BY fiuids b

Article
Hydrodynamic Dispersion in Porous Media and the
Significance of Lagrangian Time and Space Scales

Vi Nguyen and Dimitrios V. Papavassiliou *

School of Chemical Biological and Materials Engineering, The University of Oklahoma,
Norman, OK 73019, USA; nguyen.kimvi@ou.edu
* Correspondence: dvpapava@ou.edu; Tel.: +1-405-546-6526

check for

Received: 15 April 2020; Accepted: 18 May 2020; Published: 21 May 2020 updates

Abstract: Transport in porous media is critical for many applications in the environment and in
the chemical process industry. A key parameter for modeling this transport is the hydrodynamic
dispersion coefficient for particles and scalars in a porous medium, which has been found to depend on
properties of the medium structure, on the dispersing compound, and on the flow field characteristics.
Previous studies have resulted in suggestions of different equation forms, showing the relationship
between the hydrodynamic dispersion coefficient for various types of porous media in various flow
regimes and the Peclet number. The Peclet number is calculated based on a Eulerian length scale,
such as the diameter of the spheres in packed beds, or the pore diameter. However, the nature of
hydrodynamic dispersion is Lagrangian, and it should take the molecular diffusion effects, as well as
the convection effects, into account. This work shifts attention to the Lagrangian time and length
scales for the definition of the Peclet number. It is focused on the dependence of the longitudinal
hydrodynamic dispersion coefficient on the effective Lagrangian Peclet number by using a Lagrangian
length scale and the effective molecular diffusivity. The lattice Boltzmann method (LBM) was
employed to simulate flow in porous media that were constituted by packed spheres, and Lagrangian
particle tracking (LPT) was used to track the movement of individual dispersing particles. It was
found that the hydrodynamic dispersion coefficient linearly depends on the effective Lagrangian
Peclet number for packed beds with different types of packing. This linear equation describing the
dependence of the dispersion coefficient on the effective Lagrangian Peclet number is both simpler
and more accurate than the one formed using the effective Eulerian Peclet number. In addition,
the slope of the line is a characteristic coefficient for a given medium.

Keywords: hydrodynamic dispersion; porous media; Lagrangian length scale; Lagrangian time scale;
lattice Boltzmann method; Lagrangian Peclet number

1. Introduction

Hydrodynamic dispersion through porous media has long been of great importance in many
engineering fields. For instance, in the field of petroleum engineering, chemicals such as surfactants
are injected into hydrocarbon reservoirs to enhance oil recovery [1]. The theory of hydrodynamic
dispersion can assist engineers to estimate how far the chemicals reach, thereby designing appropriate
injection points to cover the targeted zone. In environmental applications, dispersion in porous media
has helped to predict how pollutants spread in the ground water and contaminate aquifers [2—4].

What is hydrodynamic dispersion? In general, substances or particles that disperse in a porous
medium do so because of two effects: molecular diffusion and convective dispersion (or mechanical
dispersion). The transport that combines both mechanisms of dispersion is known as hydrodynamic
dispersion [3,5,6]. The effectiveness of solute transport is based on the hydrodynamic dispersion
coefficient, and many researchers have worked to determine this coefficient for various porous
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geometries at different flow regions by using both experimental and numerical methods. All studies
have agreed that the hydrodynamic dispersion coefficient is the sum of an effective molecular
diffusivity coefficient and a mechanical dispersion coefficient. Furthermore, the coefficient for effective
molecular diffusion in porous media Dy, is always smaller than that for molecular diffusion in a pure
solvent D, [3-8].

There have been several suggestions for calculating the effective molecular diffusion coefficient in
a porous medium. Several researchers have proposed to estimate this parameter based on the diffusive
tortuosity, which is defined by the squared ratio of the average length of the path traveled by a substance
as it diffuses through the porous medium over the straight-line length 7; = (i—f)z [9]. The diffusive
tortuosity is often defined as the molecular diffusion coefficient of a species in a free fluid relative to
that in a porous medium 7; = g—gz [9-14]. However, others have argued that the porosity ¢ should be

present in the equation of tortuosity as 7; = eg—z: [15-17]. From another perspective, other researchers
have found that there is a link between the diffusion in a porous medium and its electrical conductivity,
proposing a correlation such as Fi& = g—;,:, where F is the formation electrical resistivity factor [6,18,19].
At the end of the day, it appears that the most accurate method is to experimentally measure the
diffusive tortuosity of a porous medium by measuring the diffusion coefficient, both in the bulk fluid
and in the porous medium [20].

Regarding the hydrodynamic dispersion coefficient, a vast amount of studies for different types
of porous media have ended up with different equation forms. In some studies, the longitudinal and

transverse dispersion coefficient have been expressed in the general form:
Dy = D;, + apu” (1)

Dr = D;, + aru" 2)

where 7 is an empirical constant, varying from 1 to 2; u is the pore velocity; and a; and ar represent the
effects of geometry in the longitudinal and transverse dispersion, respectively. Other researchers have
worked with beds packed with spheres and found different results for different flow regimes; these are
briefly summarized in Table 1 [5,7,21,22]. The longitudinal hydrodynamic dispersion coefficient has
been found to depend on the Eulerian Peclet number Pel; determined by the diameter of the spheres d,,
and molecular diffusion in the bulk fluid Dy, [5,6], as follows:

Pt = ud, /Dy, ©)

Koch and Brady suggested equations for both the longitudinal and transverse dispersion coefficient
as a function of an effective Eulerian Peclet number defined with the use of the effective diffusivity,
PelE,

Pe)f = ud,/D}, (4)

by analytically solving the Stokes flow equations in packed beds consisting of randomly packed
spheres [7].

Delgado et al. collected their own data and combined them with experimental data available
in the literature to characterize the dispersion in packed beds based on the effective Eulerian Peclet
number at different flow regimes [5].

