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Abstract: We examine the time-dependent three-dimensional gas-particle flow in an intact wall-flow
filter consisting of channels alternatively plugged at each end and a partially damaged filter in which
the rear plugs are removed. Our focus is placed on highlighting the differences in the flow pattern
and the deposition process between the two geometries. The Navier–Stokes equations are solved
for the fluid flow coupled with a Brinkman/Forchheimmer model in order to simulate the flow in
the porous walls and plugs. Discrete particle simulation is utilized to determine the nanoparticle
trajectories. Using this scheme, we are able to characterize the main features of the flow fields
developing in the intact and damaged filters with respect to the Reynolds number and identify those
affecting the transport and deposition of particles that have three representative response times. We
present fluid velocity iso-contours, which describe the flow regimes inside the channels, as well as in
regions upstream and downstream of them. We provide evidence of local recirculating bubbles at
the entrance of the channels and after their exit, whereas back-flow occurs in front of the rear plugs
of the intact channels. We show that the flow leaves the channels as strong jets that may break up
for certain flow parameters, leading to turbulence with features that depend on the presence of the
rear plugs. The removal of the rear plugs affects the flow distribution, which, in turn influences
the flow rates along the channels and through the walls. We describe the particle trajectories and
the topology of deposited particles and show that particles follow closely the streamlines, which
may cross the surface of permeable walls for both flow configurations. The distribution of deposited
particles resembles the spatial variation of the through-wall flow rate, exhibiting two peak values
at both ends of the intact filter channel, and one local maximum near the entrance of the damaged
filter channel that is diminished at the exit. We also investigate in detail the particle deposition on
the frontal face and indicate that particle accumulation at the edges of the entrance is favored for
particles with low response times in flows with high fluid mass rates for both intact and damaged
filters. Finally, we examine the filtration efficiency for the defective channels without rear plugs and
show that fewer particles are captured as the Reynolds number is increased. A smaller reduction of
the filtration efficiency is also predicted with increasing particle size.

Keywords: particulate filter; deposition; numerical simulation; Lagrangian particle tracking; porous
media

1. Introduction

It is well-known that diesel engines are responsible for the production of a significant amount of
nanoparticles in the urban environment with a profound effect on the human health. Among other
filtering techniques, the wall-flow ceramic filter—also known as the diesel particulate filter (DPF)—is
the most commonly used technology to control and reduce particulate matter (PM) emissions. More
recently, the same technology has been adapted to control PM emissions from gasoline engines.
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The strict requirements of the recent legislation call for further development of the particulate filter
(PF) technology in synergy with on-board emission control systems. During harsh regeneration, the PF
might suffer substrate crack or melting events, resulting in significant particulate matter leakage.
In such circumstances, it is also questionable whether the on-board diagnosis (OBD) systems will
be capable of responding appropriately, or they will allow the PF failure to go undetected. In this
context, an advance of our understanding with respect to the filtration mechanisms in cases of
partially damaged PFs is of great importance, which subsequently can facilitate the appraisal of their
environmental impact and assist in the design of exhaust systems with effective OBD functionality.

Figure 1a shows the cross-section of a part of a PF and its working principle. The PF consists of
several parallel micro-channels of square section, plugged alternatively by ceramic plugs at opposite
ends, creating a chessboard pattern. The particle-laden flow is driven into the inlet channels (opened
at the entrance), the gas is forced to flow through the permeable ceramic walls into the outlet channels
(opened at the exit), while the soot particles deposit in the micro-pores of the walls.
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Figure 1. Schematic of wall-flow particulate filters with intact (a) or damaged exit (b) and their
working principle.

The PF has been studied for more than three decades. The vast majority of the experiments have
been conducted outside of the filter, while numerical modeling has mostly been used to predict the flow
and physico-chemical phenomena that take place inside the PF. The very first one-dimensional (1D)
model was proposed by Bisset [1]. Most subsequent models have been based on this initial work, while
several extensions and/or improvements have been proposed (see, for example, References [2–7]).
Model tuning and validation are generally required and this is accomplished through comparisons of
the model predictions against macroscopic measurements, such as the pressure drop and inlet/outlet
gas temperatures.

There is a small number of numerical studies dealing with the gas-particle flow in the
micro-channels of the ceramic filter based on sophisticated three-dimensional (3D) simulations.
By using a commercial computational fluid dynamics (CFD) software, Konstandopoulos et al. [8]
performed 3D simulations in PFs mainly to calibrate simpler 1D models. Sbrizzai et al. [9] conducted 3D
steady-state fluid flow simulations coupled with Lagrangian particle tracking to model the trajectories
of non-deformable, non-interacting, solid spheres in the limit of one-way coupling between the fluid
and particulate phases. They found that the particles exhibited a greater tendency to deposit at the
end of the inlet channels as their size was increased. No particle deposition was observed at the
entrance section that was attributed to the flow contraction. Bensaid et al. [10,11] adopted a 3D
Eulerian–Eulerian approach to simulate the gas-particle flow in a PF. Predictions of the deposited soot
concentration, the filtration efficiency and the temperature were given, aimed to assist the design of the
filter trap. Lee and Lee [12] also utilized an Eulerian–Eulerian approach to investigate the two-phase
flow in a PF. They showed that more particles were deposited in areas near the entrance and at the end
of the inlet channels.

Konstandopoulos et al. [13] and Liu and Miller [14] performed 3D CFD simulations in order to
evaluate the effect of the gas flow contraction and expansion at the ends of a filter that is formed of
square and triangular channels, respectively. In both studies, the flow at the filter exit consists of high
velocity jets and recirculating fluid areas behind the rear plugs. However, in Konstandopoulos et al. [13],
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the flow at the entrance was smoothly contracted into the inlet channels and the exiting jets induced
strong mixing and pressure fluctuations for several plug lengths downstream of the filter. In contrast,
Liu and Miller [14] found recirculations adjacent to the front and rear plugs.

There are also a few works on two-dimensional (2D) models applying a commercial CFD software
(see, for example, References [15–17]). It turns out that little improvement is gained by the 2D models
when compared with the 1D models, while significant flow detail is lost relative to the 3D models.

Experiments are generally time-consuming and costly, and conducting accurate local
measurements inside the filter with good repeatability is a quite challenging task. Recently,
the wall-flow in a PF has been analyzed experimentally by Cooper et al. [18]. They measured the fluid
velocities and turbulent diffusivity at the entrance and exit of a PF based on gas-phase compressed
sensing magnetic resonance methods. They indicated that the velocity at the entrance was smooth
and it gradually evolved from a plug to a laminar flow distribution along the length of the inlet channel.
At the filter exit, well-defined jets leaving the outlet channels were observed, as well as regions of
stagnant and recirculating gas next to the rear plugs. Results of turbulent diffusivity pointed out
that fluid turbulence occurred mainly in front of the filter and at its exit. Imaging techniques have
also been used previously to conduct indirect measurements of the gas flow in PFs (see, for example,
References [19,20]). The primary interest in these works was to demonstrate the feasibility of the
experimental method in the case of a PF.

