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Abstract: Bulk kinematic properties of mixtures such as velocity are known to be the density weighed
averages of the constituent velocities. No such paradigm exists for the heat flux of mixtures when
the constituents have different temperatures. Using standard principles such as frame indifference,
we address this topic by developing linear constitutive equations for the constituent heat fluxes,
the interaction force between constituents, and the stresses for a mixture of two fluids. Although
these equations contain 18 phenomenological coefficients, we are able to use the Clausius-Duhem
inequality to obtain inequalities involving the principal and cross flux coefficients. The theory is
applied to some special cases and shown to reduce to standard results when the constituents have
the same temperature.

Keywords: mixtures; Fourier’s heat conduction; heat flux vector; continuum theory; Clausius-Duhem
inequality
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1. Introduction

Of general concern here are the heat fluxes of multicomponent materials where the temperatures
of the components are not equal. A general theory for multi-temperature mixtures was proposed by
Dunwoody and Müller [1], extended by Bowen and Garcia [2], and applied to a mixture of Navier
Stokes fluids by Ahmadi [3]. Despite this theoretical framework, as well as many examples from both
the environment and industry of multicomponent materials with distinct constituent temperatures,
there is a paucity of research on the thermodynamic implications of characterizing the bulk properties
of the heat fluxes of such materials. Perhaps this is due to the myth that such materials quickly come
to thermal equilibrium. In reality, many processes such as radiative heat transfer, disparate thermal
conductivities of constituent materials, and relative motion of the constituents may disrupt a rapid
approach to overall thermal equilibrium.

Quantification of the heat flux has been a goal of researchers ever since the beginning of
thermodynamics. Early theories were phenomenologically motivated, but in recent years considerable
attention has been devoted to Maxwell-Cattaneo type models; see [4,5] and a more recent discussion
in Jou et al. [6]. Typically this approach leads to some form of the telegraph equation, a special case of
which is Fourier’s law of heat conduction. As our concern here is not with the propagation of heat
pulses but with constraints imposed on constitutive models by the second law, it is sufficient to focus
here on Fourier’s law. For an isotropic material this is given by the familiar expression:

q = −k∇θ. (1)
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Here q is the heat flux vector, θ is the temperature,∇ denotes the gradient operator, and k is a material
property known as thermal conductivity. The latter is readily obtained from standard measurements
of ∇θ and q.

However, a substance composed of two components with different thermal conductivities is
not so trivial. Consider two scenarios of a mixture of two constituents, one with temperature θa

and thermal conductivity ka and the other with temperature θb and thermal conductivity kb. If both
follow the Fourier’s heat conduction relation and the two components are at thermal equilibrium, i.e.,
θa = θb = θ, then

qa = −ka∇θ

qb = −kb∇θ. (2)

One is then tempted to take as the mixture heat flux

qmix = qa + qb = −(ka + kb)∇θ = −kmix∇θ. (3)

This is just like the single constituent case, and Fourier’s law applies to the mixture. Standard methods
can determine the conductivity of the mixture.

Now suppose the two constituents are at different temperatures. Allowing for cross-thermal
gradient heat fluxes one has

qa = −kaa∇θa − kab∇θb

qb = −kba∇θb − kbb∇θb. (4)

Simply adding the fluxes as in the previous case gives

qmix = −(kaa + kba)∇θa − (kab + kbb)∇θb. (5)

Although the definition of the mixture heat flux is the same, it is not possible to prescribe both a unique
temperature and conductivity for the mixture if the constituents are not in thermal equilibrium.

These idealized examples raise the ontological question: What flux laws are appropriate that ensure
consistency with the primitive notion that the consequent flow of heat does not violate the second law? In this
regard Petroski [7] pointed out that for many non-homogenous and anisotropic materials the simple
Fourier’s assumption does not hold (see also [8]). For complex materials such as polymers, granular
materials, and non-Newtonian fluids, the thermal conductivity of the material is assumed to depend
on parameters such as volume fraction, particle size, shear rate, etc. [9–11]. Also see [12,13] for detailed
reviews. These and other matters have spurred research on general theories such as Maxwell-Cattaneo
models, as noted previously.

To address the ontological question noted above, we develop a unified theory for multicomponent
materials with different temperatures. Previously, Massoudi [14] used a mixture theory approach to
obtain an explicit constitutive relation for the heat flux vector(s) q of a two-phase mixture with a single
temperature. We extend that study to allow for distinct temperatures θ1 and θ2 for the components.