It is commonly accepted that the Peclet number is estimated based on the diameter of the spheres
that constitute the porous media packing, d,. The sphere diameter is an Eulerian length scale. It has
the advantage of being known a priori. However, the nature of dispersion is Lagrangian, so the
hypothesis here is that a Lagrangian length scale should be used in order to combine the molecular
diffusion effects and the convection effects in dispersion. In the present study, we set up model
equations for the dispersion coefficient with the effective Peclet number based on either the Eulerian
or the Lagrangian length scale and examine their predictive ability. The porous media that were
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investigated in this study included the face-centered cubic (FCC) packing of spheres and randomly
packed spheres (RPS), and we then extended to the body-centered cubic (BCC) sphere arrangement
for validation purposes. The images of these three packing types are shown in Figure 1. The lattice
Boltzmann method (LBM) was used to simulate the flow of water at room temperature through the
given porous media, and then Lagrangian particle tracking (LPT) was applied to follow particle
trajectories in space and time. The transport of nanoparticles (NPs) of different sizes, corresponding to
different dimensionless Schmidt numbers, was investigated. Since all prior studies have confirmed
that the dispersion in the streamwise direction (flow direction) is far larger than the one in spanwise
direction [3,5], this paper mainly focused on longitudinal dispersion. The contributions of the present
work are (a) a comparison of Eulerian and Lagrangian scales for dispersion in porous media; (b) the
introduction of a Lagrangian effective Peclet number that is found to be more appropriate for the
description of dispersivity, thus unifying hydrodynamic dispersion across porous media types; and (c)
the development of model equations that relate longitudinal dispersivity to the Peclet number.

©

Figure 1. The packing types that were examined in this study: (a) face-centered cubic (FCC),
(b) randomly packed spheres (RPS), and (c) body-centered cubic (BCC).

Table 1. Summary of studies on hydrodynamic dispersion through packed beds in the randomly
packed spheres (RPS) configuration.

Reference Conditions Equations of Hydrodynamic Dispersion Coefficient
£ Bl =1 405Pek12
Fried-Combranous [21] II;e? < i’gg %; Tld " =
el < pe =1 4 (18+04)Pef,
E
Hiby [5,22] Re <100 Br=i4 o
Harleman et al. [22] 20 < Pef, < 4000 % = 0.67 + 0.66Pey, 2
D 3 Pey
Impermeable packed bed D_i =1+32x

Koch and Brady [7] (1-¢e)? <Pegf/2<1 ,E " E
_ 3 Pe; 2 Pe;; Pe;;
Pelk/2>1 o = l+iz+50-o= 1“(_2 )
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Table 1. Cont.

Reference Conditions Equations of Hydrodynamic Dispersion Coefficient

Longitudinal dispersion

Diffusion regime DL _q
(Pe, < 0.1) D,
Predominant diffusional regime D, peE
(0.1 < Pef, < 4) D;, ~ 08/Pef 104
Predominant mechanical dispersion D, _ Pelf
4 < Pef, and Re < 10 Dy 18PeF-1242.35500%
m m

Pure mechanicag disp%rsion DL _ Pef

D, 1.14 /E

g
(10 < Re and Pey;, < 10°) m 255¢M14/Pei+0.5
Delgado et al. [5] Dlsgersm? out of Darcy domain Dy _ Pef
(Pey;, > 10°) i 2
Transverse dispersion
Diffusion regime (Pef, < 1) Dr_q
n

Predominant mechanical dispersion Dr _q 1
(1 < Pek, < 1600) D, — 2.7x10-8c+12/PelE
Pure mechanical dispersion Dr Pe;t
(1600 < PeE, < 10%) D;, ~ (0.0585c+14)—(0.0585c+2) exp(—500S05 Perr )
Dispersion out of Darcy domain Dr _ P
(Pek, > 106) D, =~ 71

2. Materials and Methods

2.1. Lattice Boltzmann Method

In order to simulate the flow through different types of porous media, we used an in-house
code based on the LBM. In the LBM, one applies the discretized Boltzmann equation to calculate the
probability of fluid particles to move and distribute in different pre-determined directions. The method
is mesoscopic, where the macroscopic properties of the flow and the fluid, such as velocity and density,
are accurately recovered [23-25]. It is important to highlight that the fluid particles in the LBM can
move only in certain directions on a lattice, and these directions are defined by the selected lattice
velocity model. In general, an LBM lattice is specified as DmQn, where m indicates the dimensionality
(2 or 3 for a two-dimensional or a three-dimensional space, respectively) and 7 indicates the number
of lattice directions that particles are permitted to travel. Hence, the first step in applying the LBM
is to divide the computational domain geometry into structured cartesian meshes, and each node
in the lattice is represented by a binary value; for instance, the nodes inside the solid phase of a
porous medium are described as “TRUE,” whereas the ones in the pore space are designated as
“FALSE’ [26]. By adopting this discretization of the porous medium space, one may lose fidelity close
to the solid boundaries. On the other hand, Cartesian meshing with the LBM is very convenient when
simulating the flow field in complicated geometries, like the pore space in digital rock images, where the
generation of unstructured grids is required for each porous medium realization without using LBM.
Other techniques for simulating flow fields have been recently developed, which demonstrate high
order of accuracy and can resolve flow velocities at points very close to the solid grains [27,28].
In Appendix A, we present details of the grid resolution analysis for the LBM to justify the use of the
method, in addition to its other computational advantages.

The LBM is relatively simple to implement computationally, and LBM algorithms are parallelizable
due to the application of the discrete Boltzmann equation to each single fluid node. Each node needs
information from its neighboring nodes in order to calculate particle distribution functions, making
the algorithm a good candidate for Message Passing Interface (MPI) [23,25,29]. The key term in this
method is the particle distribution function f, which represents the fraction of particles at a fluid node
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position at a certain time. Basically, there are three main steps for solving the discretized Boltzmann
equation, i.e., the streaming, the collision, and the forcing steps, as follows:

A(X +Eint e+ At = fi(X, )+ QX)) ff ®)
—_—
Streaming Collision ~ Forcing

In the streaming step, the particle distribution function f; at the position X at time t moves along
the direction i with velocity ?i to the new position (; + ?I-At) during one time step At. The collisions
occurring during streaming steps are demonstrated by the collision operator (); [2] that represents
the change of f; due to the collision among particles. In the present work, the Bhatnagar, Gross,
and Krook (BGK) approximation for the single-relaxation time was used to estimate the collision
operator. The BGK has been a simple and reliable relaxation time approximation, and it is given by:

=-o(i- 1) ©)

The term 7, is the relaxation time towards the equilibrium distribution function ffq, and it relates
to the fluid viscosity v as follows:

]

The particle equilibrium distribution function fl.eq is calculated by:

S Gl O
gq—) o ) ei.u Elu U
f1(x) = wip 1+ =5+ a5 ®

where w; is the lattice specific weighting factor for the lattice direction i, p is the density, ﬁ is the
macroscopic velocity, and c is the speed of sound. The last component added in the Boltzmann equation
is the forcing factor to account for the pressure drop during streaming steps [23,25,29].
As mentioned above, the main purpose of using the LBM is to calculate the macroscopic properties
-

such as the fluid density p and macroscopic velocity U; this requirement can be achieved by applying
the conservation equations of mass and momentum, as follows:

p= i fi ©)
i=0

pU =) fiei (10)
i=0

where 7 is the number of lattice directions that particles are permitted to move, including the rest
position. In our work, D3Q15 was selected as the lattice velocity model with 15 allowable lattice
directions. Moreover, the periodic boundary condition was used in three directions X, y, and z;
and at the solid—fluid interfaces, the no-slip boundary condition with the bounce-back technique
was applied [24,30].