Over the last years, the investigation of partially damaged PFs has received considerable attention.
For example, Samaras [21] and Finch et al. [22] showed that monitoring of the back-pressure in failed
PFs, in which the rear plugs were removed artificially, is not adequate for on-board diagnostic purpose.
There are also some numerical works utilizing 1D models for flawed PFs without rear plugs [23–26].
The above-mentioned studies rely on the initial work of Bisset [1] and incorporate proper model
adjustments to account for the missing plugs.

In the literature, there is a lack of detailed CFD simulations of 3D gas-particle flows in defective
wall-flow PFs, which motivated our study. The objective of the present work is the investigation
of the fluid flow regimes and of the particle deposition in damaged PFs with missing rear plugs
(see Figure 1b). The results are compared with those obtained for an intact filter. Several numerical
simulations are performed by solving the 3D Navier–Stokes equations for the flow of the carrier phase
together with Lagrangian particle tracking for the dispersed phase. The Brinkman model with an
additional Forchheimmer term has been used to simulate the flow in the porous walls and plugs.
To the best knowledge of the authors, this problem has not been addressed previously. The adopted
numerical formulation has not been used in the past for the investigation of the time-dependent 3D
gas-particle flow in PFs. Moreover, numerical results of particle deposition on the frontal face of the
PFs are provided for the first time. Except for their theoretical value, the present results aim at assisting
the prediction of flow and filtration phenomena in intact and partially damaged PFs.

2. Governing Equations

2.1. Carrier Phase Flow

Figure 2 shows the computational domain considered in this work, which is the same for both the
intact and damaged filters. However, in the latter case, the rear plugs are removed. More specifically,
an elementary cell of the filters is examined, consisting of two inlet (dirty) and two outlet (clean) square
channels, which forms the overall structures when reproduced periodically in the y and z-directions.
The entrance and exit of the domain are located at distances Lu and Ld away from the ends of the
filters, respectively, in order to ensure that the fluid flow in the proximity of the elements is not
influenced by the numerically imposed boundary conditions. The porous walls and plugs are isotropic,
homogeneous and saturated with a single-phase fluid, whereas their porosity εw and permeability kw

are uniform.
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The Navier–Stokes equations are employed to simulate the flow in the clear fluid, while
the volume-averaged Navier–Stokes equations based on the Brinkman model with an additional
Forchheimer term are utilized in the permeable walls and plugs of the PFs. The velocity averaged over
a volume containing only fluid u and the velocity averaged over an elementary volume of solid matrix
plus fluid u? are related to each other by the Dupuit–Forchheimer equation u = ε u? [27], where ε is
the porosity. The non-dimensional governing equations written as a single set of equations that are
applicable in both the fluid and porous regions are [28–30]:
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Figure 2. Present geometry and flow configuration for the intact filter (left) and the damaged filter
without rear plugs (right).

∇ ·U = 0 , (1)

∂U
∂T

+
1
ε

U · ∇U = −ε∇P +
Λ
Re
∇2U + FDR , (2)

FDR = −C1
ε

Re Da
U− C2

f ε√
Da
|U|U , (3)

where U = (U, V, W)/u0 is the velocity vector and U, V, W are the velocity components in the x, y,
and z-directions, respectively, P = p/ρ u2

0 is the pressure, ρ is the fluid density, and T = t u0/h is
the time. Throughout the paper, vectors are represented by bold fonts, while capital fonts denote
non-dimensional quantities. The above equations and all the quantities are made non-dimensional by
using the side of the square channels hc, the inlet velocity in the streamwise direction u0, and hc/u0

as the characteristic length, velocity, and time scales, respectively. The non-dimensional parameters
appearing in Equations (1)–(3) are the Reynolds number Re = ρ u0 hc/µ and the Darcy number
Da = k/h2

c , where µ (ν) is the fluid dynamic (kinematic) viscosity and k is the permeability. The vector
FDR is the drag force per unit mass that the solid phase of the porous walls and plugs exerts on the
fluid phase. The first term in Equation (3) represents the standard drag force in the limit of Stokes
flow in the pores, while the second term corrects the drag force to account for inertial effects at higher
Reynolds numbers. C1, C2 are binary constants obtaining 0 and 1 outside of the porous regions and
inside them, respectively. The porosity ε is set to 0 < ε = εw < 1 in the permeable walls and plugs
and to unity in the clear fluid region. Λ = µe/µ = 1 is the ratio between the dynamic viscosity in the
porous (µe) and fluid (µ) regions. The Forchheimer coefficient f can be calculated depending on the
micro-structure of the porous medium. In this work, the Ergun correlation is used that is expressed
as [27]:

f =
1.75√
150ε3

. (4)
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The calculation of permeability k can be related to the porosity ε by using the following expression
(see, for example, Reference [29]):

k =
Φs

180

ε3 d2
p,ob

(1− ε)2 , (5)

where dp,ob = 6Vp,ob/Ap,ob is the average obstacle size of the porous region, Vp,ob and Ap,ob denote the
volume and the surface of the solid obstacles, respectively, and Φs is the sphericity of the obstacles.
The linear and non-linear parts of the drag force FDR may be re-arranged as follows:

FDR = −C1
ε

Re Da
U− C2

f ε

Re Da
|U|U , (6)

where the coefficient f is now given as f = Φs f̃ u0, and f̃ is expressed as [29]:

f̃ =
ε

100(1− ε)

dp,ob

ν
. (7)

There are no solid obstructions in the clear fluid and, thus, ε is set to unity, the drag force terms
are vanished, and the governing equations reduce to the standard Navier–Stokes equations. In this
case, the velocity U corresponds to the fluid velocity U f that is obtained by the numerical solution of
the Navier–Stokes equations in the fluid region and it holds that U = U∗ = U f .

Appropriate boundary conditions are applied to the domain boundaries. Inlet conditions U = 1,
V = W = 0 are placed upstream of the front face of the filters. It should be noted that the inlet flow in
a PF is rather turbulent and/or pulsating. However, the present work deals only with constant flows
at the inlet, partly because there is lack of precise and reliable information regarding the frequency and
amplitude of the fluid velocity fluctuations in front of the PFs. But more importantly, the above inlet
boundary conditions are usually used in the majority of the past numerical studies (see, for example,
References [9–12]) or they are suggested by recent experiments [18] and, thus, their adoption allows
comparisons of the present results against previous findings at least from a qualitative point of view.
Convective boundary conditions [31] are used downstream of the exit of the filters expressed as:

∂φ

∂T
+ Uc,av

∂φ

∂X
= 0 , (8)

where Uc,av = 1 is the average non-dimensional velocity in the streamwise x-direction, and φ is U, V,
or W. These boundary conditions are appropriate for the flow under investigation, and they ensure
that large-scale vortices and jet-like structures can pass the outflow boundary without producing
significant disturbances or reflections into the internal flow domain. Periodic boundary conditions are
applied to all boundaries normal to the y and z-directions.

