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Abstract: This paper discusses the potential of deterministic wave prediction as one basic module for
decision support of offshore operations. Therefore, methods of different complexity—the linear wave
solution, the non-linear Schrödinger equation (NLSE) of two different orders and the high-order
spectral method (HOSM)—are presented in terms of applicability and limitations of use. For this
purpose, irregular sea states with varying parameters are addressed by numerical simulations as
well as model tests in the controlled environment of a seakeeping basin. The irregular sea state
investigations focuses on JONSWAP spectra with varying wave steepness and enhancement factor.
In addition, the influence of the propagation distance as well as the forecast horizon is discussed.
For the evaluation of the accuracy of the prediction, the surface similarity parameter is used, allowing
an exact, quantitative validation of the results. Based on the results, the pros and cons of the different
deterministic wave prediction methods are discussed. In conclusion, this paper shows that the
classical NLSE is not applicable for deterministic wave prediction of arbitrary irregular sea states
compared to the linear solution. However, the application of the exact linear dispersion operator
within the linear dispersive part of the NLSE increased the accuracy of the prediction for small wave
steepness significantly. In addition, it is shown that non-linear deterministic wave prediction based
on second-order NLSE as well as HOSM leads to a substantial improvement of the prediction quality
for moderate and steep irregular wave trains in terms of individual waves and prediction distance,
with the HOSM providing a high accuracy over a wider range of applications.

Keywords: decision support system; non-linear wave prediction; high-order spectral method;
second-order non-linear Schrödinger equation; JONSWAP Spectrum

1. Introduction

Ships and offshore structures are exposed to the sea, limiting the scope of application of offshore
operations, from efficient and economic offshore operations in moderate sea states to reliability as well
as survival in extreme wave conditions. To classify offshore operating conditions, predefined limiting
criteria such as absolute or relative motions are typically combined with a limiting characteristic wave
height or sea state based on stochastic analysis in the design process, allowing identifying feasible and
infeasible sea states, respectively. Typically, these limiting sea states are further reduced in terms of
allowable significant wave heights by insurer and surveyor of offshore operations. This approach limits
the applicability of offshore operations strictly as most sea states (in particular in the transition area
between feasible and infeasible region of a scatter diagram) will feature favourable wave sequences
allowing short-term offshore operations which are elapsed unused. Knowing the future in terms of
deterministic prediction of the encountering wave field and structure motion a sufficient time span
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in advance would allow reducing the downtime as the critical part of an offshore operation typically
corresponds to a short time interval of the whole operation. In addition, a decision support system
(DSS) based on deterministic wave prediction can also detect critical wave groups in pretended feasible
sea states increasing the safety of complex operations. The impact of such a DSS on shipping as
warning system (e.g., parametric roll, extreme wave events, extreme motions and structure response)
should not be left unmentioned even though the focus may lie on offshore operations.

The established research on deterministic wave prediction comprises two indispensable
constituents: sea state registration and wave prediction. The deterministic structure motion prediction
based on the wave prediction is a further key element for a DSS but will not be discussed in detail
within this paper. For the registration of the future encountering wave field, the surface elevation has
to be measured at a certain distance from the prediction point (e.g., location of offshore operation).
Different measurement methods are available, from point measurements (e.g., wave buoy) in time
domain to surface elevation snapshots taken from the ship’s X-band radar in the space domain. As the
focus of the paper lies on wave prediction exclusively, the following brief description of the sea state
registration methods are only introduced in order to support the approach presented in this paper
without any technical details.

Point measurements are disadvantageous compared to a surface elevation snapshot as a
single point measurement cannot provide information regarding the directionality of the sea state.
This problem may be solved by using a large array of several point measurement devices in order to
identify the directionality of the wave components. However, as the availability of point measurement
devices in the open ocean are generally limited, this approach would denote to install such an array
prior to the offshore operation excluding a plug-and-play application. In addition, this approach is
impractical for DSS of ships or offshore structures with forward speed. A further drawback is the
principle of measurement as point measurements denote that the wave field is recorded at a fixed
location over a specific time. As a consequence, the prediction time (time between the moment at
which the prediction is available and the moment at which the predicted waves physically arrive at
the prediction location) is reduced by the recording time, independently of the computational time
needed for the used wave prediction method [1–4].

The ship’s X-band radars provide the surface elevation for domains of several square kilometres
including information on directionality. Theoretically, the detected wave field can be available after
every revolution of the radar antenna (<2 s), even though time is needed for the inversion of the radar
clutter (due to the presence of the waves) to the wave field. In contrast to single point measurements,
where a sufficient measuring time is needed for an accurate and sufficiently long prediction, this time
lag is only limited by the numerical efficiency of the used algorithm. Unfortunately, the principle
of measurements of X-band radars also yield a main drawback as the radar cannot detect wave
troughs behind (steep) wave crests. Thus, the accuracy is dependent on the wave inversion algorithm.
However, the advantages of using a ship’s X-band radar (plug-and-play, very fast wave registration
over a large space domain, directionality of the wave field, and large prediction horizon) seems to
outweigh the disadvantages as two commercial prediction systems are available from the companies
Applied Physical Sciences Corporation (FutureWavesTM [5]) and Next OceanTM [6]. Even this paper
focusses on wave prediction exclusively, the presented research assumes surface elevation snapshots
(taken continuously by a ship board radar at great distance ahead the operational area) as input for the
deterministic wave prediction.