2.2. LBM Code Validation and Verification

In order to verify the LBM code, we calculated the permeability of periodic simple cubic (SC),
FCC, or BCC porous medium and then compared our results with those of two other groups. The size
of the simulation box used for each geometry was 100 x 100 x 100 pm, and the domain consisted of
201 nodes in each X, y, and z direction. The LBM was used to run for different values of the forcing
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factor (the pressure drop over the domain length), resulting in different velocity fields. Next, Darcy’s
empirical law, showing the relation between the pressure drop 42 through the flow and the superficial
fluid velocity Us was applied to determine the permeability k of different packing arrays [31]. Darcy’s

law is expressed as:
k AP

Us = T (11)
where k is the medium permeability and p is the dynamic viscosity of the fluid. The k value was then
divided by the sphere diameter squared to obtain a dimensionless permeability. Our results for the
dimensionless permeability of different geometries, including SC, FCC, and BCC, compared well to
the ones of Chapman and Higdon [32] that were obtained by solving the unsteady Stokes equations
for the microscopic flow. Moreover, Eshghinejadfard et al. [33] used their own LBM code to calculate
the permeability of FCC and BCC and showed similar results to ours. The details of the comparison
are shown in Table 2.

Table 2. Comparison of the results for dimensionless permeability with prior results. The reported
error is the relative absolute error compared to references.

Relative Error (%)
Compared to

Reference (1) [32]  Reference (2) [33]

. Dimensionless Permeability (k/dpz)
Geometry Porosity

Present Results Reference (1) [32]  Reference (2) [33]

FCC 0.26 1.75 x 1074 1.74 x 1074 1.70 x 1074 0.76% 2.96%
BCC 0.32 5.10 x 1074 5.02 x 1074 5.10 x 10~* 1.49% 0.10%
SC 0.48 2.61x1073 253 x 1073 3.10%

Moreover, the LBM code was verified for laminar flow through different sphere packing types

(SC, BCC, and FCC) of fixed-bed columns. This flow is usually modeled by the Blake-Kozeny

(BK) equation [31], which shows the correlation between the pressure drop over the length with
superficial velocity:

AP 4 8

TTUL 1504 (1—¢) (12)

The results are presented in Table 3, revealing that SC followed the BK correlation with a less
than 1% error, while other types of packing deviated from the BK equation with errors of 8.08% and
17.7% for BCC and FCC, respectively. In prior work out of our laboratory, this code was also validated
against flow cases with known analytical solutions, such as flow in a slit, in a pipe, and flow around an
infinite array of spheres [29].

Table 3. The lattice Boltzmann method (LBM) code verification by Blake-Kozeny equation. The reported
error is the relative absolute error for the calculated superficial velocity.

Parameter SC BCC FCC RPS

Porosity, ¢ 0.48 0.32 0.26 0.37
Spheres’ diameter, dp (cm) 1.00 x 1073 8.66 x 1073 7.07 x 1073 1.41 x 1073
Pressure drop, AP/L (g/cm?s?)  3.66 x 10° 1.67 x 10* 5.93 x 10* 5.33 x 10°
Pore velocity (cm/s) 2.00 x 107! 2.00 x 1071 2.00 x 107! 2.00 x 1071
Superficial velocity, Us (cm/s) 9.53 x 1072 6.40 x 1072 5.19 x 1072 7.42 x 1072
Blake-Kozeny velocity (cm/s) 9.62 x 1072 5.92 x 1072 6.31 x 1072 9.08 x 1072

Relative error 0.91% 8.08% 17.70% 18.26%
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2.3. Lagrangian Particle Tracking

LPT is an effective method to track the trajectories of particles in a Lagrangian framework while
they move in a flow field. However, there are several assumptions when this method is applied. Firstly,
the nanoparticles (NPs) are considered as passive, so the presence of NPs does not modify the flow
field. Secondly, the NP concentration is low, so the particle—particle interactions are not taken into
consideration. Thirdly, the NP-wall interactions and the adsorption of NPs on the wall of the packing
spheres are neglected. In short, there are just two kinds of transport contributing to the motion of the
NPs—the convection by the flow field and the molecular diffusion of NPs. Therefore, the equation of
motion of the NPs can be expressed by:

Xipar = X + At.Ur + AXiy (13)

- -
where X; is the position of a NP at time t and X; ¢ is the new position of that NP in the next time step

5
(t+ At) [24,26]. The velocity of the nanoparticle Uy, which leads to the convective transport, can be
obtained from the LBM flow field using a trilinear interpolation scheme to calculate the velocity of

the NPs, ﬁt, at its position between the grid nodes [2,24,30]. The second motion A%m, the molecular
diffusion, of the particles is estimated by Einstein’s theory for Brownian motion. After moving because
of convection, each particle undertakes a Brownian motion jump that is calculated according to a
random number drawn from a normal distribution with a zero mean (because the Brownian motion is
equally probable to be in the positive or the negative direction) and a standard deviation ¢ determined
by the NP diffusivity Dy,. The standard deviation in each space direction is found as follows:

0 = \2DyAt = ZECN (14)

where the Schmidt number Sc is the ratio of the fluid kinematic viscosity v and the NP molecular
diffusivity [31]. At this point, by estimating the travelling distance of all NPs caused by convection
and Brownian motion, the position of each particle can be tracked at every single time step. In the
case that the NPs move into the solid packing after a time step, they are bounced back to their current
position in the fluid phase. To be more specific, the new position of each particle in every single time
step was checked, and if it was inside the grains, the new position was not updated. The time step in
LPT was chosen so that NPs never moved more than one-half of the LBM mesh unit. We determined
the timestep by ensuring that any LPT particle that moved with the maximum fluid velocity in every
time step plus the maximum Brownian motion in the same direction did not move more than half of
the lattice unit. This algorithm has been validated with Taylor-Aris diffusion theory and has shown
excellent results [24].