In the case of a composite system consisting of a fluid and porous medium, it is necessary to
solve simultaneously the Navier–Stokes equations in the fluid region and the Brinkman equations
in the porous region together with proper matching conditions at the interfaces. As seen above,
the two sets of governing equations for the fluid and porous regions are combined into one set of
conservation equations by introducing binary parameters. Such single-domain approach has been
used extensively in the past [28,30,32–34]. Although this method is relatively easier to implement
numerically, special care must be taken into account to simulate correctly the flow adjacent to the
interfaces. The harmonic-mean formulation suggested by Patankar [35] is usually adopted in order
to handle the abrupt change in the porosity and permeability at the interface. Here, the following
conditions that are proper for the description of the flow at the fluid/porous interface are explicitly
applied [36,37]:

U f
⊥ = Uw

⊥ , (9)

U f
‖ = Uw

‖ , (10)
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P f =
1
ε

Pw , (11)

∂U f
‖

∂n
− 1

ε

∂Uw
‖

∂n
= 0 , (12)

where the symbols ⊥ and ‖ indicate velocity components that are perpendicular and parallel to the
interface, respectively, the superscripts f and w denote quantities in the fluid and porous walls and
plugs, respectively, and n is the unit vector normal to the interface. Note that the derivatives of the
velocity components U f

‖ in Equation (12) are taken within the fluid region, while those of the Uw
‖

velocity components are taken within the porous walls and plugs. The implementation of Equations (9)
to (12) requires a relatively small number of code adjustments in the grid points adjacent to the
interfaces, allowing the numerical solution of the present conjugate problem in the whole domain
(fluid and porous regions) based on CFD methods that have been developed initially to deal fluid flows.

2.2. Dispersed Particulate Phase

Once a fully developed flow in the PFs is numerically obtained, the fluid velocity field is used
to study the transport and deposition of the particulate phase. For particles having size smaller than
the mean free path of the molecules of the carrier gas, the fluid around them cannot be considered
a continuum. The particles are affected by collisions with individual molecules, and at times they
slip between the molecules. Thus, two main effects are introduced when considering sub-micron
particles [9,38,39]—(a) a reduction to the drag coefficient due to the slip, and (b) a Brownian force
that modifies randomly the particle trajectory. In the present work, the dominant forces acting on a
particle are the drag and Brownian forces. More specifically, the particle trajectory is determined in a
Lagrangian reference frame based on the following non-dimensional equation of motion [40]:

dUp

dT
= − 3

2Cc(2S + 1)
CD
Dp
| Up −U(Xp) |

(
Up −U(Xp)

)
+ N(T) , (13)

where Up = dXp/dT is the particle velocity vector, U(Xp) is the fluid velocity vector calculated
at the particle position Xp, S is the ratio between the particle density ρp and the fluid density ρ,
and Dp (= dp/hc) is the particle diameter. The first and second terms of the right-hand side of
Equation (13) are the drag and Brownian forces per particle mass, respectively. The quantity Cc is the
Stokes–Cunningham slip correction coefficient calculated as [40]:

Cc = 1 + 2Kn [1.257 + 0.4 exp (−0.55 Kn)] . (14)

The parameter Kn is the Knudsen number defined as the ratio of the mean free path of gas molecules
λ and the particle diameter dp:

Kn =
λ

dp
. (15)

The coefficient CD corrects the drag force for inertial effects at non-negligible values of the particle
Reynolds number, Rep =| up − u | dp/ν =| Up −U | Dp Re, and it is given as [41]:

CD =
24

Rep

(
1 + 0.15Re0.687

p

)
. (16)

The Brownian force per particle mass N(T) is modeled as Gaussian white noise random process [39,40].
The i-component of the non-dimensional Brownian force is evaluated at every time step of the
simulations as:

Ni = Gi

√
2

Sc T2
p Re ∆T

, (17)
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where Gi is zero mean, unit variance independent Gaussian random number, ∆T is the time step used
in the simulations, Tp = Cc S D2

p/18 Re is the non-dimensional particle response time, and Sc is the
Schmidt number calculated as:

Sc =
ν

αB
=

3ν π µ dp

kB θCc
. (18)

Here, αB is the Brownian diffusivity, θ is the absolute temperature, and kB = 1.32× 10−23 J K−1 is the
Boltzmann constant. The quantity Gi is computed by using the Muller-box method from two randomly
chosen numbers r1 and r2 selected from a uniform distribution [39]:

Gi =
√
−2 ln r1 cos(2π r2) . (19)

Dilute flow conditions are assumed and, thus, the fluid flow under investigation is not influenced
by the momentum exchange with the particulate phase, neither particle-particle interactions are taken
into account. This assumption is fully justified in cases with particles having very low response times
at low total mass and volume fractions (see, for example, Reference [42] and references therein). In the
context of PFs, this choice is logical given the fact that the Stokes number of the particles is very small
(for example, it is of the order of O(10−3) to O(10−6) in the present work), which results in negligible
slip velocities between the two phases, while the concentration of soot particles is generally low at
early filtration stages (see References [9–11]). Initially, the particles are uniformly distributed at
the inlet plane with velocities equal to those of the fluid at their positions. The particles exiting the
computational domain through the planes normal to the periodic y, z-directions are re-introduced in
it from the corresponding opposite boundary plane with their exiting velocities. Perfectly absorbing
walls and plugs (see, for example, Reference [9]) are considered and, thus, the particles are assumed to
deposit when their center is less than Dp/2 distance from the surfaces of the porous regions.

3. Numerical Methods and Details

3.1. Overview of the Simulations

The particulate traps under investigation are those studied experimentally in
Haralampous et al. [43]. The side of each square channel is hc = 1.2 mm, the thickness of
the porous walls is hw = 0.3 mm, while their dimensionless values are Hc = 1 and Hw = 0.25,
respectively. The streamwise extent of the front and rear porous plugs is Lpl = 4.2, and the length
of the filters is L f = 127 (l f = 152, 4 mm). The entrance of the filters in the x-direction is placed at
X = 0. The inlet and outlet boundaries are located at distances Lu = 15 and Ld = 28 upstream and
downstream of the elements, respectively. The size of the computational domain is Lx = 170 in the
streamwise x-direction and Ly = Lz = 2.5 in the periodic y, z-directions.

The temperature is θ0 = 540 K throughout the domain, the fluid density is ρ = 0.6509 kg m−3,
and its dynamic (kinematic) viscosity is µ = 2.54 × 10−5 kg m−1 s−1 (ν = 3.91 × 10−5 m2 s−1).
The values of the Reynolds number examined here are Re0 = u0hc/ν = 65, 163, 261, and 522 that
correspond to mass flow rates of ṁ = 0.623, 1.246, 2.492, and 4.984 kg s−1 (×105) and inlet fluid
velocities of u0 = 6.65, 13.3, 26.6, and 53.2 m s−1. The values of the Reynolds number based on the
bulk velocity at the entrance of the inlet channels are Rec = uchc/ν = 204, 408, 629, 816, and 1632.
The porosity of the walls and plugs is εw = 0.52 and their permeability is kw = 6.18× 10−13 m2, while
the average size of obstacles in the porous domain is dp,ob = 27.7µm. These values correspond to
the clean wall case examined experimentally in [43]. The results shown here were obtained based on
Equations (5) to (7) in order to model FDR, while Equations (3) and (4) were used in the verification
tests. It was confirmed that the non-linear corrections to the drag force are negligible for the problem
under investigation and, thus, Equations (3) and (6) reduce to the same expression and produce
the same results. The sphericity Φs was given a suitable value so that the permeability yielded by
Equation (5) matched kw.
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An explicit fractional step method is used to solve numerically the governing fluid flow equations
on a staggered mesh. All spatial derivatives are approximated by second-order central finite differences.
The equations are advanced in time with a pressure-correction method. The time discretization is based
on an explicit low-storage third-order Runge–Kutta scheme. Details about the numerical schemes
can be found in Dritselis and Vlachos [42]. The results shown in the present work were obtained by
using 436× 121× 121. The mesh in the x-direction is refined in the front and rear faces of the plugs.
The distance of the first grid point outside of the porous domain is ∆Xmin = 0.004. The maximum
grid spacing upstream and downstream of the filters is ∆Xmax = 1.5 and 0.5, respectively, while it is
∆Xmax = 4 inside the channels. The spacing of the uniform computational mesh in the periodic y and
z-directions is ∆Y = ∆Z = 0.02.