One principal point of the development process of deterministic wave prediction is the
implementation of very fast algorithms to obtain the predicted wave field in a sufficient time span
before the physical wave field arrives at the prediction location. Only a few methods are capable
due to the contrary specifications of very fast calculation time and high accuracy at once. The fastest
method but also simplest one is the linear theory, which has already been applied for wave prediction
applications with promising findings [2,7–15]. A Shipboard Routing Assistance system (SRA) based
on the continuous ship’s X-band radar measurements of the surrounding seaway were presented
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by Payer and Rathje [7]. The linear evolution of continuously measured surface elevation snapshots
using the ship’s X-band radar are also the basis for a decision support system for Computer Aided
Ship Handling (CASH) developed by Clauss et al. [8]. It was shown that this tool can predict the
encountering wave field as well as the structure response fairly accurate for moderate long crested
sea states. Later, Clauss et al. [12] and Kosleck [2] enhanced this tool to predict the short crested
encountering wave field and the corresponding 6DOF motion. Tyson and Thornhill [16,17] applied
linear wave prediction using WaMoS IITM on full scale tests evaluating the predictive skills of the
linear methods. They showed that for short forecast duration and small to moderate wave steepness,
the accuracy of the linear approach is sufficient. In addition, Naaijen and Huijsmans [9,11] as well as
Naaijen et al. [10,15] applied linear wave evolution equations for real time wave prediction and ship
motion estimation in long as well as short crested waves concluding “that a 60 s accurate forecast of
wave elevation is very well feasible for all considered wave conditions and motion predictions are
even more accurate”. Due to the simpleness and robustness, the linear approach is an integral part of
commercially available prediction system (e.g., FutureWavesTM [13,14], Next OceanTM [6]).

However, the linear approach implies uncertainties due to its strong simplifications of the water
wave problem. Non-linear effects become dominant with increasing wave steepness reducing the
accuracy of the linear approach significantly. Non-linear methods enable advanced simulations with
high accuracy but at the expense of computation time. One of the few non-linear and numerical
efficient methods suitable for wave prediction are the so-called envelope equations of the NLSE
framework [18–21]. Both the NLSE and the modified NLSE (MNLSE) were extensively experimentally
and numerically investigated in terms of non-linear wave evolution (e.g., [22–26] among others).
Even if the NLSE captures relevant non-linear phenomena and provides good accuracy for sufficiently
narrow spectra, it was generally shown that the NLSE is less suitable for the prediction of irregular sea
states due to the spectral bandwidth constraint. The MNLSE on the other side provides significant
better agreement due to the broadening of the bandwidth constraints (e.g., [22–26]).

Ruban [27] showed that the NLSE is suitable for the prediction of extreme waves applying the
Gaussian variational ansatz to the NLSE in order to obtain a semi-quantitative prediction of non-linear
spatio-temporal focussing. Farazmand and Sapsis [28] presented a reduced-order prediction of rogue
waves using MNLSE. Their procedure is based on the identification of elementary wave groups
(EWG) assuming that critical EWGs do not interact with other EWGs within the short-term prediction.
The measured irregular sea state is decomposed into EWGs and the evolution and amplitude growth of
critical EWGs is determined by precomputed EWGs based on MNLSE. Thus, the numerical effort for the
prediction of extreme events is reduced to the proper decomposition of the sea state and identification
of the underlying, precomputed EWG. Cousins et al. [29] showed a similar approach: a data-driven
prediction scheme for the prediction on extreme events. This approach can also divided into two
separate components. The first component provides the data base for the prediction of extreme events,
is based on the MNLSE and can be applied prior any real world application. The basis are localized
wave groups which are numerically evolved for varying amplitudes and periods resulting in specific
group amplification factors. The second component is the real-time extreme wave predictor using field
measurements. Within the measurements, coherent wave groups are to be identified and the future
elevation is estimated from the data base. Again, the numerical effort is reduced to decomposition of
the irregular wave sequence, identification of coherent wave groups, and resulting amplification.

The NLSE as well as MNLSE has also been used for deterministic wave prediction (e.g., [26,30]).
Simanesew et al. [30] applied both for the deterministic prediction of long- as well as short-crested
sea states in time domain. They showed that both the NLS and MLSN provide sufficient accuracies
in long-crested sea states for short forecast distances and horizons. For increasing directionality
the quality of the forecast decreases significantly. Of particular note in this investigation is that
the linear dispersion behaviour is captured exactly by using the dispersion operator introduced by
Trulsen et al. ([21]).
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An alternative non-linear method for wave prediction is the numerically efficient high-order
spectral method (HOSM) [31–33]. Wu [1] as well as Blondel et al. [34] applied the HOSM for the
deterministic reconstruction and prediction of non-linear wave fields. The basis of their work are
wave registrations based on one or several wave probes at specific locations. Thus, sophisticated
optimization procedures for the reconstruction of the wave field in space were used at the beginning
as snapshots in the space domain are required as initial condition for the HOSM. This time-consuming
reconstruction process hindered an effective application of the HOSM for wave prediction. However,
taking advantage of the supposed drawback by using surface elevation snapshots continuously taken
by a ship’s X-band radar at great distance as input, enables the use of the efficient and accurate
HOSM without time-consuming reconstruction of the wave field in space domain. Nevertheless, they
generally showed that long-time and large-space simulations of non-linear sea state evolutions can be
performed accurately and efficiently with the HOSM. Clauss et al. [35] and Klein et al. [36] presented
that the HOSM predicts non-linear wave group propagation very accurately. The applicability of the
HOSM for non-linear real-time prediction was shown by Köllisch et al. [4]. Desmar et al. [37] applied
the HOSM for the generation of reference wave snapshots in order to evaluate reconstruction methods
of different complexity and the consequences on the prediction accuracy. This investigation showed
that non-linear methods for wave reconstruction (based on spatio-temporal optical measurements) are
improving the accuracy of the reconstructed initial wave field and prediction.