We intend for this study to provide some theoretical guidance for experimenters attempting to
establish the phenomenological parameters for mixtures. To achieve this we utilize the second law
requirement that the rate of entropy production of the mixture as a whole is non-negative to establish
inequality constraints on the phenomenological coefficients. In this regard some investigators have also
imposed Onsager’s reciprocal relations to reduce the number of cross flux coefficients. For example
in (4) this constraint requires kab = kba, thus reducing the number of coefficients that are needed to
be determined to three. By appealing to just the second law, we do not need to make this restriction.
In this regard it should be noted that in addition to Onsager type constraints, Klika et al. [15] and Klika
and Krause [16] have developed functional constraints for phenomenological coefficients. Although
their theory does not necessarily reduce the number of coefficients, it should simplify experimental
procedures necessary to establish their values.
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Our report is organized as follows. Section 2 gives a succinct review of the conservation equations
for mass, linear momentum, angular momentum, and energy, and the entropy tendency equation for
the entropy for a two-component fluid mixture. The traditional approach introduces the Helmholtz free
energy into the Clausius-Duhem inequality from which constraints on phenomenological coefficients
can be developed from constitutive equations with explicit statements connecting the fluxes and
thermodynamic forces, i.e., rate variables. Our observation is that thermodynamic constraints arising
from the inequality sometimes are neglected in constitutive theories for nonlinear and complex
materials such as polymers and second grade fluids. To address this and other more fundamental issues
Rajagopal and Srinivasa [17–19] developed a consistent theory built around constitutive equations
where the thermodynamic forces and fluxes are connected through implicit relations.

As there is a substantial body of literature on applications of the traditional framework to mixture
theory we elect to follow that approach. However, we deviate slightly from that approach by relying
on classical irreversible thermodynamics concepts [20] and utilize the Gibbs relation for the mixture to
establish the non-negative entropy production. In Section 3 we develop linear constitutive relations
for this two-component mixture. We extend previous work to allow for constituents with different
temperatures. Section 4 addresses constraints imposed on the constitutive equations by the second law
of thermodynamics. Section 5 analyzes some special cases and implications for characterizing the heat
flux of multi-temperature mixtures. We conclude in section 6 with a discussion of the implications of
this study.

2. Review of the Basic Equations of Mixture Theory

2.1. Background

Foundations of mixture theory, sometimes called the theory of interacting continua, are given in
books by [21,22], and early review articles by [23–25]. A recent review article by Klika, [20], provides
a critical assessment of standard approaches to multicomponent material. Here we appeal to the
classical irreversible thermodynamics paradigm as advocated by [20]. The conceptual premise of this
approach regards each component as a single continuum, denoted as Sα, and at each instant of time,
every point in space is considered to be occupied by a particle belonging to each component of the
mixture. Conservation laws are then written for each component accounting for interactions with
other constituents. Constitutive relations for the fluxes of heat and momentum are used to close the
governing equations.

Balance equations for the conservation of mass, linear momentum, angular momentum, and energy
equations for each constituent are obtained by summing the appropriate constituent equations over all
constituents; see for example [23,25]. Many early researchers attributed fundamental significance to the
mixture equations, but more recent works simply regard these as statements that the mixture obeys the
basic principles of physics. See [20,26,27] for additional discussion of this matter.

Our concern here is with the mixture of the two constituents that comprise a thermo-mechanical
system in which electromagnetic and chemical reactions are ignored and material isotropy is assumed.
Of course, the latter effects can be incorporated in mixture theory but are not essential here.

At each instant of time t, it is assumed that each point in space is occupied by particles
belonging to both S1 and S2. Then the equations describing the motion of a two-component system are
(see [20,23,24,28]):

x1 = X1(X1, t), x2 = X2(X2, t) (6)

while the kinematical quantities associated with these motions are

v1 =
d1x1

dt
, v2 =

d2x2

dt
, (7)

D1 =
1
2

(
∇v1 + (∇v1)

T
)

, D2 =
1
2

(
∇v2 + (∇v2)

T
)

, (8)
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W1 =
1
2

(
∇v1 − (∇v1)

T
)

, W2 =
1
2

(
∇v2 − (∇v2)

T
)

. (9)