The transport and deposition of the dispersed phase is studied for three ensembles of particles
having diameter dp = 20, 60, and 200 nm and density ρp = 1409, 762, and 388 kg m−3, respectively.
This, the mean free path is estimated as λ = 1.225× 10−7 m using the Equations of Sharipov and
Seleznev [44]. The values of the Knudsen number are Kn = 6.127, 2.042, and 0.613 for the three particle
sets. It can be seen that the values of the Knudsen number are within the transitional flow regime for
0.25 < Kn < 10 [38]. Results for the particulate phase are obtained by following the trajectories of
105 particles.

The positions and velocities of the particles are calculated based on an explicit second-order
Adams–Bashforth method. The fluid velocity at the particle position is obtained by tri-linear
interpolation between the particle position and the nearby grid points. Particle deposition is detected
as geometric intersection of the particle trajectory and the walls or plugs. The detection algorithm
of particle deposition is similar to that used in our previous work [45]. The reader is referred to
Dritselis [46] for more details on the numerical schemes regarding the Lagrangian particle tracking.

3.2. Grid Independence Tests

A grid sensitivity analysis was conducted to ensure that the results shown in the present work
are grid converged. Figure 3a,b show representative results for the time history of the center-line
streamwise velocity at the inlet channel entrance and at the outlet channel exit, respectively, for an
extreme grid-demanding case of Rec = 1632. Six computational meshes 332× 81× 81, 436× 81× 81,
752× 81× 81, 436× 101× 101, 436× 121× 121, and 436× 151× 151 were examined. Figure 3 indicates
that the results are converged with grid refinement. More specifically, the instantaneous velocity at the
entrance of the filter is gradually increased and it obtains a constant value at times T > 1 as shown in
Figure 3a. A maximum difference of about 0.92% is observed by using 752 (U = 2.921) grid points in
the x-direction as compared with the case of 436 (U = 2.894) grid points. For the computational meshes
with 436 grid points in the x-direction, the values of U at time T = 5 are 2.894, 2.948, 2.987 and 3.011
for 81, 101, 121 and 151 grid points in the y, z directions, respectively. It can be seen that when utilizing
121 grid points in the periodic directions, a maximum difference of 0.8% is found relative to the next
finer computational mesh. At the exit of the filter, the flow exhibits clearly turbulent fluctuations,
and the time evolution of U differs between the various meshes. However, the time-averaged velocity
converges with grid refinement, similarly to what is found for the instantaneous U at the entrance
of the inlet channel. For example, the values of the time-averaged U velocity for the distributions
shown in Figure 3b are 5.439, 5.505, and 5.559 for 101, 121, and 151 grid points in the y, z-directions,
respectively. As the mesh is refined from 121 to 151 grid points, differences smaller than 0.96% are
obtained. Thus, it can be concluded that grid independence of the results is achieved when choosing a
computational mesh consisting of 436× 121× 121 grid points. The presently adopted grid resolution
is capable of resolving adequately the most significant flow scales, and its use can yield accurate results
that describe the laminar and turbulent flow regimes in a PF element for the range of parameters
examined here. Similar observations can be made when examining other flow quantities, such as
the V, W velocity components, and the pressure P at several locations in the computational domain.
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Grid independence tests were also performed in the case of damaged filter without rear plugs, which
confirmed the adequacy of the finally chosen computational mesh.
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Figure 3. Time evolution of the center-line streamwise fluid velocity U at the entrance (a) and exit (b)
of the intact filter element for several computational meshes at Rec = 1632. In (b), the U values for the
meshes 121× 436× 121 and 151× 436× 151 are shifted upwards by 1.5 and 3, respectively.

4. Verification

The accuracy of our numerical code to predict several fluid flows has been demonstrated in
previous works [42,45]. Similarly, the accuracy of the Lagrangian particle tracking to simulate the
transport of particles and their deposition has also been successfully verified in certain cases [45,46].
The present numerical treatment of the porous media is verified in three test cases—(a) the fully
developed flow in a channel partially filled with a layer of a porous medium (Beavers–Joseph flow
problem), (b) the flow through a channel with a porous plug, and (c) the flow around a square
porous cylinder. The successful verification, as it will be seen in the next subsections, proves that the
adopted formulation (Equations (1) to (12), the numerical algorithm chosen for the spatial and time
discretization of these equations and their solution) has the potential to reproduce accurate and reliable
results for flows over homogeneous porous media.

4.1. Flow in a Channel Partially Filled with a Layer of a Porous Medium (Beavers–Joseph Flow Problem)

The first verification test conducted corresponds to the Beavers–Joseph flow problem (for more
details about the problem formulation, please see References [47,48]). The physical domain consists of
a parallel-plate channel, which is horizontally divided into a fluid region with height h1 above and a
homogeneous porous region saturated by fluid with height h2 below. Here, the case h2 = h1 = h = 1
is examined. A 2D computational domain of 2h× 2h is used that is discretized by a mesh of 41× 41
grid points. Periodic boundary conditions are applied in the x-direction and no-slip conditions are
enforced at the walls in the y-direction. A uniform pressure gradient is imposed in the streamwise
direction that results in a fully developed flow at Re = u0 h/ν = 1. Figure 4 shows the U (= u/u0)

velocity profile for two representative cases at Da = 10−2, 10−3, and ε = 0.7. A comparison of the
present predictions against those of Costa et al. [47] is also shown, indicating a good agreement of the
results between the studies.
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Figure 4. Distribution of the non-dimensional streamwise velocity component U with the wall-normal
distance Y for Re = 1, ε = 0.7, and Da = 10−2, 10−3. Lines: present results; symbols: results of
Costa et al. [47].

4.2. Flow through a Channel with a Porous Plug

In this test problem, the flow passes through a 2D channel with a porous plug under an imposed
overall pressure gradient. Away from the plug, there are two fluid regions where the flow is fully
developed. The streamwise extent of the plug is 2h, while each one of the two fluid regions have
size 3h. The distance between the walls of the channel is h and, thus, the total computational domain
is (3h + 2h + 3h) × h. The computational mesh consists of (21 + 21 + 21) × 21 grid points that
are unevenly distributed in the x-direction, so that the grid spacing is thinner near the interfaces,
and uniformly in the y-direction. Periodic boundary conditions are applied at distances 3h upstream
and downstream of the plug, while a global non-dimensional pressure difference is imposed in order
to give rise a flow having Re = u0 h/ν = 1. No-slip conditions are applied at the channel walls.
Further details about the problem setup can be found in References [47,48]. Figure 5 shows the
center-line velocity U (= u/u0) and pressure P (= p/ρ u2

0) along the x-direction at Da = 10−2 and
ε = 0.7. A rapid reduction of the velocity is observed in the plug, accompanied by a large pressure
drop. In accordance with previous findings [47,48], an essentially 1D flow is found over most of the
fluid and porous regions, with the exception of the vicinity of the fluid/plug interfaces, where the
flow is predominantly 2D. It can be seen that the present results are in good agreement with those of
Costa et al. [47] in the case of continuous stress conditions at the interfaces between the fluid and the
porous medium.



