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Abstract: In the present study, the simulation of the three-dimensional (3D) non-isothermal,
non-Newtonian fluid flow of polymer melts is investigated. In particular, the filling stage of
thermoplastic injection molding is numerically studied with a solver implemented in the open-source
computational library OpenFOAM

R©
. The numerical method is based on a compressible two-phase

flow model, developed following a cell-centered unstructured finite volume discretization scheme,
combined with a volume-of-fluid (VOF) technique for the interface capturing. Additionally,
the Cross-WLF (Williams–Landel–Ferry) model is used to characterize the rheological behavior of the
polymer melts, and the modified Tait equation is used as the equation of state. To verify the numerical
implementation, the code predictions are first compared with analytical solutions, for a Newtonian
fluid flowing through a cylindrical channel. Subsequently, the melt filling process of a non-Newtonian
fluid (Cross-WLF) in a rectangular cavity with a cylindrical insert and in a tensile test specimen
are studied. The predicted melt flow front interface and fields (pressure, velocity, and temperature)
contours are found to be in good agreement with the reference solutions, obtained with the proprietary
software Moldex3D

R©
. Additionally, the computational effort, measured by the elapsed wall-time of

the simulations, is analyzed for both the open-source and proprietary software, and both are found
to be similar for the same level of accuracy, when the parallelization capabilities of OpenFOAM

R©

are employed.

Keywords: injection molding; filling stage; Cross-WLF model; Tait model; finite volume method;
openInjMoldSim; OpenFOAM

R©

1. Introduction

The ever-growing demand for plastic materials promoted an increase in the requirements of many
transformation processes, as happens for injection molding (IM), which is currently the most used
one to manufacture thermoplastic parts. IM allows producing parts with a wide range of geometries
and presents a return on investment in the medium/long term. Moreover, this transformation process
presents a high fixed cost, not only due to the molds used, but also due to the many process variables
that are necessary to control and optimize, to achieve the optimal processing conditions. It is exactly
due to these requirements that simulation started to gain more importance in IM, being currently
an indispensable step in the design phase to, among others, minimize the amount of experimental
iterations needed to manufacture a tool, to decrease the overall cost of development, and to be able to
produce parts with the desired geometrical and mechanical requirements.

There are several proprietary software solutions available for the simulation of the IM process
and related techniques [1]. However, in addition to the expensive licenses, the proprietary software
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usually cannot be adapted to specific user needs, thus preventing the access of small to medium sized
companies to these tools. Open-source free alternatives may allow turning around these limitations,
and, additionally, one can have access and adapt the source code. In the broad area of computational
fluid dynamics (CFD), OpenFOAM

R©
[2] became a very interesting alternative to proprietary software,

due to the range of available continuum mechanics solvers and an active development community.
In what concerns to polymer processing, OpenFOAM

R©
[2] has been used in different areas

like extrusion, blow molding, and to some extent, injection molding. In the extrusion area,
many OpenFOAM

R©
[2] based tools are already available; for example, the work in Habla et al. [3]

presented the development and validation of a model to compute the temperature distribution in the
calibration stage of extruded profiles. Later, the work in Rajkumar et al. [4] presented design guidelines
to support die designers to obtain balanced flow distributions. For the numerical modeling of IM,
Araújo et al. [5] provided a parallel 3D unstructured non-isothermal flow solver, with both polymer and
air being considered as incompressible fluids. Their results presented a good accuracy and reasonable
parallel efficiency and scalability. Making use of the OpenFOAM

R©
[2] computational library, the work

in Nagy and Steinbichler [6]introduced a framework of a compressible two-phase (air and polymer
melt) fluid model, with polymer-specific material models, for the description of the filling, packing,
and cooling stages. Although for simple geometries, they proved that the framework of solving the
compressible form of continuity, linear momentum, and energy equations resulted in a good agreement
between experimental observations and theoretical predictions. Other researchers also tried to succeed
in this task. Magalhães [7] in her Master Thesis implemented the energy equation, as well as the
Bird–Carreau rheological model in the interFoam solver available in the OpenFOAM

R©
[2] CFD library.

She studied the filling stage of the IM process and implemented a boundary condition, which allowed
the air to escape from the cavity, but not the polymer, as happens in real-life molds. With the use
of that boundary condition in the numerical simulations, she concluded that a higher percentage
of filled cavity was obtained. She also showed that differences in polymer and air viscosities were
some of the main reasons for the large number of instabilities observed in the numerical calculation
procedure. Recently, also aiming to model the IM process, the works in Mole et al. [8] and Krebelj and
Turk [9] implemented both the Cross-WLF and modified Tait models in the compressibleInterFoam
(a solver designated by openInjMoldSim). The objective was to simulate the filling and packing
stages, considering compressible flow, and applying appropriate models for the polymeric materials’
behavior. The solver was validated with a simple 2D demo test case for an amorphous polystyrene
grade. Subsequently, Fontaínhas [10] in her Master Thesis used the openInjMoldSim solver with a 3D
case study (a simple thin rectangular geometry) and compared the results predicted by the solver
(velocity, pressure, and temperature profiles) with the ones obtained by the proprietary software
Moldex3D

R©
[11]. A mesh sensitivity analysis was performed, and she reached the conclusion that the

results predicted with the openInjMoldSim solver were qualitatively similar to the ones obtained with
Moldex3D

R©
[11]. However, the results obtained with the mesh refinement study did not converged

to a level of accuracy with statistical significance. She also reported that the open-source solver was
18 times slower than the proprietary one.

This work describes the numerical validation of an open-source solver, openInjMoldSim [8,9],
able to simulate the filling stage of the thermoplastic IM process. For that purpose, mesh sensitivity
studies were performed for all the validation case studies. This way, accurate/converged solutions
were obtained for all the flow fields, which could not be found in preliminary studies performed with
the same numerical algorithm. For that purpose, we used the Richardson extrapolation technique
to estimate the discretization error. Additionally, to the best of the authors’ knowledge, this was
the first time that compressible and incompressible formulations were compared, and the effect of
the artificial interface compression term was assessed for the IM filling stage. Finally, to conclude about
the novel contributions of the present work, the studies performed provided a detailed comparison of
open-source and proprietary software, in terms of accuracy and performance.
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This paper is organized in the following manner: In Section 2, we present the mathematical
formulation of the modeling code that is used in this work, including the governing equations and
numerical discretization. In Section 3, we present a number of case studies involving the filling
of cavities with Newtonian and generalized Newtonian fluids. In each case study, a comparison
of the results obtained with openInjMoldSim is performed with data reported in the literature and
obtained with the proprietary software Moldex3D

R©
[11], in order to assess its accuracy, robustness,

and performance. Finally, in Section 4, we summarize the main conclusions of this work.