In the above, v is the velocity field, D is the symmetric part of velocity gradient or deformation rate
tensor, W is the skew-symmetric part of the velocity gradient or spin tensor, the superscript T indicates
the matrix transpose, and d1

dt and d2
dt denote differentiation with respect to time holding X1 and X2

fixed, respectively.
The densities ρ1 and ρ2 for these two components are

ρ1 = φρ10, ρ2 = (1− φ) ρ20 (10)

where ρ10 and ρ20 are the pristine densities of the constituents in the reference configuration; φ is the
volume fraction of constituent 1. In the case of a mixture of a fluid and solid, φ usually refers to the solid
phase. Generally, 0 ≤ φ < φmax < 1 . The function φ is represented as a continuous function of position
and time; in reality, φ is either one or zero at any position and at any time, depending upon whether one
is pointing to a particle in constituent 1 or 2 at that position. In other words, the real volume distribution
content has been averaged, in some sense, over a neighborhood of any given position. In practice, φ has
a maximum value, especially for fluid-solid particle systems, generally designated as the maximum
packing fraction, which depends on the shape, size, method of packing, etc.

The mixture density ρ is given by
ρ = ρ1 + ρ2 (11)

and a mixture or average velocity v typically is defined by

ρv = ρ1v1 + ρ2v2. (12)

Of course other weighting functions could be used in (12), but we prefer the partial densities since
momentum density is fundamental in the equations of motion.

2.2. Conservation of Mass

Assuming no chemical reactions involving mass exchange between the constituents, the equations
of conservation of mass for each constituent in the Eulerian form are (see [20,22–24]):

d1ρ1

dt
+ ρ1∇ · v1 =

∂ρ1

∂t
+∇ · (ρ1v1) = 0

d2ρ2

dt
+ ρ2∇ · v2 =

∂ρ2

∂t
+∇ · (ρ2v2) = 0 (13)

where ∂
∂t is the partial derivative with respect to time holding the space dimensions fixed. Using (11)

and (12) it is clear that
∂ρ

∂t
+∇ · (ρv) = 0.

2.3. Conservation of Linear Momentum

Let T1 and T2 denote the respective partial stress tensors. We follow Eckart [29] and include
hydrostatic or equilibrium components in these stresses. Then the balances of linear momentum for
the two components are given by

ρ1
d1v1

dt
= ∇ · T1 + ρ1b1 + fI

ρ1
d2v2

dt
= ∇ · T2 + ρ2b2 − fI . (14)

Here bα are the external body forces and fI is a frame invariant form of the interaction forces resulting
in the exchange of momentum between the components. The importance of frame invariance in this
context is discussed by Truesdell and Noll [30]. Note that in writing (14) we appealed to Newton’s third
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law of motion to require that the latter exactly cancels in the conservation of total linear momentum of
the mixture.

Once the partial stress tensors are specified, a mixture stress tensor can be defined as in [31,32].

Tmix = T1 + T2 (15)

where, as suggested by [33],

T1 = (1− φ)T10

T2 = φT20. (16)

Here T10 and T20 are the pristine stress tensors for the respective material. Thus the mixture stress
tensor reduces to that of substance 1 as φ→ 0 and to that of substance 2 as φ→ 1. We note that there
are other ways to define Tmix in terms of T1 and T2, such as equation (2.13) in [34].

2.4. Conservation of Angular Momentum

The balance of moment of momentum for mixtures was analyzed in some detail by Bowen, [25].
It is sufficient here to write this as

Tα = TT
α + Mα, α = 1, 2

M1 + M2 = 0. (17)

Bowen [25] refers to Mα as the couple stress for constituent α. In the absence of couple stresses,
i.e., when Mα = 0 then (17) states the total stress tensor is symmetric. Equation (17) states that the
constituent couple stresses cancel each other.

2.5. Conservation of Energy

Each component of the mixture satisfies a balance of energy equation. This is expressed as

ρ1
d1

dt

(
u1 +

v1 · v1

2

)
= ∇ · (T1 · v1 − q1) + ρ1r1 + v1 · (ρ1b1 + fI) + e1

ρ1
d2

dt

(
u2 +

v2 · v2

2

)
= ∇ · (T2 · v2 − q2) + ρ2r2 + v2 · (ρ2b2 − fI) + e2. (18)

Here the uα denote the specific internal energies of constituent α, qα is the partial heat flux of α, rα

accounts for the external heat supply of α, and eα is the frame invariant energy supply to α.
For our purposes, it is more useful to focus on the internal energy balances for each constituent.