Fluids 2019, 4, 201 11 of 29

X

U P

0 2 4 6 8
1

1.2

1.4

1.6

0

100

200

300

400

Present study, U
Present study, P
Costa et al. (2004), U
Costa et al. (2004), P

3h3h 2h

h PoutPin porous
plug

Figure 5. Variation of the center-line velocity component U and pressure P in the streamwise x-direction
for Re = 1, ε = 0.7, and Da = 10−2, 10−3. Lines: present results; symbols: results of Costa et al. [47].

4.3. Flow around a Square Porous Cylinder

The geometric configuration of the last verification test is shown in Figure 6a. A fixed 2D square
porous cylinder with sides of length h = 1 is exposed to a constant free-stream velocity. The size of
the computational domain is 25h× 25h in the x-direction (flow direction) and y-direction, respectively.
The top and bottom boundaries of the calculation domain are free-slip. Inflow boundary conditions
are prescribed at the left (U = u/u0 = 1, V = 0), while convective boundary conditions are applied
at the right with an average non-dimensional convective velocity equal to unity. The reader may
refer to Dhinakaran and Ponmozhi [34] for additional details regarding the problem formulation.
A non-uniform grid distribution is used consisting of 111× 111 grid points in the x, y-directions,
respectively. The grid is stretched so that the minimum distance of the first grid point from the
fluid/porous interface is 0.001 h, while the grid size away from the square cylinder is approximately
0.2 h. At first, it was confirmed that the results of the flow around an impermeable, solid square
cylinder in an unbounded domain are reproduced when setting the Darcy number and the porosity
to very low values. Figure 6b shows the drag coefficient CD as a function of the Reynolds number
(5 ≤ Re = u0 h/ν ≤ 40) in the case of a permeable square cylinder at Da = 10−4 and ε = 0.8. It
can be seen that the present results agree reasonably well with those obtained by Dhinakaran and
Ponmozhi [34]. Figure 6b also shows that even the use of a uniform mesh of 251× 251 grid points can
yield adequately the variation of the drag coefficient, especially as the Reynolds number increases.
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Figure 6. (a) The geometric configuration for the unconfined flow around a permeable square cylinder,
(b) the drag coefficiet CD as a function of the Reynolds number at Da = 10−4 and ε = 0.8. Open
symbols: present results; closed symbols: results of Dhinakaran and Ponmozhi [34].

5. Results and Discussion

In this section, representative results are presented in order to highlight the main features of the
fluid flow in filters with intact or damaged exit and their differences and assess their impact on the
particle deposition process.

5.1. Fluid Velocity and Pressure Fields

Figure 7a shows the instantaneous U velocity component of the carrier phase in y-z planes placed
at different distances along the x-direction for a representative case of intact filter at Rec = 1632.
These planes are indicated in the insert above the figure by the dotted lines against the filter element.
The fluid flow is almost uniform upstream of the channels (plane A). As the entrance of the inlet
channels is approached, the flow is contracted (plane B), obtaining a velocity distribution that
corresponds to a plug flow (plane C). The fluid flow is gradually developed into a parabolic profile
(planes D and E). A symmetric velocity distribution is apparent, exhibiting a maximum value at the
center of the inlet channels. It is found that the center-line U velocity is increased up to 30% of the
channel length (planes C–D) and it is then decreased with further increasing distance from the entrance
(planes E, F and G). A back-flow can be seen, indicated by blue color, which becomes considerable and
covers a significant portion of plane F. The spatial evolution of the U velocity inside the outlet channels
is nearly complementary to that described above for the inlet channels (planes C–G). For example,
the velocity is adjusted to a laminar parabolic distribution as proceeding in the streamwise direction.
In contrast to the inlet channels, the center-line U velocity is now increased monotonously. As expected,
the fluid flow leaves the outlet channels as strong jet-like events. The jets are accompanied by large
recirculation areas located in the wake of the rear plugs (planes H–J). The red regions correspond to
the jets and the blue regions indicate negative values of the U velocity. A non-homogeneous turbulent
field is obtained and maintained at a sufficient distance downstream of the intact filter element (plane
K). However, it becomes weaker and relatively homogeneous farther away from it (plane L).

Figure 7b shows the development of the U velocity in the x-direction for the damaged filter
without rear plugs at Rec = 1632. The flow evolution in front of the defective filter element, as well as
in the first part of the channels resembles that of the intact filter (planes A, B, C, D and E). Most of the
fluid flow escapes now from the unplugged inlet channels (planes F and G) and, thus, a smaller amount
of fluid passes through the permeable walls into the outlet channels. Lower U velocities are generally
found at the exit of the damaged filter relative to the intact filter. In the region after the defective



Fluids 2019, 4, 201 13 of 29

element, there are four fluid jets together with small recirculating regions having sizes of the order of
the permeable wall thickness (planes H, I, J, and K). The jets arising out of the unplugged inlet channels
are stronger than those exiting from the outlet channels, while they are both weaker as compared
with the jets appearing in the intact filter element. Further away from the exit, an inhomogeneous,
non-sustainable turbulence becomes visible (plane L). It is noted that the characteristics of the fluid
turbulence are generally different between the two flow configurations.
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Figure 7. Evolution in the x-direction of the U velocity for the intact (a) and damaged (b) filters at
Rec = 1632. The y-z planes A, B, C, D, E, F, G, H, I, J, K, and L correspond to X = −10.02 (A), −0.59 (B),
0 (C), 10.27 (D), 79.54 (E), 120.11 (F), 126.98 (G), 128.08 (H), 132.32 (I), 135.10 (J), 140.37 (K), and 146.06
(L), respectively.

The flow fields of the carrier phase in the intact and damaged filters at different Reynolds
numbers are similar to those presented for Rec = 1632. However, there are some key differences
that can be noticed in the inlet, exit and downstream of the elements at small Rec values. More
specifically, Figure 8a,b show the streamlines near the entrance of the intact filter at Rec = 204 and
Rec = 1632, respectively. At low Rec values, a smooth flow contraction takes place, while a condition
of vena contracta is reached at the largest Reynolds number examined here. In the latter case, small
recirculating bubbles are observed adjacent to the walls. The maximum contraction occurs slightly
downstream of the entrance, where the fluid stream acquires also its maximum velocity. The size
of each recirculating region is approximately 0.062 hc. It was confirmed that the removal of the rear
plugs has a negligible effect on the flow evolution upstream of the filters and in the region close to the
entrance of the inlet channels. Therefore, the results shown in Figure 8 and the above discussion are
valid for both the intact filter and the damaged filter with missing rear plugs.
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    (a)         (b) 	

Figure 8. Fluid streamlines near the entrance of the intact filter at Rec = 204 (a) and 1632 (b). The same
results are also obtained in the damaged filter without rear plugs.