This paper presents a comparative study on the accuracy of intended wave prediction methods of
different complexity. The objective is the evaluation of the applicability of the utilised methods for
accurate deterministic wave prediction using irregular sea states. The focus lies on the investigation of
the influence of the wave steepness, wave propagation distance and shape of the underlying spectrum.
To be consistent with a possible real world application (input snapshots from ship’s X-band radar),
the numerical and experimental investigations are performed in space domain. Herein, the unavoidable
radar shadow around the ship’s position is also modelled and the influence is evaluated. For the
experiment’s validation, a semi-experimental validation procedure is introduced as measuring the
surface elevation in space domain is almost impractical in the controlled environment of a seakeeping
basin. The accuracy of the predictions is evaluated with the surface similarity parameter allowing an
exact, quantitative evaluation.

2. Wave Theory

We now present a brief description of the water wave problem without attempting to be
comprehensive, herein only those methods are presented which are relevant for this paper. At the
beginning the boundary value problem of potential flow theory is briefly introduced, followed by the
used methods presented in the order of complexity, from linear wave theory via weakly non-linear
envelope equations to (fully) non-linear simulations. At the end, the fully non-linear numerical wave
tank waveTUB is additionally presented as waveTUB depict the key element for the semi-experimental
validation procedure. For this study, the water wave problem is simplified to long-crested waves.

Assuming that the Newtonian fluid is incompressible, inviscid and irrotational, the evolution
of long-crested waves (travelling in x-direction) can be mathematically described by the following
governing equations:

4Φ = 0, (1)

Φz −Φxζx − ζt = 0 on z = ζ(x, t), (2)

gz +
1
2
(OΦ)2 + Φt = 0 on z = ζ(x, t), (3)

Φz = 0 on z = −d, (4)

with 4 ≡ (∂2/∂x2, ∂2/∂z2), O ≡ (∂/∂x, ∂/∂z) and the subscripts represent the corresponding
derivation. The bottom and the unknown free surface representing the boundaries of the fluid
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domain. Equation (4) presents the boundary condition at the bottom which is considered to be
level, rigid and impermeable. For the dynamic boundary condition at the free surface (Equation (3)),
the dynamic pressure is defined to be constant equalling the atmospheric pressure. The kinematic
boundary condition at the free surface (Equation (2)) defines that particles, being element of the free
surface at rest, must not leave the free surface in the presence of waves. The kinematic as well as
dynamic boundary condition have to be fulfilled at the unknown free surface z = ζ(x, t) complicating
the solution of the boundary value problem significantly.

2.1. Linear Wave Theory

Linear wave theory can be deduced from the Cauchy problem (Equations (1)–(4)) by applying
perturbation theory for the unknown potential and surface elevation. In addition, the boundary value
problem at the unknown surface can be approximate by Taylor series expansion. For Stokes wave theory,
the perturbation parameter is related to the wave steepness ε = ζak. Truncation of the series expansion
at order O(ε1) (assuming that the wave height is significantly smaller compared to the wave lengths)
results in a simplified boundary value problem for which the analytical linear solution can be determined.
For irregular surface elevations of long-crested waves in time and space, the solution reads

ζ(x, t) = ∑
n

ζan cos(knx−ωnt + φn), (5)

with ζan, kn, ωn and φn as amplitude, wave number, angular frequency and phase of the nth

component wave. The desired sea state is regarded as superposition of independent harmonic
component waves, each with a particular amplitude, frequency and phase. Applying Equation (5),
a measured irregular surface elevation can be transformed at any position in time and space enabling
a very fast and simple approach for deterministic wave prediction. The analytical basis for irregular
sea states is the Fourier transform. The angular frequency and wave number are coupled via the
dispersion relation

ωn =
√

kng tanh(knd), (6)

with water depth d and gravitational acceleration g. The linear description of the natural
seaway enables a simple handling of a complex process with widely acceptable results for
engineering applications.

2.2. Non-Linear Schrödinger-Type Equations

The classical NLSE can be derived similarly to the linear theory by applying perturbation and
Taylor series expansions on the Cauchy problem [18,19]. Assuming small amplitude waves and a
narrow bandwidth spectrum, the perturbation parameters are the wave steepness ε = kcζa and the
relative bandwidth µ = ∆k/kc << 1 (assuming µ2 ∝ ε). The Taylor series expansions about still water
level is introduced in order to simplify the surface boundary conditions. Furthermore, the boundary
value problem is separated into the different orders O(ε(n)) and each order is solved sequentially
from the lowest to the highest order. Truncation of the perturbation expansion at order O(ε3) leads
to the NLSE. The NLSE captures some important aspects of non-linearity of water waves such
as modulation instability and provides exact solutions enabling fundamental research on weakly
non-linear wave-wave interaction. However, the NLSE is limited in non-linearity magnitude and
spectral bandwidth hindering a diversified application as deterministic wave prediction method.
These limitations can be reduced by including higher order terms of the asymptotic series expansion.
The next higher order O(ε4) leads to the well known MNLSE [20,21]. Brinch-Nielsen and Johnson [38]
derived the MNLS for arbitrary water depth. However, in most of the cases, the MNLSE is applied
assuming infinite water depth and is typically referred as Dysthe equation. Recently, Slunyaev and
Pelinovsky [39] extended the Dysthe equation to the next order (O(ε5)) referring to higher-order
Dysthe equation.
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Generally, and not only with regard to this study, the water depth influence cannot be neglected
for deterministic wave prediction as offshore operations are conducted in arbitrary water depth.
For the NLSE, the derivation of the necessary coefficients taking the water depth influence into account
can be found in Mei [40]. For the next higher order, Sedletsky [41] derived a second-order NLSE
(O(ε4)) for arbitrary water depth, which reduces to the classical Dysthe equation in the limit of
infinitely deep water. Based on this outcome, Slunyaev [42] derived the third-order NLSE (O(ε5)) for
arbitrary water depth investigating the impact of the different non-linearity orders on the modulation
instability. For this study on deterministic wave prediction, the NLSE up to the second-order is used in
the following ways.