This is obtained by subtracting the kinetic energy equations derived from (14). Thus

ρ1
d1u1

dt
= T1 : ∇v1 −∇ · q1 + ρ1r1 + e1

ρ2
d2u2

dt
= T2 : ∇v2 −∇ · q2 + ρ2r2 + e2. (19)

Following [25] we use (8), (9), and (17) to express (19) as

ρ1
d1u1

dt
= TT

1 : D1 −∇ · q1 + ρ1r1 + e1 −
(

1
2

)
M1 : W1

ρ2
d2u2

dt
= TT

2 : D2 −∇ · q2 + ρ2r2 + e2 −
(

1
2

)
M2 : W2. (20)

As shown in [25], Equation (20) is frame invariant if the internal energy sources eα include the work
performed by the Mα. There the energy sources are written as
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eα −
(

1
2

)
Mα : Wα = e∗α (21)

Of course there may be additional internal energy sources. One important supply relevant to the heat
flux is the heat generated by the friction resulting from the relative motion of the constituents. In
Appendix 5A of [21] Bowen writes this as

W = (v1 − v2) · fI . (22)

Thus we specify objective internal energy supplies as

e∗1 = −
[(

1
2

)
M1 : W1 +W

]
e∗2 = −

[(
1
2

)
M2 : W2 +W

]
. (23)

Equation (23) states that the rate of work done on constituents by the internal couples contributes to
the constituent internal energy as does the contribution arising from the relative motions.

2.6. Entropy Tendency

Although the non-negative generation of entropy for mixtures is fundamental to any theory, there
is no universal agreement on how it is achieved. Some workers treat this from the standpoint of small
deviations from equilibrium as, for example, in [35]. Recently Grmela has proposed a general approach
utilizing Hamiltonian mechanics that is less restrictive. See [36,37] and references cited therein.

For present purposes it is sufficient to start with generic partial entropy tendency equations for
both constituents based on classical irreversible thermodynamics. In their equation (2.48) Rajagopal
and Tao [22] state the sum of these equations, from which it is straightforward to obtain the individual
equations in our notation as

ρ1
d1s1

dt
+∇ · J1 − ρ1rs1 = σ1

ρ2
d2s2

dt
+∇ · J2 − ρ2rs2 = σ2. (24)

Here the Jα are the transports of sα by non-advective or diffusive processes, the rsα terms account
for external entropy supply, and σα are the internal productions of entropy. If thermally interacting
materials equations of the form of (4) apply, it is possible that the temperature or velocity gradients
of one constituent could be strong enough to produce a negative entropy production for the second
constituent. Then σα < 0 for that constituent. Nevertheless, for the mixture we require

σ1 + σ2 = Γ ≥ 0. (25)

The presence of disparate constituent temperatures complicates the analysis of the mixture entropy
production terms since there is no consensus definition for the internal energy for a mixture when
the components have distinct temperatures. We avoid this issue and follow Eckart [29], de Groot and
Mazur [38], Jou et al. [6], and more recently Klika [20] and use the Gibbs relation for the mixture.
This presupposes the existence of both entropy and temperature functions. Of course the downside
of this approach is that the Gibbs relation applies to equilibrium conditions. This restriction is not
critical here as our primary goal is to explore the consequences of the second law on phenomenological
parameters.



Fluids 2020, 5, 77 7 of 15

Nevertheless the disparate temperatures of the constituents require special consideration. First we
apply the Gibbs relation to each constituent of (19) and (24) so as to accommodate the temperatures.
Then we sum the resulting equations to give the Gibbs equation for the mixture as

ρ1
d1s1

dt
+ ρ2

d2s2

dt
= θ−1

1

(
ρ1

d1u1

dt
− p1

d1v1

dt

)
+ θ−1

2

(
ρ2

d2u2

dt
− p2

d2v2

dt

)
. (26)

In (26) the pα are thermodynamic partial pressures associated with reversible processes, i.e., the
pressure each constituent would have if it occupied the mixture space. The sum of the partial pressures
would be the mixture partial pressure. Also in (26) the vα(= ρ−1

α ) are the partial volumes, and the θα

are the temperatures of the respective constituents.
Using (23) for the internal energy sources and (13) to express the partial volume changes of the

constituents in terms of the respective velocity divergences, (26) is rewritten as