2. Mathematical Formulation

In this section, we present the mathematical formulation for an algorithm that is able to handle
the polymer melt filling stage of the IM process efficiently. Contrarily to the commonly used
assumption of fluids’ incompressibility [12], the employed algorithm considers a compressible,
non-isothermal based formulation, which, in the future, will provide a rigorous basis for the simulation
of the packing and cooling stages. The implementation was performed in the open-source framework
code OpenFOAM

R©
[2,9].

2.1. Governing Equations

In the approach employed, the air and the polymer melt phases are assumed to be immiscible
and compressible, unless otherwise stated. During the filling stage, the flow is governed by the mass,
momentum, and energy conservation equations, which can be written as follows [1]:

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂ (ρu)
∂t

+∇ · (ρuu) = ∇ · σ, (2)

∂ (ρcPT)
∂t

+∇ · (ρcPuT) = βT
(

∂p
∂t

+ u · ∇p
)
+ p∇ · u + σ : ∇u +∇ · (k∇T) , (3)

where u, p, and T denote the velocity vector, pressure, and temperature fields, respectively, t is the time,
and σ is the total, or Cauchy, stress tensor. The parameters ρ, β, cP, and k represent the fluid density,
compressibility coefficient, specific heat capacity, and thermal conductivity, respectively. The Cauchy
stress tensor is given by:

σ = −pI + τ, (4)

where I is the identity tensor and τ is the extra or deviatoric stress tensor, which, for the flow of a
compressible generalized Newtonian fluid, is defined as:

τ = 2η (T, p, γ̇)D− 2
3

η (T, p, γ̇) (∇ · u) I, (5)

where γ̇ =
√

2(D : D) =
√

2 tr(D2) is the generalized shear rate, with D being the deformation rate
tensor defined as D = (∇u + (∇u)T)/2, and η (T, p, γ̇) is the fluid viscosity, which is considered to be
a function of T, p and γ̇ (see Section 2.1.1 for detailed information about the rheological models used
in this work).

The simulation of the IM filling stage requires solving the fluid flow equations and capturing
the melt front location at every time step. For that purpose, an advanced free-surface capturing
model [13], based on the volume-of-fluid (VOF) method [14] is used. In this method, a species
transport equation is used to track the relative volume fraction of the two phases, or phase fraction, α,
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distribution. The phase fraction ranges from zero to one, zero being for air and one for the polymer
melt. In this way, the fluid interface is located in regions where 0 < α < 1, and the physical properties
can be calculated as an average weighted by α, as follows:

ψ = ψmα + ψa (1− α) , (6)

where the subscripts m and a denote the melt and air phases’ properties, respectively, and ψ represents
all the relevant fluid properties, namely ρ, η, cP, and k. The governing equation for the phase fraction,
α, is defined as:

∂α

∂t
+∇ · (αu) +∇ · [α(1− α)ur] = Sp + Su, (7)

where ur is the relative velocity vector, commonly denominated by “compression velocity”. In this
work, the compression velocity is given by:

ur = n f min

Cα
|φ|∣∣∣S f

∣∣∣ , max

 |φ|∣∣∣S f

∣∣∣
 , (8)

where φ is the volume flux at faces, S f is the face normal vector pointing outwards from the cell,
and Cα is an adjustable coefficient that determines the magnitude of the compression (usually Cα > 1)
[15]. n f is the interface unit normal vector taken from the phase fraction distribution as:

n f =
(∇α) f∣∣∣(∇α) f + δ

∣∣∣ , (9)

where δ is a stabilization factor [15].
The artificial interface compression term is an extra term added to the phase fraction evolution

equation and is non-zero only when 0 < α < 1, i.e., at the fluid interface, and avoids its numerical
diffusion (notice that in reality, the two fluid flow presents a sharp interface) [16]. Otherwise,
a significant diffusion of α at the interface region might occur, predicting a nonphysical smeared
interface, especially with coarse meshes. Sp and Su represent two terms that arise from considering a
compressible material [16]. Detailed information about the advanced free-surface capturing model
used in this work can be found in Berberović et al. [13].

2.1.1. Constitutive Models

The rheological behavior of the melt and air phases is defined by a single-fluid two-phase model,
where the average kinematic viscosity is given by Equation (6), in which ψ is replaced by the viscosity
η. For the air phase, the kinematic viscosity is assumed to be constant, i.e., a Newtonian fluid.
For the polymer melt, the Cross-WLF constitutive model is employed. This constitutive model is
widely adopted for studying both the filling and packing stages of the IM process [17] and is given by:

ηm (T, p, γ̇) =
η0 (T, p)

1 + (η0 (T, p) γ̇/τ∗)1−n , (10)

where τ∗ is the material constant representing the shear stress, above which the pseudoplastic behavior
of the melt is observed, n is the power-law index, and η0 (T, p) is the viscosity at the null shear rate.
In this work, we adopted the Williams–Landel–Ferry (WLF) model [18] to describe the dependence of
η0 on T and p, given by:

η0 (T, p) = D1exp
[
−C1 (T − T0)

C2 + T − T0

]
, (11)
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where T0 = D2 + D3 p and D1, D2, D3, C1, and C2 are parameters determined by experimental
characterization [6].