According to Slunyaev [42], truncation of the perturbation expansion at order O(ε4) leads to the
temporal evolution equation

i
(

∂A
∂t

+ V
∂A
∂x

)
+ β1

∂2 A
∂x2 + α1|A|2 A + iβ2

∂3 A
∂x3 + iα21|A|2

∂A
∂x

+ iα22 A2 ∂A∗

∂x
= 0, (7)

with A being the envelope of the wave sequence, V the group velocity of the carrier wave,
the superscript ∗ denotes conjugate complex. The indices of the coefficients α and β mark the specific
order of the underlying harmonic (first index) as well as order of expansion (second harmonic),
which is adopted from Slunyaev [42] in order to be consistent with the presented equations for the
coefficients (summarized in Appendix A). The group velocity depends on the carrier wave number kc,
the corresponding angular frequency ωc =

√
kcg tanh(kcd)) and the water depth d,

V =
ωc

2kc

(
1 +

2kcd
sinh(2kcd)

)
. (8)

The first four terms in Equation (7) display the classical first order NLSE and the underlying wave
field can be reconstructed as follows:

ζ = Re (A exp(iωct− ikcx)) . (9)

Truncation at order O(ε4) results in Equation (7) representing the solution for the second order
NLSE (NLSE2) equivalent to the MNLSE (and Dysthe equation for kcd → ∞). The reconstruction
formula reads

ζ = r01|A|2 + Re
(

A exp(iωct− ikcx)) + Re(r21 A2 exp(2iωct− 2ikcx)
)

, (10)

with contributions of the zeroth, first and second harmonics.
The dispersive behaviour of the waves is represented by the second term and all terms related

to βnm; the non-linear wave-wave interaction corresponds to the αnm terms. The dispersive terms in
Equation (7) are the consequence of the Taylor series expansion of the linear dispersion relation so that
the dispersion of the waves is represented in the vicinity of the underlying carrier wave number kc.
For increasing order, the obtained dispersion behaviour approximates to the full linear dispersion.
However, Trulsen et al. [21] introduced the full linear dispersion operator

L̂ =
√
(k− kc)g tanh((k− kc)d))−ωc, (11)

with k representing an array of wave numbers and the higher order dispersive terms can be calculated by

F̂−1 {L̂F̂ {A}
}
= iV

∂A
∂x

+ β1
∂2 A
∂x2 + iβ2

∂3 A
∂x3 + β3

∂4 A
∂x4 + ..., (12)

with F̂ marks the Fourier transform and F̂−1 the inverse Fourier transform, i.e., the operation is done
in Fourier space by means of pseudo-spectral approach. Equation (12) takes terms beyond the highest
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order (O(ε4)) considered in this paper into account and is formally not consistent with the series
expansions truncated at specific orders. Nevertheless, introducing Equation (12) into Equation (7)
provides the advantage that the linear dispersive behaviour is fully taken into account resulting in
increasing accuracy compare to the classical Taylor series expansion of the linear dispersion relation
at each selected order. Another advantage is more practical, as in particular for the determination
of higher order derivatives via pseudo-spectral methods, the difficulties with numerical noise and
aliasing effects are reduced.

For this study, the two non-linear envelope equations resulting from Equation (7) are implemented
in order to investigate the influence of the different orders on the wave prediction accuracy. For each
order, the full dispersion operator (Equation (12)) is applied. In addition, the Taylor series expansion
of the linear dispersion is also applied for the NLSE (first four terms in Equation (7)) to investigate and
evaluate the benefit of applying the full dispersion operator. The classical NLSE simulations including
Taylor series expansion of the linear dispersion are performed by implementing the pseudo-spectral
split-step method. Hereby, the linear and non-linear part of the NLSE are determined separately.
The linear part is calculated in frequency domain applying Fourier transform and the non-linear part in
time domain. For all other simulations including the full dispersion operator, the linear and non-linear
parts are determined together with a pseudo-spectral approach at each time step and advanced in time
with the midpoint finite-difference approximation. The carrier ware number kc necessary to run the
simulations is determined for each snapshot by applying

kc =

∫
k · E(k)Pdk∫

E(k)Pdk
, (13)

with E the variance spectrum of the snapshot and P = 5 as weighting factor to weight the result toward
the visual peak [43].

2.3. High-Order Spectral Method

The HOS method was introduced independently by West et al. [31] and Dommermuth and Yue [32]
(cf. Tanaka [33]). This procedure enables the non-linear simulation of short-crested sea states and
takes all non-linear interactions, resonant and non-resonant, into account. In addition, wave-current as
well as wave-bottom interactions can be considered. For our investigation, the numerical procedure
presented in West et al. [31] is implemented using a pseudo-spectral method. Specifically, all derivatives
related to the potential and surface elevation are determined in Fourier space assuming periodic
boundary conditions while the non-linear products are calculated in physical space. “The (near)
linear computational effort” as well as “exponential convergence (...) are notable characteristics of the
computational efficacy of HOS methods” [44].

