1.0 3.0 3.00 0.577 4.5 79.5δth×(39.8δth)
2 800×4002 wrinkled flamelets

B 2.5 3.0 1.20 2.28 4.5 79.5δth×(39.8δth)
2 800×4002 corrugated flamelets

C 5.0 3.0 0.600 6.45 4.5 79.5δth×(39.8δth)
2 800×4002 thin reaction zones

D 7.5 3.0 0.400 11.9 4.5 79.5δth×(39.8δth)
2 800×4002 thin reaction zones

E 10 3.0 0.300 18.3 4.5 79.5δth×(39.8δth)
2 800×4002 thin reaction zones

In the case of statistically planar flames, the mean direction of propagation is parallel with the
x1-direction (right to left). This results in the x2–x3 plane at a given x1 location to be statistically
homogeneous. Thus, the analysis of the SFs has been limited to two sets of two points xA =

{xAB, yA, zA} and xB = {xAB, yA+ry, zA+rz}. These points are located on the same transverse
plane with coordinate xAB separated by the distance vector r = {0, ry, rz}. The transverse SF
D11,T(r) is calculated by considering (uB,1 − uA,1)

2 and for two set of points given by xA = {x, y, z};
xB = {x, y+r, z} and by xA = {x, y, z}; xB = {x, y, z+r}. The transverse SFs D22,T(r) and
D33,T(r) are evaluated by considering (uB,2 − uA,2)

2 and (uB′ ,3 − uA′ ,3)
2 respectively based on points

xA = {x, y, z}; xB = {x, y, z+r} and xA′ = {x, y, z}; xB′ = {x, y+r, z}, respectively. Here, the notation
uB,1 signifies the velocity component u1 at point xB. Finally, the longitudinal SFs D22,L(r) and
D33,L(r) are calculated by evaluating (uB,2 − uA,2)

2 and (uB′ ,3 − uA′ ,3)
2 respectively based on points

xA = {x, y, z}; xB = {x, y+r, z} and xA′ = {x, y, z}; xB′ = {x, y, z+r}. This analysis considers
D23,T(r) = 0.5[D22,T(r) + D33,T(r)] and D23,L(r) = 0.5[D22,L(r) + D33,L(r)] to account for the small
departure from isotropy in the homogeneous directions (not to be confused with the cross-SF based on
u2 and u3).
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Figure 1. The cases considered in this analysis on a Borghi-Peters diagram.

3. Results and Discussion

The variations of {D11,T/(τSL)
2}(r/δth)

−2/3, {D23,T/(τSL)
2}(r/δth)

−2/3 and {D23,L/(τSL)
2}

(r/δth)
−2/3 for all cases at the spatial location corresponding to the Reynolds averaged reaction progress

variable c = 0.5 (where the overbar suggests a Reynolds averaging operation) are exemplarily shown in
Figure 2a–c respectively, where the SFs are conditionally averaged on bins of reaction progress variable
c for one of the points (i.e., xB or xB′) in question. This suggests that the samples associated with small
values of c in Figure 2 correspond to the events where xB or xB′ is in reactants (e.g., c ≤ 0.05) and xA or xA′
might be either in reactants or in products (e.g., c ≥ 0.95) or in the flame (e.g., 0.05 < c < 0.95). Similarly,
large values of c in Figure 2a–c include samples from the events where xB or xB′ is in the products and xA
or xA′ might be either in reactants or in products or within the flame.

The lines corresponding to the Kolmogorov scaling (i.e., {D11,T/(τSL)
2}(r/δth)

−2/3 =

(4CL/3)ε̃2/3δ2/3
th /(τSL)

2, {D23,T/(τSL)
2}(r/δth)

−2/3 = (4CL/3)ε̃2/3δ2/3
th /(τSL)

2 and {D23,L/(τSL)
2}

(r/δth)
−2/3 = CL ε̃2/3δ2/3

th /(τSL)
2 and the limiting condition for small separation distances

(i.e., {D11,T/(τSL)
2}(r/δth)

−2/3 = (2C′L)ρε̃δ2/3
th r4/3/µ(τSL)

2, {D23,T/(τSL)
2}(r/δth)

−2/3 =

(2C′L)ρε̃δ2/3
th r4/3/µ(τSL)

2 and {D23,L/(τSL)
2}(r/δth)

−2/3 = C′Lρε̃δ2/3
th r4/3/µ(τSL)