2.1.2. Equation of State

Polymers shrink when pressure increases; thus, their specific volume (the reciprocal of the density)
decreases [19]. On the other hand, with the increase of temperature, polymeric materials tend to
expand, and, consequently, their specific volume increases. The relation of specific volume, pressure,
and temperature is designated by the pressure-volume-temperature behavior (PVT) [20]. The most
commonly used model to characterize the material PVT behavior of polymer melts is the modified Tait
model [21], because it can describe properly the PVT relation of both amorphous and semi-crystalline
polymers [19]. In the modified Tait model, the specific volume, V̂, is given by:

V̂ = V̂0

[
1− C ln

(
1 +

( p
B

))]
+ V̂t, (12)

where:

V̂0 =

{
b1S + b2S (T − b5) , if T ≤ Tt

b1L + b2L (T − b5) , if T > Tt
, (13)

B =

{
b3S exp (−b4S (T − b5)) , if T ≤ Tt

b3L exp (−b4L (T − b5)) , if T > Tt
, (14)

V̂t =

{
b7 exp (b8 (T − b5)− b9 p) , if T ≤ Tt

0, if T > Tt
, (15)

where C = 0.0894 is a dimensionless constant, the coefficients b1 to b9 are obtained by fitting
experimental characterization data, and p and T are the material pressure and temperature,
respectively [19]. The subscripts S, L, and t represent solid, liquid (or melt), and transition states,
respectively. The transition temperatures for semi-crystalline and amorphous polymers are the melt
(Tm) and glass (Tg) transition temperatures, respectively.

The equation of state employed for the air phase is the ideal gas equation given by:

ρ =
p

RT
, (16)

where R is the ideal gas constant (R = 8.314 J/(K.mol)).

2.2. Numerical Discretization

The numerical solution of the equations presented in Section 2.1 relies on a collocated finite volume
method (FVM) approach, which uses the conservative integral forms of the governing equations for
the single-fluid two-phase model [22]. The implementation of the three conservation equations
(continuity, momentum, and energy) is done using the OpenFOAM

R©
computational library [2,23].

For more details about the solver employed in this work, the reader is referred to Mole et al. [8]
and Krebelj and Turk [9].

3. Validation Case Studies

This section presents the case studies employed for the validation of the solver applied to the filling
stage of the IM process (openInjMoldSim) presented in Section 2. The first case study was devoted to
the flow along a cylindrical channel, in which the fluid was considered to have Newtonian rheology.
The objective was to make a comparison of the obtained numerical velocity and pressure fields with an
analytical solution available for steady-state conditions [24]. In the second case study, an assessment
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of the effect of the material compressibility in the filling stage of the IM process, in a rectangular
cavity with a cylindrical insert, is presented. Finally, a detailed comparison between openInjMoldSim
and Moldex3D R© [11] was performed in a more complex geometry, the cavity of a mold employed
to manufacture tensile test specimens, a part representative of the typical ones produced by the IM
process, which was used for material mechanical characterization purposes [24,25].

In all case studies considered in this work, the domain was divided into inlet, outlet, and boundary
walls. Moreover, a fixed velocity was imposed at the inlet boundary patch, and at the same location,
the homogeneous Neumann boundary condition was applied for the pressure field. Additionally,
the no-slip velocity was imposed at the cavity walls. Furthermore, the walls only experience heat
flux modeled by heat convection. Since the initial and boundary conditions were similar for all case
studies, for organization purposes, Table 1 shows the default initial and boundary conditions for all
case studies. The particularities of each case study will be presented in the respective subsection.

Table 1. Initial and boundary conditions for all case studies.

Temperature (T) Velocity (U) Pressure (P) Phase Fraction (α)

In
le

t

230 ◦C Uin
Null normal

gradient 1

O
ut

le
t

Null normal
gradient

Null normal
gradient

105 Pa
(atmospheric)

Null normal
gradient

W
al

ls Heat convection
Tmold = 50 ◦C

h = 1250 W/(m2. K)
Null velocity

Null normal
gradient

Null normal
gradient

In
it

ia
l

C
on

di
ti

on

230 ◦C Null velocity 105 Pa
(atmospheric)

0

The material used in the simulations was the GPPS (general purpose polystyrene) Styron 678,
from Americas Styrenics. The rheological model employed was the Cross-WLF presented in Section 2,
and its parameters are given in Table 2. These parameters were obtained from the Moldex3D

R©
[11]

materials database. The variation of viscosity with shear-rate, temperature, and pressure is given
in Figure 1, which shows that the viscosity of the polymer melt decreases with the increase of both
the shear-rate and the temperature.

Table 2. Cross-WLF coefficients for GPPS (general purpose polystyrene) Styron 678 from Americas
Styrenics [11].

Parameter Value

n 0.2903

τ∗(Pa) 13,678

D1(Pa.s) 7.44 × 1010

D2(K) 373.15

D3(K/Pa) 0.0

A1 25.971

A2(K) 51.6
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Figure 1. Variation of the viscosity with shear-rate and temperature for the GPPS Styron 678.

As stated before, the air was assumed to be a Newtonian fluid by making use of the
Newtonian rheological model, and by setting a dynamic viscosity equal to 0.1 Pa.s. Additionally,
the thermodynamic properties, specific heat capacity, cp, and thermal conductivity, k, were defined
as 1007 J/(kg.K) and 0.0263 W/(m.K), respectively, for the air and 2100 J/(kg.K) and 0.15 W/(m.K),
respectively, for the polymer melt.

The PVT behavior of the material was modeled using the modified Tait model, illustrated in
Figure 2. The compressibility model adopted show that the specific volume of the material decrease
with the increase of pressure, and increase with the increase of temperature following a slope until Tg

(glass transition temperature) is reached. After Tg, the slope increases (as is commonly observed in
amorphous polymers).
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Figure 2. Variation of the polymer specific volume with temperature and pressure fields for the GPPS
Styron 678.
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The coefficients of the modified Tait model are shown in Table 3. These coefficients were obtained
from the Moldex3D

R©
materials database [11].

Table 3. Modified Tait model coefficients for the GPPS Styron 678 from Americas Styrenics [11].