At the beginning, the Cauchy problem is converted to equations at the free surface Ψ(x, t) ≡
Φ(x, ζ(x, t), t). Using chain rules, the free surface boundary conditions (Equations (2) and (3)) can be
rewritten as:

ζt = −Ψxζx + W(1 + (ζx)
2) on z = ζ(x, t), (14)

Ψt = −gζ − 1
2
(Ψx)

2 +
1
2

W2(1 + (ζx)
2) on z = ζ(x, t), (15)

with W = Φz|z=ζ as vertical velocity at the free surface.
Using Equations (14) and (15) as free surface boundary conditions, the boundary value problem

is now exclusively related to the vertical velocity W(x, ζ(x, t), t) (in space domain) and the solution for
W(x, ζ(x, t), t) in terms of ζ(x, t) and Ψ(x, t) can be determined by series expansion. The procedure
proposed by West et al. [31] starts from the formal expression that the velocity potential Ψ(x, t) and
vertical velocity W(x, ζ(x, t), t) can be represented as Taylor series expansion a z = 0. Assuming that
Ψ(x, t) and ζ(x, t) are quantities of O(ζn), φ(x, t) and W(x, t) are expanded by perturbation series,
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with ζ as ordering parameter and M = m + 1 is the order of approximation of non-linearity. Separating
the terms of each order O(ζn) yields,

φ(0)(x, t) = Ψ(x, t), (16)

for the first order. The next higher order solutions are obtained successively from the next lower
order solution,

φ(m)(x, t) = −
m

∑
n=1

ζn

n!
∂n

∂zn φ(m−n)(x, t). (17)

The vertical velocity W at the surface ζ is obtain by

W(m)(x, t) = −
m

∑
n=0

ζn

n!
∂n+1

∂zn+1 φ(m−n)(x, t). (18)

Assuming periodic boundary conditions, the Fast Fourier Transform (FFT) can be used for
determining φ(m)(x, t) and its derivatives as well as ζx. For arbitrary water depth, the wave-bottom
interaction on φ(m)(x, t) can be derived in Fourier space by

φ(m)(x, t) =
1

2π

∞∫
−∞

φ̂(m)(k, t) cosh(|k|(z + h))eikxdk, (19)

with φ̂(m)(k, t) as Fourier coefficient.
For this study, a low pass filter according to West et al. [31] is implemented to avoid Fourier space

aliasing for the higher order terms and the series expansion was expanded up to the fourth order
(M = 4). To suppress high frequency contamination occurring for the highest waves, which can cause
numerical instabilities [35], an exponential damping term was additionally introduced in the Fourier
space. However, the procedure is neither capable of simulating steep waves close to breaking nor
handling wave breaking effects. In this study, the fourth order Runge-Kutta-Gill method is applied to
advance the evolution equations in time.

2.4. WaveTUB

This potential theory solver was developed at the Technische Universität Berlin (TUB) for the
simulation of non-linear wave propagation [45]. The two-dimensional, non-linear free surface flow
problem (Equations (1)–(4)) is solved in time domain. The velocity potential is calculated in the entire
fluid domain with the Finite Element Method and at each time step a new boundary-fitted mesh is
created. Based on the calculated velocity potential, the velocities at the free surface are determined by
second-order differences. The fourth-order Runge-Kutta formula is applied to develop the solution in
time domain. At one side of the numerical wave tank, a numerical beach is implemented by adding
artificial damping terms to the kinematic and dynamic free surface boundary condition enabling
long term simulations. On the other side, a moving wall is implemented for the generation of waves
enabling the simulation of piston-type, flap-type and double flap-type wave boards. A detailed
description of the theoretical background can be found in Steinhagen [45]. The established program
waveTUB showed a high accuracy over recent years for a multitude of different tasks (cf. [45–47]).

3. Experimental Program And Results

The following study comprises investigation of irregular sea states based on JONSWAP spectra
evaluating the influence of wave steepness, the shape of the underlying spectrum (in terms of
enhancement factor γ) and the wave propagation over large distances. The above introduced intended
wave prediction methods are used and the accuracy is evaluated quantitatively. A realistic real world
application is simulated by taking eight consecutive snapshots per sea state (similar to a ship’s radar)
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into account. In addition, the unavoidable radar shadow is also modelled and its influence on the
prediction accuracy is discussed. Following, all data are presented in full scale (model scale 1:75).

Table 1 presents the investigated sea states based on JONSWAP spectra with varying significant
wave height Hs and enhancement factor γ. Therefore, three different significant wave heights are
investigated based on preselected wave steepness ε = kp · Hs/2 marking small, moderate and steep
irregular sea states. For each wave steepness, the enhancement factor γ is varied. A special feature of
this investigation is the implementation of an identical phase distribution (at the wave board) for all
investigated sea states. This allows an exclusive evaluation of the influence of wave steepness and
bandwidth of the underlying spectrum. Thus, differences in the evolution of the sea states (and thus
to the accuracy of the intended prediction methods) are exclusively related to the underlying wave
spectrum allowing conclusions on the effect of non-linear wave propagation due to wave steepness as
well as band width of the spectrum.

Table 1. Overview of the investigated irregular sea states

No. Tp kpd Hs ε γ

1

8.58 s 4.1

1.83 m 0.05

1

2 3

3 6

4

3.66 m 0.1

1

5 3

6 6

7

5.48 m 0.15

1

8 3

9 6

The experiments are performed in the seakeeping basin of the Ocean Engineering Division
at TUB. The basin is 110 m long and 8 m wide with a measuring range of 90 m. The water depth is
1 m. The waves are generated by an fully computer controlled, electrically driven wave generator,
which can be used in piston as well as flap-type mode. The implemented wave generation software
enables the generation of regular waves, transient wave packages, irregular sea states as well as
tailored (critical) wave sequences. On the opposite side, a wave damping slope is installed to suppress
disturbing wave reflections.

The accuracy of the different wave prediction methods applied on the measured irregular
sea states is investigated with an semi-experimental approach. The aforementioned real world
application—deterministic wave prediction based on ship’s X-band radar—serves as prototype.
Thus, surface elevation snapshots in space domain are used as input. In addition, fixed prediction
locations are defined at which the prediction in time domain is presented. The influence of the
radar shadow on the prediction accuracy is additionally investigated. To avoid time-consuming and
expensive series of measurements, which would be necessary to detect the surface elevation in space
domain in the seakeeping basin, a semi-experimental approach is introduced for the preparation of
the input snapshots. Measuring the surface elevation in space domain would denote that plenty of
successive, pointwise measurements have to be conducted (with suitable calm down time in between)
to obtain the snapshot.