2.4. Velocity Autocorrelation Function

A Lagrangian length scale is determined based on the relevant Lagrangian time scale and the
average velocity of all NPs, which is equal to the average pore velocity of I* = tlu,. Taylor defined the
Lagrangian time scale as [34]:

L— OORL d 15
= [ R (1)

where R (1) is the velocity autocorrelation function (VACF). While Taylor’s work was focused on
turbulent velocity fluctuations along the trajectories of fluid particles, the analogous VACF for porous
media would be based on the velocity fluctuations of the NP velocities relative to the average NP
velocity at each time step. Furthermore, since the NPs move with both Brownian motion and convection,
the VACF should be the material autocorrelation function, as proposed by Saffman [35]. In that work,
it was recognized that a scalar marker does not follow the same path as a fluid particle, since it can
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move off a streamline because of Brownian diffusion. The VACF would need to be defined with the
velocity of a diffusing particle, instead of the velocity of a fluid particle, as follows:

Vi(t)Vilt)

1/——1/2
V() VE(t)

RE(4 1) = (16)

where tj is the initial time, and V}(t) is the velocity fluctuation of NP j, V;(t) = V;(t) - Vj(t).
This equation has been used for dispersion in turbulent flow to estimate the Lagrangian time
scale [36—40]. At small times after the NP release, the VACF is almost equal to unity, because the
initial velocity is correlated with itself; however, over time, the VACF drops to zero. This happens
because the random molecular movement of the particles takes them away from their original velocity
streamlines, and the velocity of NPs as time advances has no correlation with the initial velocity of the
NPs [34,36,37]. Hence, the Lagrangian time scale represents the time that the particles need to “forget”
the velocity of the location from where they came, and it is appropriate to be used to cover the effect of
molecular diffusion in the dispersion.

2.5. Scope of Work

Numerical experiments were conducted for two types of porous media, with infinite arrays of
spheres packed in the FCC and RPS configurations. The computational domain size was the same
for both types of porous media (100 x 100 x 100 pm), but the diameter of the spheres was different.
The FCC domain was the minimum periodic cell for the FCC configuration, which contained four
spheres with a diameter of 70.76 um, whereas the simulation box for randomly packed spheres
consisted of 432 spheres of a 14.06 pm diameter each. In the RPS configuration, 432 spheres were
packed in a cubic domain by the Lubachevsky-Stillinger simulation algorithm [30,41,42]. The images
of two packing types are shown in Figure 1.

The number and the size of the spheres in RPS were chosen to ensure that the simulation domain
was representative of the porous medium (i.e., that the domain was at least as large as a representative
elementary volume for the packed bed). This means that if the size of the RPS simulation box was larger
and contained more spheres, the porous media properties (e.g., porosity, tortuosity, and permeability)
would remain unchanged. The method used to determine the number of spheres needed to obtain a
representative RPS volume included the generation of domains with more spheres keeping the same
porosity. After completing flow runs, the average fluid velocity was calculated within a small cube in
the center of the domain, and this calculation was repeated by increasing the calculations from the
center to the full domain. In Figure 2, we plot the average fluid velocity obtained with the LBM in the
streamwise (x direction) and spanwise directions (y and z directions) as a function of increasing the
size of the cube from the center to the full length of the cubic domain. With the selected simulation box
for RPS configuration, the average velocities in all directions were stable with the increment in the
domain size. Since the pressure drop was the same, this means that the permeability of the porous
medium did not change with domain size, as seen from Darcy’s law. Similar results were achieved
when we changed the direction of the flow in the same RPS configuration, setting the flow direction
as the y direction and then the z direction. Therefore, the created RPS computational domain was
representative of an isotropic medium with RPS packing.

The simulation boxes for FCC and RPS were discretized into LBM lattice nodes. The number of
lattice nodes greatly affected the accuracy of the results, as did the computational time. Details of the
grid independence analysis that was conducted are presented in Appendix A. Finally, the number
of nodes was chosen to balance accuracy with computational resources so that the FCC domain was
meshed with a 201 x 201 x 201 mesh, while a 401 x 401 x 401 mesh was applied for the RPS domain.
Next, the LBM code in conjunction with a D3Q15 lattice velocity model was implemented to obtain the
flow field of water at room temperature through porous media, with the pore velocities 0, 50, 100, 200,
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500, 1000, 2000, 3000, and 4000 pm/s. Next, 50,000 NPs were released in the flow domain at randomly
and uniformly selected positions in the pore space, and the velocity and trajectory of each of these
particles were tracked using the LPT algorithm, as already discussed. For each velocity field, different
LPT runs with different values of the particle Schmidt number (Sc = 100, 1000, 7080, and 10,000) were
performed, providing data for Sc covering two orders of magnitude. Moreover, the range of the
Schmidt number was chosen to cover particles with diameters from 0.22 to 5 nm, and Sc = 7080 was
the Schmidt number of Janus particles (d, = 3.6 nm) in water, which has been investigated in prior
work to lower oil-water interfacial tension [1]. Thus, thirty-six LBM/LPT simulations were conducted
for each one of the two porous media configurations.

Average pore velocity vs domain size
)

50
40 4
30 4
Velocity direction
20 4 - =

—y
10 4 z

0 4 \/”,—H —_—

Average pore velocity
(um/s)

-10

T T T T T T - - "
0 10 20 30 40 50 &0 70 80 a0 100
Length of cube (pm)

Figure 2. Pore velocity calculated by averaging over an increasing part of the domain volume.
The average pore velocity changed with the domain size when water at room temperature flows
through the RPS-packed bed in x direction.

The resulting data were used to estimate the VACF and the Lagrangian timescale, as mentioned
previously, with initial velocity obtained at the beginning of the LPT run (f, = 0). After that,
the hydrodynamic dispersion coefficient was determined based on the positional variance method [24,43]:

1 do?
= lim=-— 7
D= lim > (17)
where the position variance 02 is calculated in each direction as:
2 —\2
o =(X;-Xj). (18)

The dispersion coefficient, calculated for the flow velocity equal to 0 was considered as the effective
molecular dispersion D;,.