Parameters Compressible Formulation

b1m (m3/kg) 0.0009881

b2m (m3/(kg.K)) 7.03 × 10−7

b3m (Pa) 1.71 × 108

b4m (1/K) 0.004495

b1s (m3/kg) 0.0009873

b2s (m3/(kg.K)) 2.89 × 10−7

b3s (Pa) 2.43 × 108

b4s (1/K) 0.003106

b5 (K) 373.98

b6 (K/Pa) 2.88 × 10−7

b7 (m3/kg) 0

b8 (1/K) 0

b9 (1/Pa) 0

In the analysis of the case studies presented below, the methodologies used are common to more
than one case study. Therefore, for organization purposes, the methods for assessment and verification
used are presented here:

IC and NIC variations: The abbreviation “IC” stands for interface compression, which means
that the artificial interface compression term of Equation (7) is considered, and the abbreviation “NIC”
stands for the simulation where it was neglected.

Switch-over time: The time for the polymer melt to reach the switch-over position. This is
an important instant for the analysis of the numerical calculation, since it coincides with the transition
of the filling to the packing/holding stages. Assuming incompressibility, the equation to calculate the
time the polymer melt takes to reach the switch-over point, tSO, is given by:

tSO =
V

A×Uin
, (17)

where Uin is the imposed average velocity at the inlet face, A the area of the inlet face, and V the volume
at the switch-over point. In all the case studies presented, the switch-over point was assumed to
occur when 98% of the total cavity volume is filled, which is a value commonly employed in the IM
process [26].

Average properties: For assessment purposes, throughout the three case studies, minimum,
average, and maximum properties were calculated. Considering a number of cells n, the average
values are given by:

θ =
n

∑
i=1

(|Ci| × θi)

|Ci|
, (18)

where |Ci| can be either the cell face area, when analyzing a cross-section, or the cell volume,
when analyzing all the geometry. When |Ci| is constant Equation (18) becomes the arithmetic mean.

Richardson’s extrapolation (RE): This is a widely employed method to estimate discretization
errors [27]. It can be applied to any discretization procedure, either for differential or integral governing
equations, such as the FVM [28]. This method was used in this work to extrapolate the value of the
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variable under analysis to an infinitely refined mesh and, thus, allowed estimating the accuracy of the
results at each level of mesh refinement. For a detailed description of this technique see Appendix A.

3.1. Case Study 1: Filling of a Cylindrical Cavity

This first case study covered the flow of a Newtonian fluid along a cylindrical channel and was
used to verify if the numerical algorithm was properly implemented. The cavity geometry employed
in this first case study is illustrated in Figure 3.

inlet

walls
outlet

𝜙20

Figure 3. Geometry of the cylindrical cavity for Case Study 1 (dimensions in mm).

The initial and boundary conditions used in this case study are presented in Table 1, with an inlet
velocity of Uin = 4 m/s.

The mesh sensitivity analysis was undertaken with three levels of refinement, where the number
of cells of the coarsest mesh (M1) was doubled in each direction to obtain the second degree of
refinement (M2). The same procedure was applied to obtain the most refined level (M3). The software
c f Mesh [29] was used to generate the three meshes, which had 4368, 34,280, and 263,016 cells for M1,
M2, and M3, respectively.

The polymer melt was considered to behave as a Newtonian fluid, with a dynamic viscosity value
of 310.0 Pa.s, obtained by using n = 1 in the Cross-WLF rheological model presented in Section 3.
The thermodynamic properties of the air and polymer melt are also the ones presented in Section 3.

The PVT behavior of the material was prescribed using two formulations, the compressible
one, given by the modified Tait model, which was already shown in Figure 2 and Table 3, and the
incompressible, where the melt density employed was constant and equal to 1.075 g/cm3.

The first tests carried out were related to the time predicted by the algorithm to achieve the
switch-over point, tSO, for the incompressible formulation and to compare it with the theoretical
value calculated from Equation (17). The results obtained are given in Table 4 for both the IC and
NIC variations.

Table 4. Comparison of the switch-over time obtained for the incompressible formulation,
considering both interface compression (IC) and neglecting IC (NIC) variations. The analytical reference
value calculated from Equation (17) is tSO = 0.0245 s.

Mesh
IC NIC

tSO (s) Error (%) tSO (s) Error (%)

M1 0.0249 1.630 0.0462 88.60

M2 0.0246 0.408 0.0250 2.040

M3 0.0230 6.120 0.0247 0.816
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From the data shown in Table 4, one can conclude that the IC gave accurate results for coarse and
medium meshes, because it minimizes the effect of the interface diffusion and, therefore, favors the
mass conservation. Since NIC omits the contribution of the artificial interface compression, the results
deviated from the analytical values, especially for the coarsest mesh (M1). On the other side,
with refined meshes, neglecting the artificial diffusion term did not affect the mass balance. In a future
work, a detailed study should allow identifying the criteria related to the necessity of considering
the interface compression term in these simulations.

To understand the differences caused by considering the polymer melt as incompressible,
and since the compressible formulation was the most realistic one, Table 5 shows the switch-over time
obtained for both formulations, when different mesh refinement levels were employed and using
the NIC variation, which gave the best results with the incompressible formulation (see Table 4).
In this case, both formulations, compressible and incompressible, predicted similar results, with the
former filling the cavity slightly faster than the latter on M2 and M3. This happened because the
(volumetric) flow rate was imposed at the inlet, and with the compressible formulation, due to the
pressure increase at that location, the actual mass flow rate was slightly higher. The small differences
obtained between both formulations allowed concluding that the incompressible formulation gave
accurate results in what concerns to the instant predicted for the end of the filling stage.

Table 5. Comparison of the switch-over time obtained with the compressible (reference) and
incompressible formulations, with the NIC variation.

Mesh
tSO (s)

Relative Difference (%)
Compressible (Reference) Incompressible

M1 0.0462 0.0462 0.000

M2 0.0249 0.0250 0.402

M3 0.0246 0.0247 0.407

To further investigate the differences between the incompressible and compressible formulations,
an analytical solution for the velocity profiles at steady-state conditions was employed. This solution
was presented by Liang et al. [24] for the power-law model. Thus, considering the power-law exponent
equal to one, the velocity profile for Newtonian fluids is given by:

u (r) =
r0

2

(
r0∆p
2µL

)[
1−

(
r
r0

)2
]

(19)

where ∆p
L is taken as the pressure gradient throughout the channel length, which means that ∆p is

the difference between the pressure at the inlet and outlet boundary patches, L and r0 are the channel
length and radius, respectively, and µ is the fluid viscosity. r is the radius at a specific point where
the velocity profile is taken. The inlet face average pressure was computed with Equation (18).