The semi-experimental approach enables significantly fewer measurements by more validation
scenarios at the same time. The fully non-linear numerical wave tank waveTUB is applied for
the determination of the required surface elevation snapshots for the deterministic wave prediction.
The seakeeping basin, used for the experimental validation, can be modelled exactly with this numerical
wave tank (including the wave maker) resulting in identical boundary conditions at the wave board,
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i.e., providing an identical starting point of the wave evolution for both tanks. Thus, the irregular sea
states are investigated in the seakeeping basin and reproduced with the numerical wave tank waveTUB
providing the input wave snapshots for the deterministic wave prediction. The input snapshots based
on waveTUB as well as the prediction results are experimentally validated.

Figure 1 presents the general scheme of this procedure showing the side view on the wave tank
(all data full scale). On the left hand side the wave maker and on the right hand side a wave damping
beach is installed/modelled. A surface elevation snapshot at a specific time is also indicated which is
the basis for the intended wave prediction methods. For the pointwise validation of the waveTUB
input snapshots as well as wave predictions by measurements in time domain at fixed positions, four
wave gauges are installed during the experiments. The waveTUB reproductions are compared with
the experiments near the wave maker at wave gauge 1 to draw conclusions on the quality of the
reproduction. The predicted wave sequences for three different prediction distances are validated at
the other three wave gauges (2-4).

Figure 1. General scheme of the applied semi-experimental procedure for the irregular sea states
investigations including validation locations.

The waveTUB simulations are used to extract eight consecutive snapshots from each sea
state simulating consecutive snapshots taken from the ship’s radar of a real world application.
Each consecutive snapshot is used as input for the wave prediction for the three location (cf. Figure 1
wave gauges (2-4)). Figure 2 presents exemplary the applied procedure in detail for sea state 1.
The surface elevation snapshots (grey curves) taken from the waveTUB simulations are presented in
the left diagrams—the consecutive time steps are displayed from top to bottom. In dependence on
the real world application, the real world radar shadow close to an offshore structure is simulated
by modifying the waveTUB results. Assuming that wave gauge 2 is the location of the radar and a
realistic radar shadow of 500 m, the radar shadow is simulated by changing the surface elevation to
zeros in this area (as well as behind wave gauge 2). The modified surface elevation snapshots are
shown as red curves in the left diagrams of Figure 2. In addition, the positions of the four wave gauges
used in the experiments are indicated by the black vertical lines.

The measured surface elevations (blue curves) in time domain at wave gauge 2 are exemplary
compared with the HOSM simulations (red curves) on the right hand side of Figure 2—the prediction
basis are the modified waveTUB input snapshots (red curves on the left hand side). Only the time span
where an accurate prediction can be accomplished theoretically is presented. This prediction region
marks the spatio-temporal domain which can be predicted based on known ranges in space and time
for certain sea states. The group velocity of the fastest and slowest wave groups within the sea state
define the prediction range—the slowest wave group must have reached the target location (position
of offshore structure or in our study the positions of wave gauges 2-4) and the fastest wave group must
not have passed the target location (cf. [1–3,48]). For this study, the prediction region is determined for
each consecutive input snapshot separately but the variation for the different consecutive snapshot
as well as sea states is marginal. Based on this, the average prediction time at wave gauge 2 is
approximately tpt ≈ 300 s (cf. red curves in Figure 2 on the right hand side) with an average minimum
forecast horizon time tmin f h ≈ 90 s (time the slowest wave group within the sea state needs to reach the
target location, i.e., starting point of the prediction range) and an average maximum forecast horizon
tmax f h ≈ 390 s neglecting any computational time (wave gauge 3: tpt ≈ 257 s, tmin f h ≈ 223 s and
tmax f h ≈ 480 s; wave gauge 4: tpt ≈ 213 s, tmin f h ≈ 355 s and tmax f h ≈ 568 s). Please note that these
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values depend strongly on the dominant wave length and the underlying wave spectrum, i.e., with
increasing wave length the forecast horizon will decrease.

Figure 2. Detailed overview of the applied wave prediction procedure exemplary for sea state 1.

The measured and calculated wave sequences at specific locations in time domain are evaluated
quantitatively applying the surface similarity parameter (SSP) [49]. The SSP represents “a quantitative
method to compare temporal or spatial series in one dimension or temporal or spatial surfaces in two
dimensions” [49]. The SSP is a normalized error between two signals or surfaces written in terms of
Sobolev norms

SSP =
(
∫
|F̂f 1(k)− F̂f 2(k)|2dk)1/2∫

|F̂f 1(k)|2dk)1/2 +
∫
|F̂f 2(k)|2dk)1/2

, (20)
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with F̂(k) as Fourier transform of the two signals. The magnitude of the SSP varies between 0 (perfect
agreement) and 1 (perfect disagreement). One important advantage compared to other available
coefficients is the inclusion of both the amplitude and the phase difference of two series or surfaces [49].

Figures 3 and 4 present the accuracy of the predicted wave sequences compared to the
measurements for all investigated methods. For the sake of clarity, the results are divided into Figure 3
comparing all NLS-related findings and Figure 4 comparing the accuracy of linear transformation,
second-order NLSE and HOSM.