ρ1
d1s1

dt
+ ρ2

d2s2

dt
− θ−1

1

[
ρ1

d1u1

dt
+ p1∇ · v1

]
− θ−1

2

[
ρ2

d2u2

dt
+ p2∇ · v2

]
= Γ−∇ · (J1 + J2) +∇ ·

(
q1

θ1
+

q2

θ2

)
+ ρ1rs1 + ρ2rs2 + θ−1

1 ρ1r1 + θ−1
2 ρ2r2

−θ−1
1

[
TT

1 : D1 + q1 · ∇θ−1
1 −

(
1
2

)
M1 : W1 −W

]
−θ−1

2

[
TT

2 : D2 + q2 · ∇θ−1
2 −

(
1
2

)
M2 : W2 −W

]
. (27)

The Gibbs formulation given in (27) suggests the mixture entropy flux and mixture external entropy
source is given by

J1 + J2 =

(
q1

θ1
+

q2

θ2

)
ρ1rs1 + ρ2rs2 =

(
ρ1r1

θ1
+

ρ2r2

θ2

)
. (28)

It then follows from (27) that

Γ =
(

θ−1
1 p1∇ · v1 + θ−1

2 p2∇ · v2

)
+θ−1

1

[
TT

1 : D1 + q1 · ∇θ−1
1 −

(
1
2

)
M1 : W1 −W

]
+θ−1

2

[
TT

2 : D2 + q2 · ∇θ−1
2 −

(
1
2

)
M2 : W2 −W

]
≥ 0. (29)

Equation (29) is the Clausius-Duhem equation for a two constituent mixture with different temperatures.

3. Constitutive Equations

3.1. Theory

The main objective of constitutive modeling is to supply connections between kinematical,
mechanical, chemical, electro-magnetic, and thermal fields in such a way that when used along
with the governing conservation equations the result is a well-posed theory for properly defined
problems. Since the fluxes and the dependent variables of the governing equations constitute more
unknowns than governing equations, it is necessary to develop constitutive relations between the
fluxes and dependent variables so that the number of fundamental equations equals the number of
unknowns. Here we employ an additional condition on the constitutive equations: the constitutive
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variables must also be constrained by the second law of thermodynamics. If they do not appear in the
second law inequality then they should not be used in the constitutive equations. As noted below this
is actually a constraint on the mathematical structure of the appropriate constitutive equations.

We speculate that for a two-constituent mixture of two fluids whose constituents have different
temperatures, densities, velocities, etc., the constitutive relations for the stress tensors and the heat
flux vectors should depend on the velocity difference, velocity gradient, temperatures, temperature
gradient, densities, density gradient, etc. Then application of frame-indifference results in the following
objective quantities:

G∗ = (ρ1, ρ2, θ1, θ2,4,∇ρ1,∇ρ2,∇θ1,∇θ2, a, D1, D2). (30)

Here4 = θ1 − θ2 and a = v1 − v2. There is an obvious redundancy in specifying both θ1, θ2 as well as
their difference. We include both, as some workers use just the latter. Note also that the partial density
dependencies can be replaced by the volume fractions φα.

Equations (13), (14), and (19) are the balance equations that govern the flow of a two-component
mixture with different temperatures. To close this system of equations, it is necessary to prescribe
constitutive relations for the stress tensors Tα, the momentum interaction force fI , and the heat
fluxes qα in terms of objective variables that arise in the balance equations. Constitutive equations
characterize the interactions between the constituents, thus different relations are used for various
types of flows such as gas-solid, bubbly liquids, solid-liquid, fluid diffusing through an elastic layer,
etc. Regardless of their specific forms, the latter equations are subject to the constraint imposed by (29).

3.2. Linear Constitutive Equations for a Mixture of Two Fluids

Here we develop constitutive relations to include heat fluxes for each constituent while neglecting
density variations, as our analysis is restricted to linear constitutive equations. We take as the objective
variable set a restricted version of G∗:

G = (∇θ1,∇θ2, a, D1, D2) . (31)

Consider first constitutive equations for the heat fluxes and the momentum interaction force.
The general linear representation for the former are assumed to be

q1 = α1∇θ1 + α2∇θ2 + α3a

q2 = β1∇θ1 + β2∇θ2 + β3a. (32)

Onsager’s reciprocal criteria provides some simplification to (32) by requiring α2 = β1; however, it
is not necessary to impose this condition here. Note further that α3 6= −β3 implies a mixture heat
flux even in the absence of thermal gradients. The friction associated with the relative motions of the
constituents heats both constituents. This process is not accounted for by the Fourier law.