Table 6 shows the maximum velocity values obtained with Equation (19) and normalized
by the inlet velocity, the extrapolated value obtained using Richardson’s extrapolation technique
(Equation (A1)), and the errors (Equation (A3)) at each level of mesh refinement employed, using both
compressible and incompressible formulations.
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Table 6. Maximum velocity values for the mesh refinement study for both compressible and
incompressible formulations, Richardson’s extrapolation (RE), and the relative errors.

Mesh
Compressible Incompressible

Velocity/Uin Error (%) Velocity/Uin Error (%)

M1 1.912 4.37 1.906 4.43

M2 1.973 1.33 1.968 1.35

M3 1.992 0.40 1.986 0.41

RE 2.000 — 1.995 —

These results show that the velocity values presented a monotonic and asymptotic behavior with
mesh refinement for both formulations, and therefore, the errors for each level of mesh refinement
decreased. Moreover, the velocity values were very close between both formulations; however, the ones
obtained with the compressible formulation were always higher. This happened because to keep the
volumetric flow rate constant at the inlet boundary, more material was introduced into the cavity,
to compensate the shrinkage caused by the larger pressures exerted at that location.

Table 7 shows the pressure values taken at the center of the channel inlet boundary patch, for both
incompressible and compressible formulations and all levels of mesh refinement, the Richardson’s
extrapolation value (Equation (A1)), and the relative errors (Equation (A3)).

Table 7. Pressure values at the center of the channel inlet boundary patch, for both incompressible and
compressible formulations and all levels of mesh refinement, Richardson’s extrapolation value (RE),
and the relative errors.

Mesh
Compressible Incompressible

Pressure (MPa) Error (%) Pressure (MPa) Error (%)

M1 4.49 5.96 4.46 5.93

M2 4.65 2.61 4.61 2.77

M3 4.72 1.14 4.68 1.29

RE 4.77 — 4.74 —

As happened for the velocity values, the pressure values presented a monotonic and asymptotic
behavior, with the errors for each level of mesh refinement decreasing towards the extrapolated value.
Although the values of pressure were very close for both formulations, the compressible one presented
always higher values, which agreed with the fact that in this formulation the cavity was filled faster
than in the incompressible counterpart, which resulted in a higher pressure.

From the results presented, we concluded that considering an incompressible formulation did
not significantly affect the accuracy of the final results at the end of the filling stage of the IM process,
when considering a Newtonian constitutive model to describe the polymer rheological behavior.

3.2. Case Study 2: Filling of a Rectangular Cavity with a Cylindrical Insert

This case study covers the filling of a rectangular cavity with a cylindrical insert, illustrated in
Figure 4. The cavity geometry has a constant thickness of 4 mm, a width of 40 mm, and a length
of 150 mm, while the cylindrical insert has a diameter of 15 mm, and its center is located at 55 mm
from the inlet. The boundary walls are also shown in Figure 4. In terms of flow behavior, this case
study presents the separation and merge of the flow front, due to the cylindrical insert, forming a weld
line [26]. Weld lines created by the merge of independent flow fronts are typical in IM [26].
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Figure 4. Geometry and boundary patches for Case Study 2 (dimensions in mm). S1 and S2 denotes
Slice 1 and Slice 2, respectively.

The initial and boundary conditions for this second case study are presented in Table 1, with an
inlet velocity of Uin = 1.46 m/s.

The mesh refinement strategy employed in this case study was similar to that of Case Study 1,
meaning that three degrees of refinement were used, multiplying by a factor of two the number of
cells in each direction, in consecutive mesh refinement levels. In this case study, meshes M1, M2,
and M3 were generated using the c f Mesh [29] utility, and comprise 23,712, 187,480, and 1,494,064 cells,
corresponding to nearly 4, 8, and 16 cells along the cavity thickness, respectively.

For this case study, the polystyrene GPPS Styron 678 and the air properties employed in the
numerical simulations were the ones defined in Section 3. The same compressible and incompressible
formulations used in Case Study 1 were also simulated in this case study.

The results obtained using all the meshes considered did not present substantial differences;
therefore, only the ones corresponding to the most refined mesh (M3) are presented. Velocity and
temperature contours were taken from two cross-sections at different geometry locations (see Figure 4),
representative of the initial flow channel region (Slice 1 (S1)) and at the cylindrical insert (Slice 2 (S2)).
These results correspond to the switch-over point, i.e., the end of the filling stage. Figure 5 shows
the velocity and temperature contours for S1 and S2 and both fluid formulations.

In S1, the location that was close to the cylindrical insert, the melted material at the center
of the channel flowed at a lower velocity than the one that was closer to the top and bottom mold
walls. This shows that the material flow division, motivated by the insert, already started in S1.
In terms of temperature, as expected, the polymer melt at the center of the channel was hotter
than the one at the walls (temperature profiles across the channel thickness are shown in Figure 6).
Comparing both material formulations, there are no visible differences, both on the velocity and
temperature distributions. The results obtained for S2, the location at the middle of the cylindrical
insert, show a symmetric velocity profile because of the channel symmetry. As expected, the velocity
magnitude increased because the material had a smaller cross-section to flow through. In what
concerns to the temperature field, since the cross-section area was smaller, the maximum temperature
slightly exceeded 230 ◦C (see also Table 8), which is the temperature imposed at the inlet, a direct effect
of the viscous dissipation. Moreover, again, the two formulations show no visible differences, for both
velocity and temperature distributions.
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𝑡0 = 98% 𝑜𝑓 𝑐𝑎𝑣𝑖𝑡𝑦 𝑓𝑖𝑙𝑙𝑒𝑑 = 0.98𝑠

S1 S1S2
S2

S1
S2

Figure 5. Velocity magnitude (left) and temperature (right) contours on slices S1 and S2 for Case Study 2.
C, compressible formulation; I, incompressible formulation.