3. Results

3.1. Velocity Autocorrelation Function

Figure 3 is a presentation of the VACF of the streamwise velocity in different cases, when water at
room temperature flowed through a porous bed packed with an infinite array of spheres arranged in
the FCC geometry. The VACF was calculated based on the initial velocity at the beginning of the LPT
run (t, = 0), which started once the flow field had reached a steady state. Figure 3 consists of four
graphs—Figure 3a—d—that represent the VACF of four different types of diffusion NPs with Schmidt
numbers of 100, 1000, 7080, and 10,000, respectively. For each value of Sc, the velocity autocorrelation
functions for various values of average pore velocity, ranging from 50 to 4000 umy/s, are illustrated.
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Similarly, Figure 4 is a demonstration of the results for the geometry of randomly packed spheres
and at the same simulation conditions as Figure 3. In Figure 5 the effect of molecular diffusion on
the Lagrangian timescale is highlighted. In other words, the dependence of the VACF on S, for both
the FCC Figure 5a and RPS geometries Figure 5b, at the same average pore velocity of 1000 um/s,
is highlighted.

- 1.0+ : : coe L
1 Velocity correlation coefficent (R') Velocity correlation coefficient (R~)
FCC, Se = 100 FCC, Sc=1000
a8+ . . 08 .
Pare velocity {wmy's) Pore velocity (um/s)
', S 1 50
o | ) 06 ——500
% III 2000 4 2000
\ ——— 3000 4000
04 | 044
- 02
i a Pr———— . L4 0.0 =T 1 T 1
00000008 K- AN08 IR AR, S 00 000 002 004 006 008 010 012
Tamee () Time (s)
(a) (b)
09 Velocity correlation coefficient (RY) 10 Velodity correlation coefficient (R")
FCC, Sc=7080 FCC, Sc= 10,000
0.8 - .
Pore velocity (um/s) Pore velocity (um/s)
50 50
06 500 — 500
P 2000 2000
——— 4000 ———4000
0.4 4
0.2
0.0 L i | ! T T y 1
0.0 0.1 0.2 0.3 04 0.0 0.1 0.2 03 04 0.5 06 07 0.8
Time (s) Time (s)
(o) (d)

Figure 3. The velocity correlation coefficient for the packed bed with an FCC geometry with time for
(a) Schmidt number (Sc) = 100, (b) Sc = 1000, (c) Sc = 7080, and (d) Sc = 10,000. Each graph contains a
velocity autocorrelation coefficient for different average pore velocities.

3.2. Hydrodynamic Dispersion Coefficient

All the data from numerical experiments related to the hydrodynamic dispersion coefficient
and Lagrangian timescale for flow of NPs through FCC- and RPS-packed beds are summarized in
Appendix B. There were, in total, thirty-six experiments carried out for each porous bed configuration.
Four types of NPs with Sc = 100, 1000, 7080, and 1000 were released in the flow field with an average
pore velocity of 0, 50, 100, 200, 500, 1000, 2000, 3000, and 4000 um/s. The value of the dispersion
coefficient in the static flow field (u = 0) was used as the effective diffusivity Dy, in order to estimate
the ratio of dispersion over diffusion (D /D;,). In addition, the effective Peclet number was obtained
from the Eulerian length scale (diameter of the packed spheres, see Equation (4)) or the Lagrangian
length scale (I" = uth), as follows:

o ull P
m D;n DI

m

Pe (19)



Fluids 2020, 5, 79
104 Velodity correlation coefficient (RF)
RPS, Sc=100
0.8+
Pore velocity (mm/s)
50
0.6 — 500
- 2000
~
— 4000
044
0.2
0.0

0.006  0.008 0.012 0014

Time (s)

()

0.002 0.004 0.010

Velocity correlation coefficient (RY)
RPS, Sc= 7080

[Pore velocity (um/s)
50
=500
2000
== 4000

Time (s)

(c)

11 of 21

104 Velocity correlation coefficient (RY
RPS, 5S¢ = 1(x)

o084 U
Pore v('lur_lly (s
} 30

0E I L]

e | 2000

|20}

04 Q96 018

000 0O 004 0OE DOB QD 013

Time {2}
(b)
10 Velocity correlation coefficient (RY
RPS, Sc= 10,000
08
Pore velocity (um/s)
50
06 — 500
% 2000
-~ 4000

00 0.1 02 03 04 05
Time (s)

(d)

Figure 4. The velocity correlation coefficients for the packed bed with an RPS geometry with time for (a)
Sc =100, (b) Sc = 1000, (c) Sc = 7080, and (d) Sc = 10,000. Each graph contains velocity autocorrelation

coefficients for different average pore velocities.
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Figure 5. The effect of the Schmidt number on the velocity correlation coefficient, as well as Lagrangian
timescales for both cases including the FCC (a) and RPS (b) configurations at the same average pore

velocity of 1000 um/s.

Figure 6is a plot of the ratio of the hydrodynamic dispersion coefficient over the effective molecular
diffusion coefficient for particles in the FCC-packed bed as a function of the effective Peclet number.
Figure 6a, b displays the dependence of the coefficient ratio on the effective Eulerian Peclet number
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and the effective Lagrangian Peclet number, respectively. The examined ratio is linearly correlated
with the effective Lagrangian Peclet number. The same analysis was done for the randomly-packed
bed; the results are reported in Figure 7.

3004 DD, vs Pet 3300 7 Dy /I, vs Pe'l
e . B .
2000 4 FOC 3000 FCL
2500 2500 4
B 2000 4 - 8 2000 4 .
= . = .
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Figure 6. The ratio of the hydrodynamic dispersion coefficient over the effective molecular diffusion
coefficient in an FCC-packed bed as a function of the Peclet number: (a) the dependence of that ratio on
the effective Eulerian Peclet number calculated based on the diameter of the packed spheres and (b) the
dependence of that ratio on the effective Peclet number determined from the Lagrangian length scale.
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Figure 7. The ratio of the hydrodynamic dispersion coefficient over the effective molecular diffusion
coefficient in an RPS-packed bed as a function of the Peclet number: (a) the dependence of that ratio
on the Eulerian Peclet number calculated based on the diameter of the packed spheres and (b) the
dependence of that ratio on the effective Peclet number determined from the Lagrangian length scale.