The phenomenological coefficients in (32) are functions of the invariants H of G. See [39] for
details on invariants of vectors and tensors. Specifically

αi = αi (H)

βi = βi (H) . (33)

Similar to (32) fI is assumed to be given as

fI = γ1a + γ2∇θ1 + γ3∇θ2 (34)

with γ1, γ2, and γ3 also functions ofH. It is noteworthy that (34) allows for a transfer of momentum
between the constituents due to the constituent temperature gradients even in the absence of relative
motion of the constituents.
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Müller [34] indicated that in order to get well-posed problems, the interaction forces due to
density gradients, i.e., ∇ρ1 and ∇ρ2, should also be included among the interaction forces in (34). For
a detailed review and discussion of various interaction forces such as lift forces, forces due to mixing,
virtual mass, etc., see [40]. However, in the linear theory considered here there are no second laws
constraint on these processes; consequently they are excluded in our analysis.

Now consider constitutive equations for the partial stresses. These are specified as

T1 = (−p1 + λ1trD1 + λ3trD2) I + 2µ1D1 + 2µ3D2 + λ5 (W1 −W2)

T2 = (−p2 + λ4trD1 + λ2trD2) I + 2µ4D1 + 2µ2D2 − λ5 (W1 −W2) . (35)

Here I is the identity operator.Note also that these equations specify M1 = −M2 = λ5(W1 −W2).
There are a total of 9 phenomenological coefficients in (35), which are functions ofH. Application of
Onsager’s reciprocal relation principle would reduce the number to 7 by setting λ3 = λ4 and µ3 = µ4.

4. Entropy Production Constraints on the Constitutive Equations

In this section we use the Clausius-Duhem inequality (29) to determine constraints on the
phenomenological coefficients in the constitutive equations for a two-fluid mixture given by (32),
(34), and (35). They are determined by inserting (32), (34), and (35) into (29). Our approach relies on
establishing conditions on the phenomenological coefficients that insure non-negative quadratic forms
for the Clausius-Duhem inequality. Since we regard this condition to be a property of the quadratic
form, we employ symmetrized forms of the phenonemological matrices. This avoids evoking Onsager
conditions on the cross gradient coefficients a-priori, but reduces to that case when these conditions
are prescribed aposteriori.

The result can be broken down into entropy production by processes due to vectorial terms V
and tensorial terms T as

Γ = V + T ≥ 0. (36)

Following [41], we expect V and T to be ≥ 0 independently.
Consider first the contribution to entropy production from the vector processes. After some

calculation, using (32) and (34) one obtains V as

V = [∇θ1,∇θ2, a]T ·Λ · [∇θ1,∇θ2, a] ≥ 0 (37)

with

Λ =
−1
2


2α1θ−3

1

(
α2θ−3

1 + β1θ−3
2

) [
α3θ−3

1 + γ2 (θ1 + θ2)
−1
](

α2θ−3
1 + β1θ−3

2

)
2β2θ−3

2

[
β3θ−3

2 + γ3 (θ1 + θ2)
−1
][

α3θ−3
1 + γ2 (θ1 + θ2)

−1
] [

β3θ−3
2 + γ3 (θ1 + θ2)

−1
]

2γ1 (θ1 + θ2)
−1

 . (38)

Equation (38) differs from an earlier result given in [26] where the energy source terms were not frame
invariant.

The requirement for non-negative entropy production is that Λ be non-negative definite.
This requires the 6 determinants of the principal submatrices and the determinate of Λ to be
non-negative definate. Thus

α1, β2, γ1 ≤ 0 (39)
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since θ1, θ2 > 0. The inequality constraints arising from the second order principal minors are

α1β2

θ3
1θ3

2
−
(

1
4

)(
α2

θ3
1
+

β1

θ3
2

)2

≤ 0

(
α1

θ2
1

)(
γ1

θ1 + θ2

)
−
(

1
4

)(
− β3

θ3
2
+

γ3

θ1 + θ2

)2

≤ 0

(
β2

θ3
2

)(
γ1

θ1 + θ2

)
−
(

1
4

)(
− β3

θ3
2
+

γ3

θ1 + θ2

)2

≤ 0. (40)

The determinate of Λ provides a cubic constraint, but it is not recorded here.
Now consider the second law constraints on the tensor processes. Here

T =
[
λ1 (trD1)

2 + λ3 (trD2) (trD1) + 2µ1trD2
1 + 2µ3tr (D2D1) + λ5tr [(W1 −W2)W1]

]
θ−1

1

+
[
λ4 (trD1) (trD2) + λ2 (trD2)

2 + 2µ4tr(D1D2) + 2µ2trD2
2 − λ5tr [(W1 −W2)W2]

]
θ−1

2 . (41)

Using (29) in (35) it is found the partial pressures pα cancel in obtaining (41). Thus they do not play any
role in the generation of entropy for the mixture, [6,29], consequently they are not considered further.
Such processes are elegantly treated by Hamiltonian mechanics methods as described in [36,37].