Figure 6 shows the temperature profile across the channel thickness at slices S1 (on z = 0 mm) and
S2 (on z = 10 mm), for the incompressible fluid formulation. The results obtained with the compressible
formulation were similar to the ones presented in Figure 6 and, therefore, are not shown to avoid the
clustering of results. Due to the quasi-parabolic velocity profile that is obtained across the thickness,
the region of maximum shear-rate, or viscous dissipation, occurs at the wall (y = ±2 mm). However,
due to the boundary conditions considered for the temperature field, near the wall, the heat is removed
from the polymer melt. As an outcome of this framework, the maximum temperature is obtained
at a small distance from the wall. These facts are more evident in the inset provided on Figure 6,
which also shows that due to the higher viscous dissipation, motivated by the steeper velocity profile,
the maximum temperature was slightly higher in S2 than in S1, in accordance with the maximum
temperature values provided in Table 8 (230.4 ◦C in S1 and 230.6 ◦C in S2).

In order to further check the effect of the incompressible formulation, the minimum, average,
and maximum values for both fields (temperature and velocity magnitude) were computed for both
slices (S1 and S2) at the switch-over point, and the results are presented in Tables 8 and 9.
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Figure 6: Temperature profiles across channel thickness at slices S1 and S2, using the
incompressible formulation.

minimum value of the velocity field magnitude is not presented in Table 9

because on the mould walls the no-slip boundary condition is applied for the
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the differences between the compressible and incompressible formulations in

both velocity and temperature fields are negligible, i.e, smaller than 4%.

Figure 7 shows the distribution of the pressure field on the mould cav-

30

Figure 6. Temperature profiles across the channel thickness at slices S1 and S2, using the incompressible
formulation, for Case Study 2.

Table 8. Minimum, average, and maximum temperature values for slices S1 and S2 (see Figure 4),
at the switch-over point.

Slice Formulation
Temperature (◦C) Relative Differences (%)

Tmin Tave Tmax Tmin Tave Tmax

C (ref) 98.0 214.4 230.2 — — —
S1

I 94.4 214.1 230.4 3.7 1.4 0.1

C (ref) 103.3 213.5 230.3 — — —
S2

I 100.0 213.3 230.6 3.2 0.09 0.1

Table 9. Average and maximum velocity magnitude values for slices S1 and S2 (see Figure 4),
at the switch-over point.

Slice Formulation
Velocity (mm/s) Relative Differences (%)

Uave Umax Uave Umax

C (ref) 148 342 — —
S1

I 149 345 0.7 0.9

C (ref) 233 570 — —
S2

I 233 576 0.0 1.0

Notice that the minimum value of the velocity field magnitude was not presented in Table 9
because on the mold walls, the no-slip boundary condition was applied for the velocity field.
From the results shown in Tables 8 and 9, we concluded that the differences between the compressible
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and incompressible formulations in both velocity and temperature fields are negligible, i.e., smaller
than 4%.

Figure 7 shows the distribution of the pressure field on the mold cavity, computed for both
compressible and incompressible formulations, at the switch-over point. These results showed that
the maximum pressure required to fill the cavity, predicted by both formulations, was quite similar,
with a difference of approximately 0.9%.

From all the results presented, we could conclude that both incompressible and compressible
formulations were adequate to be used in the simulation of the filling stage of the IM process,
with the former being more advantageous in terms of computational cost. The wall time spent
by the incompressible formulation to reach the switch-over point was 39 h, while for the compressible
formulation it was 41 h, circa 5% higher. In terms of stability, both formulations, compressible
and incompressible, presented similar and good stability during the calculations, due to the use
of the PIMPLE (combination of the two acronyms PISO and SIMPLE, while PISO stands for
Pressure–Implicit withSplitting of Operators and SIMPLE stands for Semi–Implicit Method for Pressure
Linked Equations) algorithm, which allowed obtaining converged solutions in each time-step.
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Figure 7. Distribution of the pressure field on the mold cavity, for the two formulations, compressible (C)
and incompressible (I), at the switch-over point.

3.3. Case Study 3: Filling of a Tensile Test Specimen

This third case study comprises the simulation of the filling stage of a tensile test specimen.
The aim of this case study is to compare the accuracy and performance of openInjMoldSim with
the proprietary software Moldex3D R© [11]. This case study geometry, illustrated in Figure 8,
is representative of the industrial practice, and corresponds to a specimen used for material mechanical
characterization purposes [24,25]. To enlarge the scope of the analysis, the feeding system was included
in the simulated geometry. Polymer melt enters the cavity through the inlet boundary located at the top
of the sprue. The melted material then flows through the main runner and, subsequently, enters in the
secondary runner, which changes the flow melt direction. Before reaching the specimen cavity, the melt
flows through a very thin and small channel called the gate [19]. Finally, the melt fills the actual mold
cavity, which has a constant thickness of 4 mm, typical of an injection molded part. The geometry
dimensions are given in Figure 8. The boundary patches employed in this case study were similar to
the ones of the previous case studies and are also represented in Figure 8. There is an inlet face from
which the polymer melt enters and an outlet face from which air exited, while the remaining faces
were impermeable walls that only experienced heat flux between the mold and the polymer melt.
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Figure 8. Geometry and boundary walls for Case Study 3 (dimensions in mm).

The initial and boundary conditions, prescribed in the OpenFOAM
R©

[2] library, are presented
in Table 1, with an inlet velocity of Uin = 1.4 m/s. In Moldex3D

R©
[11], being proprietary software,

many features cannot be defined by the user, as will be shown below for the pressure field. Anyway,
the flow rate imposed in Moldex3D

R©
[11] and OpenFOAM

R©
[2] was the same and equal to

Q = 15.7 cm3/s. The temperature boundary conditions were also the same. The pressure field could
not be accessed in the proprietary software and, therefore, was the only boundary condition that could
not be imposed to be equal in both software.