4. Discussion

4.1. Velocity Autocorrelation Function and Lagrangian Timescale

Figures 3-5 show that the velocity autocorrelation coefficients started from unity and dropped to
zero in different patterns. The VACF dropped depending on the Schmidt number, average velocity,
and geometry. Therefore, the Lagrangian timescale also changed with these parameters because it
was calculated as the area formed by the velocity correlation and the two coordinate axes x and y
(see Equations (15) and (16)). Figures 3 and 4 demonstrate that the Lagrangian timescale decreased
when the velocity increased. This means that particles in high pore velocity cases tend to drop off the
flow lines quicker at a constant molecular diffusion coefficient. At the same time after the NP release,
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the NPs in high pore velocity simulations traveled farther in the streamwise direction and had the
opportunity to experience a longer tortuous path than NPs in lower pore velocity cases. Moreover,
from Figure 5, it is firmly seen that the higher the Schmidt number was, the larger the Lagrangian
timescale was. This observation can be explained considering that, when the Schmidt number was
high, the random movement because of molecular diffusion was small relative to the movement due to
convection. Hence, it took a longer time for the NPs to completely stop following the flow streamlines
and for the velocity autocorrelation coefficient to drop to zero. In addition, when the same type of
fluid and NPs flowed through the porous media with the same average velocity, the characteristic
time scale in the case of the FCC-packed bed was much larger than that in the RPS bed. The reason for
this is that the FCC configuration was less tortuous than the RPS configuration. When the particles
traveled in the porous media, not only random jumps of particles by diffusion but also their movement
due to interaction with the spheres in the packed bed, made them move away from their streamline
trajectories. Hence, the particles, moving in more tortuous paths, interacted with the wall more often.
This could explain why they quickly decorrelated with their initial velocity.

There are two important messages about the Lagrangian scale that should be highlighted. First,
Figures 3 and 4 show that with the same geometry, the Lagrangian timescale changed with molecular
diffusivity (or Schmidt number) and flow velocity. Hence, the relevant length scale also varied with
Schmidt number and flow velocity. In contrast, for the same geometry, the Eulerian length scale was
unchanged, because it only related to the geometrical configuration of the porous medium. Second,
by comparing the change of Lagrangian timescale in Figures 3 and 4 with that in Figure 5, it can be
seen that the effects of the Schmidt number (molecular diffusion) were more prominent than the effects
of flow velocity and geometry.

4.2. Hydrodynamic Dispersion Coefficient

By examining Figures 6 and 7, it is seen that the ratio of the dispersion coefficient and the diffusion
coefficient is a function of Pe. Figures 6a and 7a indicate that the ratio does not linearly depend on the
Eulerian Peclet number Pe/f. A linear equation is a good fit to the correlation of the dispersion and
diffusion ratio with Lagrangian Peclet number Pe/} for both types of packing (as seen in Figures 6b
and 7b). This finding is applicable for an Eulerian Peclet number below 4035 for FCC and 860 for RPS,
as well as a Lagrangian Peclet number up to 7500 for FCC and 613 for RPS.

As the relationship between the dispersion coefficient and Eulerian Peclet number is not clear,
to correlate the dispersion and diffusion ratio with the Eulerian Peclet number, we suggested two
equations that give a minimum value for the mean relative error for this case. Following Taylor—Aris
dispersion through a tube [44,45], in the first correlation scheme, a quadratic equation was applied.
However, a quadratic equation could not represent well the whole data set for both types of packing.
Hence, two equations, including one for low Pe and one for high Pe, were used for each type of packing.
In the second correlation scheme, the form of Equation (1) was utilized, which also showed a good
fit in this situation. While there was uncertainty in selecting the appropriate equation in the case of
Eulerian Pe, only the linear equation was found to be suitable to correlate the dispersion and diffusion
ratio with the Lagrangian Peclet number. This was named “Correlation Scheme 3”. The three schemes
are well-presented in Table 4 for FCC and Table 5 for RPS.

Table 4. Three correlation schemes for hydrodynamic dispersion of particle transport in an FCC-
packed bed.

Correlation Scheme Correlation Equation Mean Relative Error

2
Pelf <700 pF = 0.000343(Pejf) +1

Pejf > 700 B- = 0.000168 (PelE)? +0.112PeF +1

6.3%

1.774
=1+ 0.00126(Pe;f ) 3.3%

D
D,
3 PL =14 0.423Pe}} 3.3%
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Table 5. Three correlation schemes for hydrodynamic dispersion of particles transport in RPS-
packed bed.

Correlation Scheme Correlation Equation Mean Relative Error

Pe’E <50 2L —0.00853(PeE)? + 1

1 D X 13.5%
Pejf > 50 pk = 0.000365 (Pejy )" +0.462Pe)f + 1

2 B =1+0.114(Pef) 155%

3 B =1+ 1.096Pejk 3.1%

Among these three correlation schemes, the third correlation with effective the Lagrangian Peclet
number appeared to be superior for three reasons. It had a higher accuracy in comparison with the first
and second schemes, based on an effective Eulerian Peclet number, as seen by the smaller mean relative
error of Scheme 3, especially for the case of RPS. Moreover, while there was uncertainty in selecting
the form of the correlation equation with effective Eulerian Pe, the form of the equation with effective
Lagrangian Pe was uniform no matter what mode of particle transport was dominant (molecular
diffusion or convection). There were at least two unknown parameters in the correlation equation
with Eulerian Pe, and it was difficult to determine to which properties they related. On the contrary,
the equation of the effective Lagrangian Pe contained only one unknown coefficient, A, as given by:

o =1+4 Pelk (20)
m
or
’ L ’ ZLZ
Dy = D}, + Aupl" = D}, + A —. (21)

Though this is a simple equation, it still can express the nature of hydrodynamic dispersion.
According to this equation, the coefficient Dy, is the sum of two terms. The first term is the effective
molecular diffusion coefficient D/,, and the second term A 112 /7l is proportional to the characteristic
length scale squared over the characteristic timescale. Importantly, with this kind of form, the second
term represents the coefficient of mechanical dispersion. Therefore, this correlation equation matches
with the theory that hydrodynamic dispersion is a combination of molecular diffusion and convective
transport. This confirmed that the Lagrangian scale is a proper approach to represent the theory of
hydrodynamic dispersion. This correlation type was further confirmed with the BCC-packed bed,
as shown in Figure 8, in order to conclude that it is valid for different packing types. In this equation,
only the parameter A changes with various geometry structures; therefore, it is reasonable to argue
that A represents the properties of porous media. The values of A for three porous media are briefly
summarized in Table 6, together with their properties such as porosity, permeability, and Darcy number.