Rendering (41) in matrix form gives

T =
[
tr(D1), tr(D2)

]  λ1
θ1

(
1
2

) (
λ3
θ1

+ λ4
θ2

)(
1
2

) (
λ3
θ1

+ λ4
θ2

)
λ2
θ2

 [tr(D1)

tr(D2)

]

+ tr

[D1, D2

]  2µ1
θ1

(
1
2

) (
2µ3
θ1

+ 2µ4
θ2

)(
1
2

) (
2µ3
θ1

+ 2µ4
θ2

)
2µ2
θ2

 [D1

D2

]
+ λ5 tr

[W1, W2

]  1
θ1

−
(

1
2

) (
1
θ1
+ 1

θ2

)
−
(

1
2

) (
1
θ1
+ 1

θ2

)
1
θ2

 [W1

W2

] . (42)

Consider the first term on the right-hand side of (42). Note that this is a quadratic form of
trD1, trD2. The requirement that this form be non-negative is

λ1

θ1
≥ 0

λ2

θ2
≥ 0

λ1λ2

θ1θ2
−
(

λ3

θ1
+

λ4

θ2

)2
≥ 0. (43)

Similarly, the second term in (42) is a quadratic form of tr(D2
1, D2

2) ≥ 0. From this it is concluded that

µ1

θ1
≥ 0

µ2

θ2
≥ 0

µ1µ2

θ1θ2
−
(

1
4

)(
2µ3

θ1
+

2µ4

θ2

)2
≥ 0. (44)
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The third line of (42) is a quadratic form in W1 and W2. Since the matrix determinate is
non-positive the relevant constraint requiring non-negative entropy production is

λ5 ≤ 0. (45)

These inequalities reduce to the standard condition for a linear Navier-Stokes fluid when the
temperatures of the two constituents are the same.

The main results of this section are the constraints imposed by the second law on the coefficients in
the constitutive equations. These are equations (39), (40), (43), (44) and (45). After adjusting for notation,
these results are the same as reported by those earlier in [26]. Note that if θ1 = θ2 these constraints
reduce to well-established conditions. The interesting aspect is the role the constituent temperatures
play in the second order principal minor constraints. These could be relevant to experimentalists and
to the stability of solutions of specific problems.

5. Special Cases

5.1. Heat Flux

We are now in a position to study several special cases of the constitutive equations for heat flux
vectors and the interaction force fI that are relevant to the issues raised in Section 1. First, recall (32)

q1 = α1∇θ1 + α2∇θ2 + α3a

q2 = β1∇θ1 + β2∇θ2 + β3a. (46)

The first two terms are a generalization of the Fourier law of heat conduction that accounts for
constituent heat fluxes that depend on the temperature gradients in both constituents. The third term
predicts a contribution to the constituent heat fluxes from friction arising from the different motions
of the constituents. However, if α3 = −β3 this term cancels in qmix and so the result is (5). If further
θ1 = θ2, then

qmix = (α1 + α2 + β1 + β2)∇θ. (47)

Hence α1 + α2 + β1 + β2 = k is the effective thermal conductivity of a mixture as noted in (3). Moreover,
q obtained from (46) is the same form as equation (6.39) in [31], who wrote this as

q = α∇θ + αik (vi − vk) .