Figure 3 presents the SSP of the waveTUB input snapshot (black plus), the classical
first-order NLSE (orange curves), the first-order NLSE including full dispersion operator (NLSEFD,
magenta curves) as well as the second-order NLSE (NLSE2, green curves) simulations for the
investigated sea states. The darker illustrated curves represent the prediction accuracy including the
radar shadow and the lighter illustrated curves display the accuracy without radar shadow. The dots
on the curves illustrate the positions of the three wave gauges. The SSP for the predicted sea states
represents the mean value of the eight consecutive forecasts. The corresponding variance for the
prediction with radar shadow is presented by the transparent areas around the respective curves (with
the same colour). The SSP for the waveTUB input snapshot is calculated for the whole time trace at
wave gauge 1. Each row presents sea states with constant wave steepness but increasing enhancement
factor from left to right and each column sea states with constant enhancement factor but increasing
wave steepness from top to bottom. The black vertical line marks the border between “radar” input
snapshot (left) and the prediction zone (right).

Noteworthy at a first glance is the influence of the inclusion of the full dispersion operator within
the first-order NLSE: the accuracy of the first-order NLSE is significantly improved by taking the full
dispersion into account. Based on the underlying simplified assumptions of the NLSE, two main
reasons can be identified. On the one hand, the assumed narrow bandwidth of the wave spectrum is not
fulfilled for the investigated sea states. Thus, the assumption that the waves within the spectrum evolve
with the same group velocity based on a dominant wave length is too inaccurate for deterministic wave
prediction of arbitrary irregular sea states. This is clearly supported by the data shown in Figure 3
top as the accuracy of the NLSE increases with increasing enhancement factor (narrower spectrum
bandwidth). On the other hand, the range of validity of the NLSE are small amplitude waves. As a
consequence, the gain in accuracy with increasing enhancement factor is less distinctive for the steepest
irregular sea states. NLSEFD and NLSE2 have the same accuracy for the smallest steepness. This shows,
that the NLSE can be applied for broader wave spectra by taking the full dispersion into account.
With increasing wave steepness, the advantage of the NLSE2 becomes clear. The accuracy of the
NLSEFD decreases with increasing steepness compared to the waveTUB input snapshot accuracy,
whereas the accuracy of the NLSE2 is indeed also effected but not so distinct showing a better overall
performance also for the steepest cases.

Figure 4 presents the SSP of the waveTUB input snapshot (black plus), the HOSM (red curves),
NLSE2 (green curves) as well as linear (blue curves) simulations for the investigated sea states.
The diagram is arranged as the previous one, the darker illustrated curves represent the prediction
accuracy including the radar shadow and the lighter illustrated curves display the accuracy without
radar shadow. The dots on the curves illustrate the positions of the three wave gauges. The SSP for the
predicted sea states represents the mean value of the eight consecutive forecasts. The corresponding
variance for the prediction with radar shadow is presented by the transparent areas around the
respective curves (with the same colour). The SSP for the waveTUB input snapshot is calculated for
the whole time trace at wave gauge 1. Each row presents sea states with constant wave steepness but
increasing enhancement factor from left to right and each column sea states with constant enhancement
factor but increasing wave steepness from top to bottom. The black vertical line marks the border
between “radar” input snapshot (left) and the prediction zone (right).
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Figure 3. Surface Similarity Parameter for the investigated sea states at the three wave gauges for
classical NLSE (orange curves), NLSE with full dispersion (magenta curves) as well as second-order
NLSE (green curves) simulations in space domain. The darker illustrated curves represent the
prediction accuracy including the radar shadow and the lighter illustrated curves display the accuracy
without radar shadow. The dots on the curves illustrate the positions of the three wave gauges. The SSP
of the waveTUB input snapshots is illustrated as black plus.

The first row (same small wave steepness and increasing enhancement factor) shows that for small
wave steepness the HOSM, the NLSE2 and linear results are in the same accuracy range. This indicates
that applying linear transformation for wave prediction of sea states with small wave steepness is
sufficient and there is no need for more sophisticated methods. In addition, the three top diagrams
reveal that the accuracy of the prediction remains almost constant over a very large distance, i.e., 2025 m
or 18 dominant wave length from the beginning of the input snapshot and 4875 m or 43 dominant
wave length from the end of the input snapshot to wave gauge 4. The main reason is the fact that
for sea states with small wave steepness non-linear effects are very small and these non-linear effects
evolve only in a large time and space scale. However, comparing the diagrams of each column shows
clearly that with increasing wave steepness (vertical from top to bottom) the accuracy of the linear
method decreases whereas the HOSM and NLSE2 are also accurate for steeper sea states. For the
steepest investigated sea states, the HOSM prediction is still on the accuracy level of the waveTUB
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input snapshot over very large distances, whereas the NLSE2 shows to be less accurate. This indicates
that the area of application of a forecast tool can be extended significantly by applying more complex
wave models. In this context, the HOSM seems to be even applicable for very steep sea states.

Figure 4. Surface Similarity Parameter for the investigated sea states at the three wave gauges for
HOSM (red curves), second-order NLSE (green curves) as well as linear (blue curves) simulations in
space domain. The darker illustrated curves represent the prediction accuracy including the radar
shadow and the lighter illustrated curves display the accuracy without radar shadow. The dots on the
curves illustrate the positions of the three wave gauges. The SSP of the waveTUB input snapshots is
illustrated as black plus.

Comparing the SSP of NLSEFD (Figure 3) and linear simulation (Figure 4) shows no distinct trend.
For the smallest steepness, both methods yield the same accuracy (independently from enhancement
factor γ). With increasing wave steepness, the accuracy of both methods is still similar with a marginal
tendency for better prediction with the NLSEFD.

The influence of the enhancement factor on the prediction accuracy of the HOSM, NLSE2 and
linear simulations cannot be determined clearly. No trend is visible for the irregular sea sates with the
smallest wave steepness. The discrepancy between linear transformation and HOSM simulation seems
to increase slightly for increasing enhancement factor. Hereby, it remains unclear if this is caused by the
different accuracies of the input snapshots or due the increase of the enhancement factor. The influence
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of the radar shadow on the accuracy of the prediction does not show a clear trend. For most of the
cases, the influence of the radar shadow is negligible, otherwise the input snapshot without radar
shadow provide a slightly improve as well as worsen of the accuracy.