2 are shown by
black dash and grey dash-dot lines, respectively. The qualitative behaviours of the SFs for other
c values remain similar and thus are not shown for the sake of brevity.
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(a) (b) (c)

Figure 2. Variations of {AD11,T/(τSL)
2}(r/δth)

−2/3, {AD23,T/(τSL)
2}(r/δth)

−2/3 and
{AD23,L/(τSL)

2}(r/δth)
−2/3 (a–c) with r/δth for cases A–E (from bottom to top) at c = 0.5

where A = 1, 102, 104, 106 and 108 for cases A–E respectively. The analytic r2 scaling and the
Kolmogorov scaling r2/3 are shown by grey dashed lines and black dash-dot lines respectively and the
constants of proportionality used for these lines are shown in Figure 5. The colour bar indicates the
values of c for one of the points (i.e., xB or xB′ ) in question for the given value of c. The coefficient A is
introduced for the convenience of presentation.

Figure 2 shows that the peak value of the SFs {Dij/(τSL)
2}(r/δth)

−2/3 is obtained around
r/δth ≈ 2.0–4.0 for all cases considered here. As expected, {D11,T/(τSL)

2}(r/δth)
−2/3,

{D23,T/(τSL)
2}(r/δth)

−2/3 and {D23,L/(τSL)
2}(r/δth)

−2/3 all deviate from the Kolmogorov scaling,
indicated by a plateau, for separation distances r/δth > `/δth, whereas for small separation distances
these SFs exhibit reasonable agreement with a Dij ∝ r2 scaling. The departure of the structure functions
from the Kolmogorov scaling for the inertial range is not clearly visible in the previous results by
Whitman et al. [13] due to a limited range of r/δth values. Note that Whitman et al. [13] considered
the SF behaviours in the local normal and tangential directions of flamelets, whereas this analysis
focuses on the SFs in the normal and tangential directions of the mean flame brush. It has been
demonstrated elsewhere [23,27] that the relative strength of thermal expansion due to chemical heat
release diminishes with increasing Karlovitz number, especially for high Karlovitz number within
the thin reaction zones and the distributed reaction zones regimes of turbulent premixed combustion.
Furthermore, turbulence forcing was used for the whole of the domain in Ref. [13], whereas in this
analysis the forcing term is proportional to (1− c) [20] to allow for the evolution of turbulence across
the flame without the interference of numerical forcing. Despite these differences, the SFs, in particular,
for cases C–E are in good agreement with the results presented in [13].

Note that substantial departures from the Kolmogorov scaling have been found previously
even for non-reacting flows due to internal intermittency especially for low turbulent Reynolds
numbers [5,28–30]. In order to better understand the observations made from Figure 2, the variations
of Favre-averaged turbulent kinetic energy k̃ = ρu′′i u′′i /2ρ normalised by its value at c = 0.001
(representing the leading edge of the flame brush) are shown for cases A–E as functions of
Reynolds-averaged reaction progress variable c in Figure 3. The values of k̃c=0.001/S2

L are provided
in Table 2 for the purpose of quantitative comparison between the different cases. Figure 3 shows
that k̃ increases significantly from the leading edge and decays only close to the trailing edge of the
flame brush in case A, whereas the augmentation of k̃ from the leading edge of the flame brush in
cases B and C is followed by a decay before another increasing trend is observed in the region of
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the flame brush where the effects of chemical reaction and heat release are significant (i.e., where
the probability of finding 0.5 ≤ c ≤ 0.9 remains significant) before turbulence decays towards the
product side of the flame brush. The augmentation of k̃ in the region of the flame brush where the
effects of heat release are significant weakens progressively from case B to case C. The turbulent kinetic
energy decays monotonically from the leading edge to the trailing edge of the flame brush in cases D
and E. The observations from Figure 3 indicate that turbulence is sustained for the major part of the
flame brush and it gets locally augmented within some parts of the flame brush in cases A, B and C
in decreasing order, whereas turbulence decays across the flame brush in cases D and E. Moreover,
Figure 2a–c reveal that the mean values of the SFs attain high levels for high values of c for cases A and
B, whereas cases C–E show the greatest value is attained at low values of c. These results agree with
those by Whitman et al. [13]. While the SFs seem to be ordered according to the value of c for cases C–E,
some SFs with different c value cross each other for case A. This general behaviour can be deduced
from the longitudinal SF D11,L of a laminar 1D flame, as shown in Figure 4, and by noting that the local
flame normal is not aligned with the mean direction of flame propagation in Figure 2a–c, such that for
example D11,T contains samples of the longitudinal 1D SF. Figure 4 shows that for small separation
distances, the magnitude of D11,L increases with increasing c before attaining a maximum around
c ≈ 0.5. Moreover, some of the SFs starting from a higher value of c intercept the SFs starting from
a lower value of c. Finally, it is noted that case A with a low u′/SL belongs to the wrinkled flamelet
regime and case B shows a behaviour in-between case A and cases C–E. For r/δth � `/δth, the ordering
of all SF magnitudes for all cases is in agreement with the approximation Dij = 2〈u′iu′j〉 [15] together