900 1 Dy/D',, vs Pe’,

800 BCC -

700

600
= 500
<
A 4004

Equation y=1+0933x
3004 Pearson's r 099999
. R-Square(COD) 1
200 Adj. RSquare 1
100
L]
0+~ T , T T )
0 200 400 600 800 1000
Pe't

m

Figure 8. The ratio of hydrodynamic dispersion coefficient over the effective molecular diffusion
coefficient in BCC-packed bed dependence on an effective Lagrangian Peclet number.
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Table 6. Summary of properties of different packing types of porous media together with the A value.

Permeability k Diameter of Spheres Darcy Number

Geometry Porosity (cm?) dp (cm) Da =L/ dpz A
FCC 0.26 8.75 x 1077 7.07 x 1073 1.75 x 1074 0.423
BCC 0.32 3.82x 1078 8.66 x 1073 510x 1074 0.933
RPS-432 spheres 0.37 1.39 x 1077 141x 1073 7.04x 1074 1.096

The linear connection between dispersion, the diffusion ratio, and the effective Lagrangian Pe in
this study was only confirmed for packed beds. Further work should focus on the question of whether
this finding holds for other types of real porous media found in the subsurface for environmental or
oil recovery applications, such as sandstones or limestones. Moreover, the link between A and the
properties of a porous medium should be further investigated.

5. Conclusions

This work examined the physics of hydrodynamic dispersion in porous media through a
Lagrangian point of view. Hydrodynamic dispersion is one of those porous media-related topics
that are typically associated with a lot of uncertainty and a lack of fundamental understanding,
even though several applications are critically dependent on predicting dispersion in porous media.
The conventional approach has been the Eulerian approach, often through macroscopic tools of
analysis. Dispersion, however, is an effect that is driven by particle transport phenomena that are
below the scale of consideration for macro-scale models. The present study was focused on providing
a fresh approach and on identifying the relevant parameters, dimensionless numbers, and quantities.
Given the currently available computational techniques that allow for in-depth calculations devoid of
empiricisms, such as the use a lattice Boltzmann models and specialized particle tracking algorithms
that provide paths of individual particles from a Lagrangian perspective, it is possible to analyze
hydrodynamic dispersion in a physically sound framework and to probe its relationship to the effective
Peclet number from both the Eulerian and Lagrangian viewpoints.

The results led to the definition of a Peclet number that is based on more naturally relevant scales
rather than using Eulerian macroscopic quantities. The length scale used in defining an effective
Eulerian Peclet number was the diameter of the spheres making up the porous media and was constant
for a certain porous medium configuration. In contrast, the effective Lagrangian Peclet number
was calculated from the Lagrangian length and time scales, which varied with molecular diffusion
(i.e., the Schmidt number), the fluid velocity, and the pore geometry. This new definition has a strong
impact on simplifying and unifying the correlation between the ratio of dispersion over diffusion
with the Peclet number in packed beds, as seen in Equation (20). This unified correlation reveals a
linear dependence on the effective Lagrangian Peclet number for different packing types, with the clear
appearance of a geometrical coefficient A as the slope of the line. We conclude that the Lagrangian
scales are the appropriate scales for studying hydrodynamic dispersion, as one might have predicted
because both molecular diffusion effects and flow are taken into consideration
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Nomenclature

A geometrical coefficient

c speed of sound

dy sphere diameter

Dy diffusion coefficient in the pure solvent

D effective diffusion coefficient in porous
" media

e microscopic velocity

f particle distribution function

fed particle equilibrium distribution function

ff forcing factor

F formation electrical resistivity factor

k permeability of the porous media

Ly length of the path traveled by a substance

Ls straight-line length

L length of porous media in x direction

m dimensionality indication (m=1, 2, 3)

n number of allowable directions

PesE, effective Eulerian Peclet number

Pek, Eulerian Peclet number

Perk, effective Lagrangian Peclet number

Pek, Lagrangian Peclet number

Re Reynolds number

RE velocity correlation coefficient

Sc Schmidt number

t Time

to initial time (¢ = 0)

u pore velocity

U superficial velocity

L—j macroscopic velocity

14 velocity of a particle

v’ velocity fluctuation

w lattice specific weighing factor

X Position

x location in the flow direction

X location of a particle

Greek symbols

At time interval of each time step

Ax lattice constant

AP pressure drop

A?(m movement due to diffusion

€ Porosity

U fluid dynamic viscosity

v fluid kinematic viscosity

p fluid density

0 standard deviation

a? position variance

T Timescale

Ty relaxion time

T4 diffusive tortuosity

ot Lagrangian timescale

Q collision operator

Subscripts and superscripts
i lattice direction index
j nano-particle index

—
~—

average value
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Appendix A. The Grid Independence Analysis for FCC and RPS

In order to conduct grid independence analyses, numerical experiments to simulate the flow of water at
room temperature in FCC and RPS were conducted. They all had the same domain size and pressure drop,
but they had different resolutions varying from 101 x 101 x 101 to 501 x 501 x 501. The mean velocity was
calculated for each run and is shown in Table Al and Figure Al. Convergence was obtained at the resolution
201 x 201 x 201 for FCC and 401 x 401 x 401 for RPS, with a convergence tolerance of less than 0.53%. In addition
to the average velocity, the full fluid velocity distribution was calculated. The range of velocities of the NPs was
divided into 20 bins; then, the number of fluid nodes and the percent in each bin was calculated. It was found that
there was no significant difference in the velocity distribution of the two LBM runs in the FCC that had the same
average pore velocity (1000 um/s) but different resolutions (201 x 201 x 201 and 501 x 501 x 501), as shown in
Figure A2a. Similarly, the velocity distribution profiles for the two LBM runs in the RPS that had the resolutions
201 x 201 x 201 and 501 x 501 x 501 were almost identical, as demonstrated in Figure A2b. Hence, we accept
that the chosen resolutions for FCC (201 x 201 x 201) and RPS (401 x 401 x 401) could provide results with an
acceptable accuracy.

Table Al. The effect of the number of mesh resolution on the mean velocity of the LBM flow field for
FCC and RPS. Bold highlights the values discussed in the text.