Note also that the momentum transfer between constituents simplifies to

fI = γ1a + (γ2 + γ3)∇θ. (48)

5.2. Green Adkins Massoudi Theory

In response to the ontological question “How does mixture know it is a mixture?” Truesdell [21]
proposed three metaphysical principles to govern mixture dynamics. Although widely accepted, they
apparently do not account for all mixture behavior. Consequently several additional metaphysical
principles have been proposed. A recent review is given in [26]. Here we investigate the Green Adkins
Massoudi principle. Simply stated, this principle requires the governing equations and the constitutive
relations for mixtures to reduce to the appropriate form for a single constituent if the concentrations of
the other constituents vanish. This can be achieved by a number of weighting functions. Here we elect
to follow Massoudi, [33], by requiring the phenomenological coefficients to be functions of the volume
fractions of the constituents. That choice is also consistent with the analysis given in [27,42]. See also a
recent discussion of volume fractions in [20].
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Application to a fluid–fluid mixture with the phenomenological coefficients in (32), (34), and (35)
taken as linear functions of the volume fraction φ of constituent 2 gives

q1 = (1− φ)[α30∇θ1 + φα40∇θ2 + φα50a]

q2 = φ[(1− φ)β30∇θ1 + β40∇θ2 − (1− φ)α50a]

fI = φ(1− φ) (γ10a + γ20∇θ1 + γ30∇θ2)

T1 = (1− φ)[(λ10trD1 + φλ30trD2)I + 2(µ10D1 + φµ30D2) + φλ50(W1 −W2)]

T2 = φ {[(1− φ)λ4trD1 + λ2trD2] I + 2[(1− φ)µ40)D1 + µ2D2]}
− φ(1− φ)λ50(W1 −W2). (49)

It is stressed that (49) reduces to the standard constitutive equations for a Navier-Stokes fluid in the
extreme cases of φ = 1, 0. Moreover, the inclusion of the volume fraction in the phenomenological
coefficients in (49) does not impact the thermodynamic constraints given by equations (39), (40), (43),
(44) and (45); see [26].

The mixture heat flux implied by (49) is

qmix = (1− φ)(α30 + φβ30)∇θ1 + φ[(1− φ)α40 + β40]∇θ2. (50)

The heat flux generated by the differential movement of the two constituents does not contribute
to qmix, and the conductivities are weighted by the respective volume fractions. Moreover, when
∇θ1 = ∇θ2 the effective conductivity includes contributions from the cross flux terms α40 and β30.
These, however, are weighted by φ(1− φ) and further constrained by (40).

From (49) a mixture stress can be defined as

Tmix = T1 + T2. (51)

The weighting system in (51) is similar to that proposed in [31,32] for the mixture stress, except that it
includes the cross viscous terms µ30 and µ40 weighted by the respective volume fractions.

6. Conclusions

Several new results have emerged from this effort. First, we extended mixture theory for two
Navier-Stokes fluids to include temperature differences between the constituents. The general theory has
18 phenomenological coefficients. This number can be reduced to 15 if Onsager’s reciprocal principle is
evoked. Despite this rather large number, constraints on the constitutive equations were established by
the requirement of non-negative entropy production and shown to be consistent with previous results.

Secondly, consider the constitutive model given by (49). As suggested by Hansen et al., [27]
volume fraction serves as a weighting function for the constituent stresses and heat fluxes in the same
fashion Truesdell [21] proposed using constituent densities to define the mixture velocity. That paper
also provides a succinct argument for using volume fraction for these fluxes.

Thirdly, the heat flux laws proposed here will require new phenomenological parameters and thus
pose significant challenges to experimentalists. Weighting the constitutive equations by the constituent
volume fractions or other suitable weighting function could be an important attribute in this regard
since some of the coefficients can be determined from experiments with pristine substances. The cross
gradient fluxes, of course, will remain a challenge for experimentalists. However, the second law
inequalities established here put useful constraints on their values.

Although the constitutive models considered here are for two fluids, it has some applicability to
the mixture of a fluid and a solid. As an example, consider the two limiting cases of (49). In the first
case, suppose φ→ 0, i.e., the particle component vanishes. Then α1 = k1, indicating that we have a
case of pure fluid. In the second case, φ→ 1, i.e., the fluid component vanishes and we have a solid
matrix, β1 = k2, where k2 is the pure thermal conductivity of the solid material.
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This study calls attention to other areas for further investigation. First is the energy equation
for mixtures with different constituent temperatures. The case of equal constituent temperatures
is straightforward and well established in the literature, whereas the two-temperature scenario
considered here is not. A second area involves extending the theory to include density effects such as
in suspensions of granular materials in fluids as studied by [43–45]. Here the constitutive equations
will include second order effects such as density gradients in the stress constitutive equations. This
means the entropy inequality will no longer be of quadratic form. Nevertheless, as shown in [44,46],
second law constraints on the phenomenological coefficients can still be obtained.
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