with the increasing, respectively decreasing, trends of k̃ as reported in Figure 3. The inertial range
plateau in cases A and B extends to higher values of r/δth, presumably caused by the relatively strong
effects of heat release and the associated elongation of flow structures.

Figure 4: Variations of turbulent kinetic energy normalised by its value at c = 0.001 k̃/k̃c=0.001 with Reynolds
averaged combustion progress variable c for cases (a–e) A–E

Figure 3. Variations of k̃ normalised by its value at c = 0.001 with c for cases A–E.

Table 2. Values of k̃c=0.001/S2
L and ε̃c=0.001δth/S3

L for cases A–E.

Case k̃c=0.001/S2
L ε̃c=0.001δth/S3

L

A 0.727 0.132
B 6.31 4.18
C 20.0 54.5
D 87.0 209
E 124 356



Fluids 2020, 5, 89 8 of 12

Figure 4. Variations {D11,L/(τSL)
2}(r/δth)

−2/3 with r/δth for a laminar 1D flame for SFs starting from
different c values. The analytic r2 scaling is shown by grey dashed lines.

The variation of the proportionality parameters (i.e., CL = {3D11,T/4}(ε̃r)−2/3, C′L =

{D11,Tµ/2ρε̃}(r)−2; CL = {3D23,T/4}(ε̃r)−2/3, C′L = {D23,Tµ/2ρε̃}(r)−2 and CL = {D23,L}(ε̃r)−2/3,
C′L = {D23,Lµ/ρε̃}(r)−2) corresponding to the dash and dash-dot lines showing the limiting behaviours
in Figure 2 for cases A–E are shown in Figure 5, which indicates that both CL and C′L values are different
for D11,T , D23,T and D23,L, and these values change from one case to another. However, for all cases
CL remains of the order of 1.5 (which is close to the theoretical value of 2.0), whereas C′L remains
significantly smaller than 1/15 for all cases considered here and C′L decreases from case A to case E.
The departures from Kolmogorov scaling can be explained in the following manner. The Kolmogorov
scaling is applicable for homogeneous isotropic turbulence in the inertial range. However, the inertial
range possibly is not fully observed for these cases because of the moderate values of turbulent
Reynolds number and the isotropy is disturbed by the flow acceleration within the flame. In addition
to that, the dissipation rate ε̃ variation within these flames is significantly affected by the heat release,
which can be substantiated from Figure 6 where the variations of ε̃ normalised by its value at c = 0.001
representing the leading edge of the flame brush are shown for cases A–E as functions of c. The values
of ε̃c=0.001δth/S3

L are also provided in Table 2 for the purpose of quantitative comparison. A comparison
between Figures 3 and 6 reveals that the variation of ε̃ within the flame brush is qualitatively similar to
that of k̃. This suggests that the thermal expansion within the flame brush has a significant influence on
ε̃, which is absent in the classical turbulence theory by Kolmogrorov [1]. Furthermore, the nature of the
underlying flow within the flame brush can be characterised with the help of the Lumley triangle [2].
The Lumley triangles for the limiting cases A and E are exemplarily shown in Figure 7 where ξ and η

are given by
6ξ3 = bijbjkbki; 6η2 = bijbji (2)

where bij = ũ′′i u′′j /2k̃ − δij/3 is the normalised Reynolds stress anisotropy tensor. Figure 7 shows
that the underlying turbulence within the flame brush is anisotropic for cases A and E, with cases
B, C and D following the same trend. Though, the extent of anisotropy in the unburned gas side
of the flame brush decreases with increasing u′/SL. However, turbulence becomes anisotropic for
all cases within the flame brush, and this tendency strengthens with increasing c within the flame
brush. This indicates that the limiting conditions based on homogeneous isotropic turbulence may not
be applicable for the second-order SFs within the flame brush for moderate values of Ka. This also
indicates that the assumption of isotropy is rendered invalid in the modelling for turbulent premixed
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flames for moderate values of Karlovitz number. This is consistent with recent findings in the context
of the closures of sub-grid scalar flux [31] and stresses [18,32] in turbulent premixed combustion.