Domain Number of FCC_Mean Error (%) Compared RS Mean Error (%) Compared
Resolution Grid Points  Velocity (um/s)  to (501 x 501 X 501)  Velocity (um/s)  to (501 x 501 x 501)
101 x 101 x 101 1,030,301 502.340 0.972% 478.762 6.376%
201 x 201 x 201 8,120,601 500.130 0.528% 500.174 2.189%
301 x 301 x 301 27,270,901 497.880 0.075% 505.520 1.143%
401 x 401 x 401 64,481,201 497.540 0.007% 508.920 0.478%
501 x 501 x 501 125,751,501 497.505 0.000 511.367 0.000
Grid independence analysis for mean fluid velocity
540 -
520 -
g B ) —
g 500 4~ —— o o
=
= 480 -
3 —e—FCC
[ .
; 460 - RPS
g
S 440 -
420 -
400 T T T T T T
0 2 x 107 4 x 107 6 x 107 8 x 107 10 x 107 12 x 107
Numberof grid points

Figure A1. The effect of the number of mesh points on the accuracy of the mean fluid velocity of the
LBM flow field for FCC and RPS.
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Figure A2. The velocity distribution profiles for the flow fields in (a) FCC domains with resolutions
of 201 x 201 x 201 and 501 x 501 x 501 and (b) RPS domains with resolutions of 401 x 401 x 401 and
501 x 501 x 501. The x-axis shows the mean velocity of the bins, while the y-axis shows the percent of
the fluid nodes with the velocity in the range of the corresponding bin.
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Appendix B

Table A2. Summary of the Results Related to the ratio of the Hydrodynamic Dispersion Coefficient over
the Effective Molecular Diffusion Coefficient together with Eulerian and Lagrangian Peclet Numbers

Pore velocity, FCC RPS
u (cm/s) D, D,
/ Pe;’; Pe, f D—: tl(s) Pe; 'f Pe:f D—,L 7L (s)

m

Sc

100 5.00 x 1073 1.00x 1073  494x107! 9.83x1071 150x10° 3.00x107* 1.10x107'  9.60x10"!  820x107*

1.00x1072  200x107° 9.88x1071 999x107! 140x107° 1.30x107° 210x 107! 1.02 8.70 x 1074
2.00x1072  8.00x 1073 1.98 9.85x1071  140x 107 550x107%  430x 107! 1.01 9.10 x 1074
500% 1072 4.80 x 1072 4.94 1.01 140 x 1073 3.08 x 1072 1.09 1.03 7.80 x 1074
1.00 x 1071 1.68 x 107! 9.88 1.00 1201073  1.10x 107! 2.13 1.14 730 x 1074
200x1071  577x107! 1.98 x 10 1.12 1.00x 1073 3.95x 107! 427 1.37 6.50 x 1074
3.00 x 1071 1.15 2.96 x 10 1.39 9.10x107* 729 x 107! 6.40 1.74 530 x 1074
4.00x 1071 2.00 3.95x 10 1.71 8.90x 1074 1.13 8.53 2.11 470 x 1074
1000  5.00x107% 470 x 1072 4.96 9.90x 1071 1.30x 102  3.70 x 1072 1.08 1.02 9.40 x 1073
1.00x 1072 1.68 x 107! 9.93 1.01 1201072 1.18 x 107! 2.13 1.12 7.80 x 1073
200x1072  5.88x107! 1.99 x 10 1.14 1.00x 1072  3.92x 107! 4.26 1.40 6.50 x 1073
5.00 x 1072 3.01 4.96 x 10 2.16 8.60 x 1073 1.54 1.09 x 10 2.55 3.90 x 1073
1.00 x 107! 1.07 x 10 9.93 x 10 5.24 7.60 x 1073 3.94 2.13 x 10 5.15 2.60 x 1073

2.00 x 1071 3.59 x 10 1.99 x 102 1.65x10  6.40x 1073 1.04 x 10 426 x 10 1.23x 10 1.70 x 1073
3.00 x 1071 7.78 x 10 2.98 x 102 329x10  620x1073 1.71x 10 6.39 x 10 2.17 x 10 1.30 x 1073
4.00 x 1071 1.19 x 102 3.97 x 102 5.35 x 10 5.30 x 1073 2.87 x 10 8.53 x 10 3.18 x 10 1.20 x 1073

7080  5.00x 1073 1.56 3.55 % 10 1.63 620%x1072  9.04x 107! 7.47 1.91 3.30 x 1072
1.00 x 1072 5.59 7.09 x 10 3.28 5.60 x 1072 2.38 1.47 x 10 3.39 2.30 x 1072
2.00 x 1072 1.97 x 10 1.42 x 102 9.19 490 x 1072 5.98 2.94 x 10 7.77 1.40 x 102

5.00 x 1072 1.02x 102 3.55 x 102 437x10  410x1072  233x10 7.47 x 10 262x10  8.60x 1073
1.00 x 1071 3.32 x 10% 7.09 x 102 145x 10> 330x1072  595x10 1.47 x 10? 673x10  570x 1073
2.00 x 107! 1.18 x 103 142x10° 486x102 290x102  1.56 x 102 2.93 x 102 1.69x102  3.70x 1073
3.00 x 10~ 2.35 x 10° 213 x 10° 1.01x10°  260x1072  248x 10>  440x10>  282x10> 260x1073
4.00x 107! 3.86 x 10° 2.84 x 10° 1.68x10°  240x1072  3.64 x 107 5.87 x 102 411x10>  220x1073

10000  5.00 x 1073 3.07 5.04 x 10 217 8.60 x 1072 1.26 1.09 x 10 2.55 3.20 x 1072
1.00 x 1072 1.04 x 10 1.01 x 102 5.26 7.30 x 102 3.69 215 % 10 5.20 2.40 x 1072
2.00 x 1072 3.75x 10 2.02 x 102 1.65x10  6.60 x 1072 9.86 429 x 10 1.25x 10 1.60 x 1072

5.00 x 1072 1.86 x 102 5.04 x 10? 8.03x10  520x1072  4.06 % 10 1.09 x 102 441x10  1.00 x 1072
1.00 x 107! 6.38 x 102 1.01 x 10° 268x10>  450x1072  1.02 x 10% 2.15 x 102 1.11x 102 670x 1073
2.00 x 1071 2.13 x 10° 2.02 x 10° 924x 102  370x1072  241x10>  429x102  272x10%2  4.00x 1073
3.00 x 107 4.54 x 10° 3.03 x 10° 191x10°  350x 1072 4.08 x 102 6.44x 10>  458x10%> 3.00x107°
4.00x 107! 7.50 x 10° 4.03 x 10° 315%x10°  330x1072  6.13x10% 8.58 x 107 6.55x 10> 250 x 1073
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