The effect of the Reynolds number on the fluid velocity at the exit of the intact and damaged
filters is illustrated in Figure 9. Regarding the intact filter, Figure 9a clearly demonstrates that a 3D
steady and laminar flow is established at Rec = 204. The fluid leaves the outlet channels as coherent
jets, whereas a large recirculation may also be seen that covers the whole area of the rear plug. There is
no evidence of back-flow at the end of the inlet channels when the Reynolds number is sufficiently
small. For comparison purposes, the instantaneous and the time-averaged U velocity at the exit in the
case with Rec = 1632 are also shown in Figure 9c,e, respectively. The non-dimensional collection time
for the calculation of the mean velocity is 50 hc/u0. It can be seen that the jets have a larger extent in the
streamwise direction at the higher Reynolds number, the area with negative values is somehow wider
in the y, z-directions and it is located further away from the outer surface of the rear plug. Figure 9c
indicates that the jets exhibit oscillations as they are formed in the x-direction. The flow instabilities
result in the breakup of the jets downstream of the filter exit, enhancing mixing and fluid turbulence.
The aforementioned main flow events at the exit of the intact filter element can be identified in both
Figure 9c,e. However, the jets and the recirculation bubble in the time-averaged flow field are smoother
than those seen in the instantaneous flow field. It can be noticed that the results up to X = L f = 127 in
Figure 9c,e are almost identical to each other, which points out an essentially steady flow inside the
inlet and outlet channels of the intact filter.

The removal of the rear plugs has a profound effect on the velocity distribution at the exit of the
damaged filter depending on the Reynolds number. Figure 9b reveals that the maximum U velocity
(regions in red) associated with the fluid jet exiting from the defective inlet channel is reduced at
Rec = 204. There is no indication of any local recirculations. A 3D steady and laminar flow regime
prevails at low Rec values. Figure 9d shows that a turbulent flow is obtained at Rec = 1632, which can
be attributed to the spatial growth of instabilities as the central fluid jet evolves downstream of the
filter. The central fluid jet appears to be larger in the damaged filter. However, it has lower momentum
and, thus, longer distances are required so that it can break up. The jet exiting from the outlet channel
has even smaller momentum and flow oscillations are totally absent. The enlargement of the jets is
accompanied by a considerable increase of the wake behind the permeable walls (regions in blue).
This is an outcome of the fluid mass conservation. In particular, the areas of high U velocity (in red)
are accompanied by areas of low U velocity so that the overall mass flow rate in each X location
remains constant. Small recirculating areas can also be seen next to the walls. It can be noticed that the
characteristics of the time-averaged U velocity are similar to those of the instantaneous velocity as
shown in Figure 9f,d, respectively.
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Figure 9. Distribution of the U velocity in the Y = 1.25 middle plane for the intact (left column)
and damaged (right column) filters at Rec = 204 (upper row) and 1632 (middle and lower rows).
The instantaneous U velocity at time T = 100 is shown in (a) to (d), and the time-averaged U velocity
is shown in (e), (f).

The distribution of the U velocity at both ends, upstream and downstream of the intact filter is
consistent with the recent experimental observations of Cooper et al. [18]. The variation of the fluid
streamwise velocity inside the inlet and outlet channels is also in qualitative agreement with findings in
previous numerical studies [9–11]. Even though the flow in single square channels with impermeable
walls has been extensively studied previously (see, for example, Reference [49]), the channel flow
changes significantly due to the porous wall boundary condition as discussed above. The present
study points out that distinct geometrical imprints on the streamwise fluid velocity exist upstream and
downstream of both filters. The imprints are visible at distances approximately up to 10 hc from the
entrance and exit of the elements, respectively. Such property could possibly be used in the future for
flow design and passive control purposes of intact and damaged wall-flow PFs.

The wall permeability may potentially influence the flow features observed in PFs. A weak effect
of wall permeability is anticipated here, as indicated by the Reynolds number based on the square
root of permeability ReKw =

√
Kwuτ,en/ν which is smaller than 0.085, where uτ,en is the wall-friction

velocity at the entrance of the inlet channels. Wall roughness can potentially trigger turbulent flow and
its effect depends on the Reynolds number Redob

= dp,obuτ,en/ν which in our case is always Redob
≤ 6.

According to Hinze’s classification [50], the effect of roughness is negligible when Redob
< 5, while a

fully rough wall occurs at Redob
≥ 55. This classification strictly holds for rough and impermeable

walls but it also gives a clue in the case where the wall is rough but permeable. Wall roughness is not
modeled or taken into account in this work but its effect would be rather insignificant in the cases
examined, based on the above analysis. Nevertheless, under different flow conditions and parameters,
for example high values of Redob

and/or ReKw , wall roughness effects should be expected.
The flow at the end of the filters seems to comparable to that around rectangular objects.

As discussed in Breuer et al. [51], the flow around a single square object is laminar at low Re
values and it becomes unsteady as the Reynolds number increases. Such transition from steady
to unsteady flow takes place also in the problems under investigation. For example, the flow is laminar
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throughout the domain at Rec = 204 and 408, while a non-homogeneous decaying turbulence is
obtained downstream of the intact filter exit at Rec = 816 and 1632. Similar observations can be made
for the damaged filter without rear plugs. However, in this case, the features of turbulence are closer to
those in the multi-channel flow of monolithic reactors studied in References [52,53]. It is noted that the
flow configurations examined here are far more complex with respect to the flow around rectangular
objects due to the permeable walls and the chessboard arrangement of the plugs. Moreover, the actual
PF has thousands of channels and the flow at the exit may interact, favoring the development of
instabilities and the transition to turbulence.

Figure 10a,b show the variation of pressure in the channels of the intact and damaged filters,
respectively. For both geometries, the pressure is reduced more inside the outlet channels. The overall
pressure drop is decreased as Rec is increased, which is more obvious in the intact filter. Abrupt
pressure reduction occurs at the entrance of the inlet channels and at the front plugs. In the intact
filter, a significant pressure reduction also occurs at the rear plugs. It can be seen that the pressure
inside the inlet channels is increased as the rear plug is approached at Rec = 408, 816 and 1632, which
gives rise to the back-flow found in these cases. Figure 10a,b also show the evolution of pressure
along the x-direction at the entrance and exit of the filters in the close-up views included in each
diagram. At Rec = 1632, a local minimum pressure is observed after the entrance of both filters,
as shown in the left zoom window of Figure 10a, which is characteristic of the vena contracta condition.
It should be noted that this behavior is absent in all the other Rec cases. Downstream of the filters,
pressure fluctuations can be seen as the Reynolds number is increased. For both PFs, it is found that
the pressure drop at the entrance is ∆Pent = 8.39, 7.43, 6.89, and 6.96 at Rec = 204, 408, 816, and 1632,
respectively. The pressure losses at the exit of the intact filter are ∆Pex = 2.96, 2.78, 2.91, and 2.87, while
for the damaged filter it holds that ∆Pex = 1.09, 1.12, 1.08, and 1.34 for Rec = 204, 408, 816, and 1632,
respectively. It turns out that the pressure losses are larger at the entrance as compared with those
predicted at the exit of the filters, whereas ∆Pex is greater for the intact filter.
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Figure 10. Pressure variation along the x-direction in the inlet and outlet channels of the intact (a) and
damaged (b) filter.