(a) D11,T

(b) D23,T

(c) D23,L

Figure 5: Variations of the proportionality parameters (i.e. CL = {D23,L}(ε̃r)−2/3,
C ′L = {D11,Tµ/ρε̃}(r)−2; CL = {3D11,T/4}(ε̃r)−2/3, C ′L = {3D11,Tµ/4ρε̃}(r)−2); CL =
{3D23,T/4}(ε̃r)−2/3, C ′L = {3D23,Tµ/4ρε̃}(r)−2

Figure 5. Variations of the proportionality parameters (i.e., CL = {3D11,T/4}(ε̃r)−2/3 , C′L =

{D11,Tµ/2ρε̃}(r)−2; CL = {3D23,T/4}(ε̃r)−2/3, C′L = {D23,Tµ/2ρε̃}(r)−2 and CL = {D23,L}(ε̃r)−2/3,
C′L = {D23,Lµ/ρε̃}(r)−2) for cases A–E for (a) D11,T , (b) D23,T , (c) D23,L, respectively. The horizontal
lines show the asymptotic values based on Kolmogorov scaling (i.e., CL = 2.0) and homogeneous
isotropic turbulence (i.e., C′L = 1/15) assumption for CL and C′L, respectively.
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Figure 6: The turbulent kinetic energy dissipation normalised by its value at c = 0.001 against Reynolds
averaged combustion progress variable c

Figure 6. Variations of normalised ε̃ normalised by its value at c = 0.001 with c for cases A–E.

Figure 7. Lumley triangle on the plane of the invariants ξ and η of the Reynolds stress anisotropy
tensor for case A (blue) and E (red) for different values of c. 1C, 2C and iso are the one component limit,
two component limit and isotropic respectively.

4. Conclusions

The statistical behaviours of second-order velocity SFs have been analysed based on a DNS
database of statistically planar turbulent premixed flames. The simulation parameters have been
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chosen such that the cases considered here span from the wrinkled flamelets to the thin reaction zones
regimes of turbulent premixed combustion. The second-order SFs for these flames show, especially
for high values of turbulence, the theoretical scalings but considerable departures from the expected
constants of proportionality. These departures of the constants are more prominent in the flames with
higher values of u′/SL among the cases considered here. Moreover, the constant of proportionality
CL = Dij〈ε̃r〉−2/3 for the theoretical asymptotic (i.e., Dij ∝ 〈ε̃r〉2/3) variation changes from one case
to another although it has roughly the correct order of magnitude. For short separation distances,
the second-order velocity SFs have been found to be proportional to r2 (i.e. Dij∝ r2) but the constants
of proportionality C′L = {Dijµ/ρε̃}(r)−2 are significantly smaller than 1/15, which is obtained based
on the assumption of homogeneous isotropic turbulence. It has been demonstrated based on the
Lumley triangle that the underlying turbulent flow within the flame brush is highly anisotropic for all
cases within the flame brush and this tendency strengthens with increasing c within the flame brush.
This indicates that the assumptions of homogeneous isotropic turbulence may not be accurate for
turbulent combustion modelling for moderate values of Karlovitz number.

The present analysis has been carried out with simple chemistry and molecular transport.
Although these assumptions are unlikely to alter the qualitative nature of the findings, further
investigations in the presence of detailed chemistry and transport will be necessary for a more
comprehensive understanding of the SF statistics in turbulent premixed flames.

Author Contributions: Conceptualization, P.B., U.A., N.C. and M.K.; methodology, P.B., U.A. and N.C.; formal
analysis, P.B., U.A. and N.C.; writing—original draft preparation, N.C., P.B. and M.K.; writing—review and
editing, U.A. and N.C.; supervision, N.C.; funding acquisition, N.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Engineering and Physical Sciences Research Council, grant number
EP/R029369/1.

Acknowledgments: The authors are grateful to the Archer and Rocket HPC services for computational support

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large
Reynolds number. Dokl. Akad. Nauk SSSR 1941, 30, 299–303.

2. Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
3. Frisch, U. The Legacy of A. N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995.
4. Anselmet, F.; Gagne, Y.; Hopfinger, E.J.; Antonia, R.A. High-order velocity structure functions in turbulent

shear flows. J. Fluid Mech. 1984, 140, 63–89. [CrossRef]
5. Sreenivasan, K.R.; Antonia, R. The phenomenology of small scale turbulence. Annu. Rev. Fluid Mech. 1997,

29, 435–472. [CrossRef]
6. Lohse, D.; Xia, K.-Q. Small-Scale Properties of Turbulent Rayleigh-Bénard Convection. Annu. Rev. Fluid Mech.

2010, 42, 335–364. [CrossRef]
7. Huang, Y.X.; Schmitt; F.G.; Lu, Z.M.; Fougairolles, P.; Gagne, Y.; Liu, Y.L. Second-order structure function in

fully developed turbulence. Phys. Rev. E 2010, 82, 026319. [CrossRef]
8. Arneodo, A.; Baudet, C.; Belin, F.; Benzi, R.; Castaing, B.; Chabaud, B.; Chavarria, R.; Ciliberto, S.; Camussi, R.;

Chillà, F.; et al. Structure functions in turbulence, in various flow configurations, at Reynolds number
between 30 and 5000, using extended self-similarity. Europhys. Lett. 1996, 34, 411–416. [CrossRef]

9. Antonia, R.A.; Satyaprakash, B.R.; Chambers, A.J. Reynolds number dependence of velocity structure
functions in turbulent shear flows Phys. Fluids 1982, 25, 29–37.

10. Heyer, M.H.; Brunt, C.M. The Universality of Turbulence in Galactic Molecular Clouds. Astrophys. J. 2004,
615, L45–L48. [CrossRef]

11. Kolla, H.; Hawkes, E. R.; Kerstein, A.R.; Swaminathan, N; Chen, J.H. On velocity and reactive scalar spectra
in turbulent premixed flames. J. Fluid Mech. 2014, 754, 456–487. [CrossRef]

http://dx.doi.org/10.1017/S0022112084000513
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
http://dx.doi.org/10.1146/annurev.fluid.010908.165152
http://dx.doi.org/10.1103/PhysRevE.82.026319
http://dx.doi.org/10.1209/epl/i1996-00472-2
http://dx.doi.org/10.1086/425978
http://dx.doi.org/10.1017/jfm.2014.392


Fluids 2020, 5, 89 12 of 12

12. Sabelnikov, V.A.; Lipatnikov, A.N.; Nishiki, S.; Hasegawa, T. Application of conditioned structure functions
to exploring influence of premixed combustion on two-point turbulence statistics. Proc. Combust. Inst. 2019,
37, 2433–2441. [CrossRef]

13. Whitman, S.H.R.; Towery, C.A.Z.; Poludnenko, A.Y.; Hamlington, P.E. Scaling and collapse of conditional
velocity structure functions in turbulent premixed flames. Proc. Combust. Inst. 2019, 37, 2427–2435. [CrossRef]

14. Sabelnikov, V.A.; Lipatnikov, A.N.; Nishiki, S.; Hasegawa, T. Investigation of the influence of
combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions.
J. Fluid. Mech. 2019, 867, 45–76. [CrossRef]

15. Brearley, P.; Ahmed, U.; Chakraborty, N.; Lipatnikov, A. N. Statistical behaviours of conditioned two-point
second-order structure functions in turbulent premixed flames in different combustion regimes. Phys. Fluids
2019, 31, 115109. [CrossRef]

16. Peters, N. Turbulent Combustion; Cambridge University Press: Cambridge, UK, 2000.
17. Ahmed, U.; Chakraborty, N.; Klein, M. Insights into the bending effect in premixed turbulent combustion

using the Flame Surface Density transport. Combust. Sci. Technol. 2019, 191, 898–920. [CrossRef]
18. Ahmed, U.; Chakraborty, N.; Klein, M. On the stress-strain alignment in premixed turbulent flames. Sci. Rep.

2019, 9, 5092. [CrossRef] [PubMed]
19. Jenkins, K. W.; Cant, R. S. Direct numerical simulation of turbulent flame kernels. In Recent Advances in

DNS and LES: Proceedings of the Second AFOSR Conference, Rutgers, New Brunswick, NJ, USA, 7–9 June 1999;
Springer: Berlin/Heidelberg, Germany, 1999; pp. 191–202.