Since the objective of this study was to make a comparison between the two software, it would
be useful to perform the simulations with the same meshes. However, as Moldex3D

R©
[11] only

accepts meshes generated in its workbenches, and OpenFOAM
R©

[2] could not import those meshes.
Consequently, the simulations could not be made exactly in the same meshes. Therefore, the approach
employed was to make simulations in meshes with a similar number of cells, until reaching mesh
converged results. The same procedure employed in the previous case studies for the mesh sensitivity
analysis was also followed here. Tables 10 and 11 describe the meshes used in openInjMoldSim
and Moldex3D

R©
[11], respectively. The utility c f Mesh [29] was used to generate the meshes for

openInjMoldSim; specifically, the Cartesian mesh application was employed to generate the majority
of hexahedral cells. The Moldex3D

R©
[11] meshes were created using the program workbench

Moldex3D R16 Designer [11], applying a boundary layer mesh (BLM). The need to have an additional
level of mesh refinement in Moldex3D

R©
[11] will be explained below.

Table 10. openInjMoldSim meshes employed in Case Study 3.

Mesh Number of Cells Cells along Transverse Direction Cells along Thickness Direction

M1 30,091 8 5

M2 272,149 18 11

M3 2,110,987 37 21



Fluids 2020, 5, 84 17 of 24

Table 11. Moldex3D R©[11] meshes employed in Case Study 3.

Mesh Number of Cells Cells along Transverse Direction Cells along Thickness Direction

M1 29,625 8 2

M2 272,409 12 5

M3 2,101,139 26 10

M4 15,304,010 54 21

Tables 10 and 11 show that the number of cells for each mesh refinement level are very close
for both software. Additionally, the number of cells for each direction of the tensile test specimen
was duplicated in consecutive mesh refinement levels, and consequently, the total number of cells
presented a factor of approximately eight. A detailed view of mesh M2 is illustrated in Figure 9 for
both software.

Figure 9. Mesh M2 for Moldex3D
R©

[11] (left) and openInjMoldSim (right).

The fluids employed in the simulation of the filling of the tensile test specimen were equal to
the ones presented in the previous case study, and their properties are given in the introduction of
Section 3. Again, the polymer melt was modeled as a generalized Newtonian fluid, while the air was
assumed to present a Newtonian behavior.

The aim of the mesh sensitivity analysis was to identify the refinement level required to obtain
mesh independent results. To verify the level of refinement needed to ensure the desired accuracy,
the Richardson’s extrapolation [30] was applied to the pressure field. Table 12 shows the values of the
maximum pressure generated in the tensile test specimen cavity, the respective extrapolated value
(RE), and the associated errors for both software. The values considered in this analysis were the ones
corresponding to the switch-over point.

Table 12. Maximum pressure values obtained with the proprietary software Moldex3D
R©

[11] and
the open-source software openInjMoldSim at the switch-over point. The Richardson’s extrapolated
(RE) values and the relative errors are also presented.

Mesh
Moldex3D

R©
[11] openInjMoldSim

Maximum Pressure (MPa) Error (%) Maximum Pressure (MPa) Error (%)

M1 7.18 43.4 7.76 29.6

M2 8.32 34.4 14.07 27.8

M3 9.66 23.8 12.01 9.1

M4 11.61 8.41 - -

RE 12.68 - 11.01 -
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From Table 12, it is possible to understand the reason for the existence of four levels of mesh
refinement in Moldex3D

R©
[11]. For this software, the error for mesh M3 was still very high (>20%);

therefore, a fourth mesh was employed, which allowed reaching the same order of accuracy of
openInjMoldSim. It is important to notice that the maximum values are more difficult to compute,
since they tend to have larger errors, due to the fact that they were local values and, therefore,
presenting larger sensitivity to numerical errors.

Figure 10 shows the contour of the pressure field distribution in the cavity at the switch-over
point. The pressure profiles obtained in both software are qualitatively identical, when using the most
refined meshes for both (M4 for Moldex3D

R©
and M3 for openInjMoldSim). However, as also shown

in Figure 10, the melt flow front predicted by the open-source software seemed more realistic than that
of the proprietary counterpart, which present a plug-like surface.

openInjMoldSim

Moldex3D

Figure 10. Pressure distribution at the switch-over point and melt flow front shape predicted
by the most refined mesh of both software.

Additionally, as illustrated in Figure 11, the inlet pressure evolution along time was also monitored
and compared between both software, using the results obtained with the most refined mesh.
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Figure 11. Time evolution of the inlet pressure obtained with the most refined mesh for both
openInjMoldSim and Moldex3D

R©
[11] software.
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The melt pressure evolution presented some perturbations, which were compared with
the progression of the melt flow front. The time intervals where the pressure evolution was perturbed
were 0.1 < t/tSO < 0.2, 0.3 < t/tSO < 0.4, and 0.5 < t/tSO < 0.8. The evolution of the melt flow
front for the first interval is illustrated in Figure 12. This perturbation in the pressure field was only
predicted by Moldex3D

R©
[11], but this behavior seems strange because at t/tSO = 0.1, the melt flow

front was already at the main runner.
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Figure 12. Melt front location for t/tSO = 0.1, 0.15, and 0.2 predicted by both openInjMoldSim and
Moldex3D

R©
[11].

The melt flow front evolution for the second perturbation identified on the inlet pressure evolution
is shown in Figure 13, and it coincides with the flow of the melt through the gate. This second
perturbation was only predicted by the openInjMoldSim software.
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Figure 13. Melt front location for t/tSO = 0.31, 0.36, and 0.41 predicted by both openInjMoldSim and
Moldex3D

R©
[11].

As explained before, the gate was a very small and thin channel; thus, it presented a high resistance
to the flow, which justifies the change in the slope on the pressure evolution [19].

The flow front location for the last perturbation observed in the time evolution of the inlet pressure
is illustrated in Figure 14. As shown, this interval corresponds to the flow of the melt front through
the thinner region of the tensile test specimen. As the cross-section is narrower in that location,
a change of the slope in the pressure evolution was expected.
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Figure 14. Melt front location for t/tSO = 0.51, 0.66, and 0.81 predicted by both openInjMoldSim and
Moldex3D

R©
[11].

The graph presented in Figure 11 shows that for openInjMoldSim, the slope of the curve was
higher in the third interval, when compared to the periods before and after it. In Moldex3D

R©
[11] for

M4, the pressure evolution curve presents several nonphysical oscillations; however, the pressure is
still increasing, as expected.

Finally, a general overview of the accuracy and performance of both software can be obtained
from the data presented in Table 13, where the errors that correspond to the three variables (pressure,
velocity, and temperature), as well as the execution time for each level of mesh refinement are given.