5.2. Flow Rates

The results in Figures 7 and 9 point out that the fluid flow is progressively transferred from the
inlet to the outlet channels through the porous walls. This also happens, although partially, even in the
case without rear plugs. The above observations are confirmed in Figure 11, which shows the variation
of the fluid flow rate across the inlet Qi and the outlet Qo channels with the normalized distance X/L f .
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Results are presented for both geometries at Rec = 204, 408, 816, and 1632. It can be seen that the
mass flow rate of the carrier phase is decreased along the x-direction in the inlet channels, while it is
increased in the outlet channels.

For the intact filter, the summation of Qi and Qo at every X/L f location is always constant and
it equals to the flow rate at the entrance of the inlet channels and at the exit of the outlet channels,
Qi(X/L f = 0) = Qo(X/L f = 1) = 3.125. At Rec = 204, an almost linear distribution of Qi and
Qo can be noticed, and the same flow rate Qi = Qo is achieved approximately at the half length of
the channels. As the Reynolds number is raised, a weaker reduction (increase) of Qi (Qo) is revealed,
while the condition Qi = Qo is found at distances closer to the end of the inlet channel. Relatively high
values of Qi prevail for longer distances from the entrance, leading to a steeper reduction as the region
in front of the rear plug is approached. For the damaged filter, Qi (Qo) is attenuated (augmented)
slowly toward the exit, which is more noticeable as the Reynolds number is increased. At the same Rec,
the flow rate inside the defective inlet channels is greater relative to the intact inlet channels, while
the opposite is true regarding the flow rate inside the outlet channels. The condition Qi = Qo is not
present when the rear plugs are removed and Qi is always greater than Qo for the range of parameters
examined here.
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Figure 11. Variation of the flow rate inside the inlet Qi and outlet Qo channels along the streamwise
direction for the intact (a) and damaged (b) filters.

Figure 12 shows the flow rate through the porous walls Qw along a pair of channels in the cases
with Rec = 204, 408, 816, and 1632. In the intact filter, the distribution of Qw varies non-uniformly in
the x-direction, exhibiting two peak values near the ends of the filter, as shown in Figure 12a. The first
Qw peak at the entrance is due to the high velocities of the plug flow profile near the wall. As the flow
is steadily modified into an almost parabolic velocity distribution, the near-wall fluid velocities are
attenuated and, consequently, the flow rate through the walls is reduced. The second Qw peak at the
exit is attributed to the pressure increase that takes place as the plugged end of the inlet channel is
approached, which produces a substantial enhancement of the flow through the walls. The present
Qw profiles are consistent with previous results from 3D CFD simulations [9–12] and simpler 1D
models [26] in a different parameter space (Rec, εw, kw, hc, hw, l f and lpl). The results in Figure 12a
suggest that the flow rate through the walls differs with varying Rec. For example, the magnitude of
the Qw peak value close to X/L f = 1 is greater than that near X/L f = 0 for all the Rec cases examined
here. Since a fixed fluid flow rate passes from the inlet to the outlet channels, the increase of Qw in the
second half of the inlet channels observed with increasing Rec is accompanied by a reduction in the
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rest region. A local minimum value of Qw is seen around 45% of the filter length for Rec = 204, which
is shifted toward the entrance as the Reynolds number is increased, while its magnitude is reduced.
The trends found in Qw may be explained by considering the differences of the pressure inside the
inlet and outlet channels. It turns out that the extreme values of the pressure difference between the
channels and of Qw are found at the same locations.
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Figure 12. Streamwise variation of the through-wall flow rate Qw for the intact (a) and damaged
(b) filters.

Figure 12b reveals absence of the Qw peak value at the exit due to the missing rear plugs. In the
damaged filter, the pressure difference between the inlet and outlet channels is constantly decreased
along the x-direction, and the same pressure is obtained at the exit of the channels. Thus, there is no
longer a driving force that creates the flow through the walls and Qw is diminished at the exit of the
defective filter. The Rec dependence of the Qw peak near the entrance is similar to that described above
for the intact filter. Nevertheless, its magnitude is damped and the overall Qw is attenuated as Rec is
decreased. This behavior can be associated with the different spatial evolution of the fluid velocity
and pressure in the defective inlet channels, as discussed in Figures 7–10. Figure 12b indicates that
less fluid crosses the permeable walls relative to the intact filter, which explains the lower flow rates
achieved along the outlet channels, as well as the weaker fluid jets coming out from the unplugged
inlet channels. Similar Qw profiles have been obtained previously by utilizing 1D models [24–26],
while there are no results from 3D CFD studies. The present work provides further insight into the 3D
features of the fluid flow in defective filter channels without rear plugs, which can potentially lead to
non-uniform particle deposition.

5.3. Particle Transport and Deposition

Figure 13 shows a visual impression of the instantaneous positions of particles having diameter
dp = 200 nm in the intact and damaged filters at representative time instances Ti (i = 0, 1, 2, ..., 8).
For the intact filter, the particles are uniformly introduced in the computational domain from the
inflow boundary (T0) as shown in Figure 13a. They are transported by the fluid flow, maintaining an
almost uniform distribution upstream of the filter (T1 − T3), while part of the particles moves toward
the central region of the entrance (T4). The particles located initially in the innermost zone of the inlet
channel move longer distances in the x-direction, due to the greater fluid velocities there. In addition,
the particles travel toward the permeable walls, because of the transverse fluid velocities that develop
in the inlet channels. As an outcome of these combined fluid motions, the particles are concentrated
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in certain flow regions forming a paraboloid. The instantaneous particle positions look closely like
the distributions of the streamwise fluid velocity, and their evolution at different times (T5 − T7) is
quite similar to the fluid flow evolution in the x-direction from a plug into a laminar parabolic profile.
The particle stream reaches the rear plug (T7) and eventually the population of particles is reduced
significantly owing to their deposition (T8).

The same observations can also be made for the time evolution of the particle positions in the
damaged filter, especially at the early stages of particle dispersion (T0 − T6), as shown in Figure 13b.
However, the removal of the rear plugs permits the particles to exit from the defective channels (T7, T8).
After some time, all the particles that have not deposited leave the computational domain from the
outflow boundary. As discussed above, the fluid velocity field obtained in the damaged filter differs
from that in the intact filter, which is reflected on the different spatial distribution of the particles
between the two cases (T4 − T6).
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Figure 13. Evolution of instantaneous positions of particles having diameter dp = 200 nm and Stokes
number St = 1.5 × 10−3 in the intact (a) and damaged (b) filters at Rec = 1632. The time instances are
T0 = 0, T1 = 0.2 × 104 St, T2 = 0.4 × 104 St, T3 = 0.5 × 104 St, T4 = 0.6 × 104 St, T5 = 0.8 × 104 St,
T6 = 1 × 104 St, T7 = 1.75 × 104 St, and T8 = 2.25 × 104 St.