20. Klein, M.; Chakraborty, N.; Ketterl, S. A comparison of strategies for direct numerical simulation of
turbulence chemistry interaction in generic planar turbulent premixed flames. Flow Turbul. Combust. 2017,
99, 955–971. [CrossRef]

21. Chakraborty, N.; Konstantinou, I.; Lipatnikov, A. Effects of Lewis number on vorticity and enstrophy
transport in turbulent premixed flames. Phys. Fluids 2016, 28, 015109. [CrossRef]

22. Doan, N.A.K.; Swaminathan, N.; Chakraborty, N. Multiscale analysis of turbulence-flame interaction in
premixed flames. Proc. Combust. Inst. 2017, 36, 1929–1935. [CrossRef]

23. Papapostolou, V.; Wacks, D.H.; Klein, M.; Chakraborty, N.; Im, H.G. Enstrophy transport conditional on local
flow topologies in different regimes of premixed turbulent combustion. Sci. Rep. 2017, 7, 11545. [CrossRef]

24. Ahmed, U.; Doan, N.A.K.; Lai., J.; Klein, M.; Chakraborty, N.; Swaminathan, N. Multiscale analysis of
head-on quenching premixed turbulent flames. Phys. Fluids 2018, 30, 105102. [CrossRef]

25. Poinsot, T.; Echekki, T.; Mungal, M.G. A study of the laminar flame tip and implications for premixed
turbulent combustion. Combust. Sci. Technol. 1992, 81, 45–73. [CrossRef]

26. Louch, D.S.; Bray, K.N.C. Vorticity in unsteady premixed flames: Vortex pair–premixed flame interactions
under imposed body forces and various degrees of heat release and laminar flame thickness. Combust. Flame
2001, 125, 1279–1309. [CrossRef]

27. Wacks, D.H.; Chakraborty, N.; Klein, M.; Arias, P.G; Im, H.G. Flow topologies in different regimes of
premixed turbulent combustion: A direct numerical simulation analysis. Phys. Rev. Fluids 2016, 1, 083401.
[CrossRef]

28. Kolmogorov, A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a
viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 1962, 13, 82–85. [CrossRef]

29. Cao, N.; Chen, S.; Sreenivasan, K. R. Scaling of low-order structure functions in homogeneous turbulence.
Phys. Rev. Lett. 1996, 77, 3799–3802. [CrossRef]

30. Antonia, R.A.; Djenidi, L.; Danaila, L.; Tang, S.L. Small scale turbulence and the finite Reynolds number
effect. Phys. Fluids 2017, 29, 020715. [CrossRef]

31. Klein, M.; Kasten, C.; Chakraborty, N.; Gao, Y.; A-priori Direct Numerical Simulation assessment of sub-grid
scale stress tensor closures for turbulent premixed combustion. Comp. Fluids 2015, 122, 1–11. [CrossRef]

32. Klein, M.; Kasten, C.; Chakraborty, N.; Mukhadivev, N.; Im, H.G. Turbulent scalar fluxes in Hydrogen-Air
premixed flames at low and high Karlovitz numbers. Combust. Theor. Model. 2018, 22, 1–16. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.proci.2018.08.029
http://dx.doi.org/10.1016/j.proci.2018.07.010
http://dx.doi.org/10.1017/jfm.2019.128
http://dx.doi.org/10.1063/1.5124143
http://dx.doi.org/10.1080/00102202.2019.1577241
http://dx.doi.org/10.1038/s41598-019-41599-y
http://www.ncbi.nlm.nih.gov/pubmed/30911046
http://dx.doi.org/10.1007/s10494-017-9843-9
http://dx.doi.org/10.1063/1.4939795
http://dx.doi.org/10.1016/j.proci.2016.07.111
http://dx.doi.org/10.1038/s41598-017-11650-x
http://dx.doi.org/10.1063/1.5047061
http://dx.doi.org/10.1080/00102209208951793
http://dx.doi.org/10.1016/S0010-2180(00)00128-0
http://dx.doi.org/10.1103/PhysRevFluids.1.083401
http://dx.doi.org/10.1017/S0022112062000518
http://dx.doi.org/10.1103/PhysRevLett.77.3799
http://dx.doi.org/10.1063/1.4974323
http://dx.doi.org/10.1016/j.compfluid.2015.08.003
http://dx.doi.org/10.1080/13647830.2018.1468034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Background and Numerical Implementation
	Results and Discussion
	Conclusions
	References