Table 13. General comparison of the accuracy and performance of both openInjMoldSim and
Moldex3D

R©
[11].

Software Mesh
Errors (%)

Number of Cores Execution Time
Pmax Umax Tmax

M1 43.4 14.2 0.7 1 88 s

M2 34.4 19.6 0.6 1 23 min

M3 23.8 20.4 0.5 8 3.8 h

M
ol

de
x3

D
R ©

[1
1]

M4 8.41 7.22 0.2 8 24.5 h

M1 29.6 33.2 1.0 1 12.8 h

M2 27.8 26.7 0.1 8 41 h

48 98.5 h

96 59 h

op
en

In
jM

ol
dS

im

M3 9.1 8.2 0.0

192 34 h

From the results shown in Table 13, one can conclude that, in general, openInjMoldSim present
better accuracy than Moldex3D

R©
[11], with the exception of the temperature field, where the errors

are similar. In order to reach the same accuracy for all fields, Moldex3D
R©

[11] needed at least one
more degree of mesh refinement than openInjMoldSim. It should be noticed that for the proprietary
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software, the results did not converge asymptotically with the mesh refinement, which forced to use
the Richardson’s extrapolation approach given by Equation (A1), and estimate the apparent order.

In terms of performance, the proprietary software was clearly faster than the open-source for the
same level of refinement. Moldex3D

R©
[11] was 523, 107, and 9 times faster than openInjMoldSim,

respectively for M1, M2, and M3, although they were not computed with the same number of cores.
However, when analyzing degrees of mesh refinement for the same accuracy, M3 for openInjMoldSim
and M4 for Moldex3D

R©
[11], the proprietary software was only 1.4 times faster than the open-source

one; however, the number of cores used was not the same. Notice that, since Moldex3D
R©

[11]
is a proprietary software, there is a restricted number of licenses, which did not allow us to solve
the problem with more cores. On the other side, since in OpenFOAM

R©
[2] the only limitation is the

computational resources available, if the number of cores are increased, a similar calculation time
could be obtained.

4. Conclusions

A numerical formulation available in the open-source computational library OpenFOAM
R©

[2],
the openInjMoldSim solver, was assessed in different test cases related to the simulation of the filling
stage of the injection molding process.

The verification/validation of the open-source solver was performed with three case studies,
where the results obtained with the open-source solver were compared both with analytical solutions,
for simpler case studies, and with results obtained with Moldex3D

R©
[11], a proprietary software

widely employed in the industry.
The first case study allowed identifying the more appropriate modeling setup and to understand

some details of the numerical algorithm developed to describe the injection molding process,
by considering the simplified Newtonian constitutive model. The results obtained with this first case
study allowed us to conclude that the artificial interface compression term, presented in the volume
of fluid formulation, provided better results for coarse and medium meshes, but in refined meshes,
it affected the mass conservation negatively. Furthermore, the open-source solver predictions presented
a good agreement with the analytical reference solutions. Finally, the compressible formulation did
not present substantial differences in relation to the incompressible one.

In the second case study, two formulations for the equation of state (compressible and
incompressible) based on the modified Tait model were used. This study allowed verifying that
in the presence of incompressible formulations, the performance of the numerical algorithm was
improved without a significant loss of accuracy. This observation further indicated that incompressible
formulations were a good approximation for the filling stage of the injection molding process and may
be a way of increasing the overall calculation efficiency.

In the third case study, the results obtained with openInjMoldSim and Moldex3D
R©

[11] were
compared. The open-source software presented results that practically converged, i.e., with relative
errors below 10% within three levels of mesh refinement. Additionally, its accuracy was better than the
proprietary software for each level of mesh refinement. In order to reach the same accuracy obtained
with openInjMoldSim, Moldex3D

R©
[11] required an additional level of mesh refinement. Moreover,

the latter did not present asymptotic convergence of the errors with the mesh refinement. Furthermore,
a few nonphysical results were obtained with the proprietary software, both in terms of the flow front
shape, and in the evolution of inlet pressure, in which, for instance, the flow of the melt front through
the gate could not be identified. The open-source software did not present similar limitations.

All these results led to the conclusion that the openInjMoldSim solver presented a better accuracy
than Moldex3D

R©
[11]. In terms of performance, the scenario was reversed, with Moldex3D

R©
[11]

being clearly faster than the openInjMoldSim solver. However, one of the main limitations of the
proprietary software is the number of licenses available. Therefore, if there were enough computational
resources available, open-source software could match the calculation speed of the proprietary one.
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In summary, the results presented here showed that the injection molding code, developed using
an open-source framework, could be used to model the filling stage of injection molding processes
accurately. However, additional studies should be made to improve the calculation performance.
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Appendix A

Richardson’s extrapolation is usually applied when the values of a property θ are known for three
meshes with the same grid refinement factor ratio between them [27]. In this case, the Richardson
extrapolation is given by:

θext =
Rapθ2 − θ3

Rap − 1
, (A1)

where,

ap =
ln |(θ3 − θ2) / (θ2 − θ1)|

ln R
, (A2)

and then, the error is estimated by:

ei(%) =
θi − θext

θext
× 100, (A3)

where θext is the variable of interest that we want to extrapolate, the subscripts 3, 2, 1 represent the
value of the variable obtained for the three levels of mesh refinement, and ap is the apparent order,
given by Equation (A2). R is the grid refinement factor that should be greater than 1.3 [31]. In all case
studies presented in this work, we assumed the value of two; consequently, the number of cells in each
direction was doubled for consecutive mesh refinement levels [31]. Following a common procedure,
in this work, the results were considered to be converged when the relative error, given by Equation (A3),
was below 5% [27].

The above relation of Richardson’s extrapolation relied on the assumption that the convergence
is asymptotic [31]. However, in several cases, this did not happen, and oscillatory convergence was
observed for the variables [27]. In those cases, instead of using Equation (A1), a different variation of
the method could be used. Assuming that ap was the order of accuracy of the discretization schemes
used in the calculation procedure, instead of using three meshes, the extrapolated value could be
obtained by Equation (A1) using only the two most refined meshes [32].
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