Analysing the accuracy of the waveTUB input snapshot (black plus) reveals that the accuracy of
the reproduction decreases with increasing wave steepness. In this context, the diagrams show that the
HOSM prediction based on the waveTUB input snapshot remain almost on the same accuracy level
(of the waveTUB input snapshot) for all wave steepness. This illustrates clearly that the accuracy of a
real world wave prediction tool depends strongly on the accuracy of the detected input wave sequence.
Strictly speaking, the wave prediction methods necessary for an accurate prediction are already
available and not only the results of this investigation (cf. [10,13–15,26,30]) reveals that depending
on the specific task very complex and numerically less efficient methods are not necessarily required
for a successful application. However, the detection of the surrounding wave field by applying
sophisticated wave inversion algorithm on X-band radar clutter is still challenging, but also the crucial
factor for a successful application of a wave forecast tool. Hereby, the principle of measurements
of X-band radars yield a main drawback as the radar cannot detect wave troughs behind (steep)
wave crests. The main challenge hereby is, that most of the relevant applications regarding wave
prediction and decision support are related to small wave steepness, where the intensity of the radar
clutter is significant smaller compared to more steeper sea states. Less intensity correlates with
reduced accuracy, particularly in the far field of the radar reducing the wave prediction horizon.
Consequently, the fast linear method accurate enough for small wave steepness is significantly affected
by the radar measuring accuracy. In addition, the vessel motions have to be measured accurately
(for cruising vessels) in order to determine the position of the X-band radar as a critical prerequisite for
the wave inversion. Generally, also the measuring accuracy (radar clutter as well as vessel motion)
plays a major role for accurate wave prediction which can be divided in systematic and random error.
The mentioned parameters relevant for an accurate wave prediction are only summarized without any
detailed discussion as this is out of the scope of this paper.

4. Conclusions

This paper presents a numerical and experimental study on the applicability and limitations
of use of intended prediction methods of different complexities: linear wave solution, the NLSE,
NLSEFD, NLSE2, and the HOSM. The focus lies on the investigation of the prediction accuracy for
varying parameters such as wave steepness, enhancement factor of the JONSWAP spectrum and wave
propagation distance. For this purpose, irregular sea states with varying parameters are addressed.

The irregular sea state investigations focusses on JONSWAP spectra with varying wave steepness
and enhancement factor. In addition, the influence of the propagation distance as well as the
forecast horizon is discussed. The accuracy of the predictions are evaluated quantitatively by
the SSP. The results show that the linear method is sufficient for the prediction of irregular sea
states with small steepness with the same accuracy as the more complex methods. For increasing wave
steepness, non-linear effects are more dominant resulting in a significant decreasing of the accuracy
of the linear method. The NLSE results have shown throughout that this method is not applicable
for deterministic wave prediction of arbitrary irregular sea states compared to the other methods.
However, inclusion of the full dispersion operator resulted in a significant increased accuracy compared
to the classical first-order NLSE. Both the NLSE2 and HOSM results illustrate that deterministic wave
prediction can be extended to steeper waves by applying more complex wave models. Hereby the
HOSM shows a high accuracy also for the steepest investigated sea states over very large distances.
In this context, the HOSM prediction based on the waveTUB input snapshot remains almost on the
same input snapshot accuracy level for all wave steepness.

The accuracy of the waveTUB reproduction is throughout adequate but showed also that the
accuracy decreases with increasing wave steepness of the irregular sea states. This illustrates clearly
that the accuracy of a real world wave forecast tool depends strongly on the accuracy of the detected
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input wave sequence, i.e., assuming a radar-based wave detection, an accurate wave inversion
algorithm used to extract the deterministic wave field from the radar clutter is the crucial factor
for a successful application of a wave forecast tool.
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Appendix A

Following the coefficients relevant for implementing Equation (7), which are adopted from
Slunyaev [42].

Appendix A.1. Coefficients of Non-linear Interaction Terms

χ1 = 3k2
c

σ4−1
8ωcσ2 ,

χ2 =
(

kcd−σ2+3
kcσ + 1

kc

)
χ1 + 3k2

c d (σ4−1)(3σ2+1)
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−σ4+1
16ωcσ2 ,

Appendix A.2. Linear Dispersion Coefficients
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Appendix A.3. Coefficients of Wave-Induced Flow Components
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Appendix A.4. Coefficients in Equations

ρ̃11 = k2
c

σ4−3
2(σ2+1)χ1 + k4−5σ4+16σ2−3

16ωc
, ρ̃12 = 2ωckc−k2

c V(σ2−1)
2ωc

, α̃1 = ρ̃11 + ρ̃12γ1,

P21 =
(

k2
c d2−4σ6+7σ4−2σ2−1

8σ2 + kcd 4σ4−9σ2+3
4σ + −4σ2+19

8

)
γ1 + k2

c
−σ4+3

2(σ2+1)χ2

+
(

k2
c d−3σ6+7σ4−9σ2−3

4σ(σ2+1) + 3kc
σ4−5

4(σ2+1)

)
χ1 + k4

c d 11σ6−23σ4+9σ2+3
16ωcσ + k3

c
−11σ4+40σ2−9

16ωc
,

P22 =
(
−k2

c d2 (σ2−1)2

8 + kcd σ4−5σ2+2
4σ + −σ2+8

8

)
γ1 +

(
k2

c d (σ2−1)(σ4+3)
4σ(σ2+1) − kc

σ4+3
4(σ2+1)

)
χ1

+k4
c d−3σ6−5σ4+11σ2−3

32ωcσ + 3k3
c

σ4−1
32ωc

,
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Appendix A.5. Coefficients Used in Constructing the Wave Field

r01 = r̃01
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