To gain further insight into the particle transport by the carrier fluid flow, Figure 14 shows
characteristic trajectories of particles with dp = 200 nm at Rec = 1632. In the flows examined here,
high transverse fluid velocities are generated in the inlet channels and the fluid passes through the
permeable walls. Consequently, the fluid streamlines are not parallel to the surface of the porous walls
and plugs but they cross it. Small size particles are capable of responding quickly to all changes of the
fluid flow. The response times of the particles used in the simulations are τp = 1.23× 10−9, 6× 10−9,
and 3.39× 10−9 s that correspond to Stokes numbers Stc = τpuc/hc in the range of 6.82× 10−6 ≤
Stc ≤ 1.5× 10−3. It is clear that such low response time particles under the effect of drag force and
inertia tend to follow closely the fluid streamlines. This behavior of particles is not considerably altered
by the inclusion of the Brownian force terms, at least from a macroscopic viewpoint (see, for example,
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References [9,54]). The transverse fluid velocities become weaker in the defective inlet channels and
only a part of the fluid flows through the walls into the outlet channels. The streamlines between the
intact and damaged filters are dissimilar to each other, as a consequence of the different hydrodynamic
flow fields in these cases. This unlikeness is expected to be reflected on the particle trajectories.
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Figure 14. Sample of seven 200 nm particle trajectories (p1 to p7) in the intact (a) and damaged (b)
filters. Side x-y view of the particle trajectories at the entrance (p

′
1 to p

′
8) (c) and end of the intact inlet

channel (p
′′
1 to p

′′
7) (d). The particle trajectories in front of the damaged filter are the same to those

shown in (c). For both intact and damaged filters, the particles are introduced in the flow domain at
the same position. The initial particle velocity equals to that of the carrier phase at the position where
the particles are released.

For the intact filter, Figure 14a shows that initially the particle paths bend inward at the entrance
of the inlet channel due to the flow contraction. This can be appreciated better in Figure 14c, which
reveals that the particle trajectories at the entrance are similar to the fluid streamlines there (see
Figure 8). Most of the particles are carried in the filter (p

′
3 to p

′
8), whereas, under certain conditions,

some of them may follow the fluid streamlines that go through the frontal face of the filter, where
they are deposited (p

′
1, p

′
2). Inside the inlet channel, the particles are effectively transferred by the

underlying fluid motions toward the porous walls. The locations at which the particles hit the walls
vary in the x-direction, as indicated in Figure 14a. This can be attributed to the fact that the cross-flow
fluid motions are relatively weak away from the walls and, thus, the particles that enter from the
central region of the inlet channels are most likely to travel longer distances in the streamwise direction.
Figure 14d indicates that the back-flow observed at the end of the inlet channels at Rec = 1632 (see
Figures 7 and 9) affects significantly the motion of the particles (p

′′
1 , p

′′
4 to p

′′
8), and it can potentially

control the number of particles that impact the rear plugs. Away from the channel end, the back-flow
is not strong enough to produce a noticeable effect on the particle path-lines (p

′′
2 , p

′′
3). The effect of

the missing rear plugs on the particle transport is demonstrated in Figure 14b. It is seen that the
particle path-lines from the inflow boundary up to the entrance of the flawed inlet channel are identical
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to those described for the intact filter. On the other hand, the locations of the deposited particles
inside the inlet channel are obviously different between the two cases (p3 to p6). This is because of the
discrepancies in the velocity and pressure fields between the two configurations at a certain Reynolds
number. Figure 14b also shows the trajectories of some particles that escape from the unplugged inlet
channel (p1, p2, and p7).

Next, we try to characterize and quantify the deposition of nanoparticles in the intact and
damaged filters. The positions at which dp = 200 nm particles deposit at the walls of the intact filter
are shown in Figure 15a,c, respectively. The data in these figures correspond to the positions where
the particles hit the two x-y channel sides. Figure 15b,d show the probability density function (PDF)
of the deposited particles as a function of the x-direction. The PDF has been computed by counting
the number of particles Nd that impact each of the four channel walls within specified intervals in the
streamwise direction, normalized by the total number of deposited particles Nd,tot. This quantity may
be considered a more quantitative way to describe the variation of particle deposition along the length
of the inlet channel.

Figure 15b reveals that the particles are deposited almost uniformly over a large extent of the
inlet channel at Rec = 204. Two small peak values of the PDF appear near both ends of the channel.
On the other hand, it is evident in Figure 15d that the vast majority of the particles are deposited
preferentially at the end of the inlet channel at Rec = 1632. A smaller peak value of the PDF also occurs
near the entrance of the filter. The x variation of PDF(Nd/Nd,tot) resembles closely the distribution
of the through-wall flow rate Qw that is also shown in these figures. This similarity suggests that
the convective fluid transport toward the permeable walls is the key mechanism that controls the
particle deposition in the intact filter (see, for example, References [9,10]) At Rec = 204, the locations
of deposited particles are uniformly distributed at the walls in the spanwise direction, as shown in
Figure 15a. The 200 nm particles are capable of responding even to relatively weak transverse fluid
motions that can transfer them toward the walls. At Rec = 1632, the Stokes number is increased,
which points out that more momentum is required so that the particles can reach the walls. Figure 15c
indicates that the particles impact the walls on positions that are non-uniformly spread, exhibiting a
somehow greater tendency to deposit at regions closer to the corners of the channel. The through-wall
flow at the corners is an outcome of the contribution of both cross flow y and z velocity components,
resulting in a higher flow rate through the permeable walls and, subsequently, an enhanced local
particle deposition.

These observations are consistent with the findings of Sbrizzai et al. [9], while the present study
provides further results for the Reynolds number effect on the spatial distribution of deposited particles
in the streamwise and spanwise directions. It turns out that the Stokes number for a specific particle
set decreases with increasing Reynolds number, producing an overall effect on the particle deposition
that is similar, at least from a statistical point of view, to that observed when the size of particles is
decreased while the Reynolds number is kept constant.

Figure 16 shows the positions of deposited particles and the distribution of PDF(Nd/Nd,tot) in
the case of damaged filter at Rec = 204 and 1632. The similarity between PDF(Nd/Nd,tot) and Qw

distributions still holds, although to a lesser extent, irrespective of the missing rear plugs as shown in
Figure 16b,d. For all the Rec cases examined, the PDF obtains larger values in the initial portion of
the inlet channel and zero close to the channel exit. It can be seen that the peak value of the PDF is
shifted further away from the entrance with increasing Reynolds number. It is noted that this behavior
is also observed in the intact filter in Figure 15b,d but it is less pronounced. These findings point out
that the through-wall flow plays an important role in the particle deposition in the damaged filter
without rear plugs. However, this deposition mechanism is less effective as compared with the case of
intact filter. Consequently, the population of deposited particles is significantly attenuated, as shown
in Figure 16a,c, especially at Rec = 1632.
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Figure 15. Side x-y view of the locations of deposited particles (a), (c) and the probability density
function of particle deposition number inside the inlet channel of the intact filter (b), (d). Results
correspond to particles with dp = 200 nm at Rec = 204 (a), (b) and 1632 (c), (d). For clarity, one in every
ten deposited particles is shown.

Based on the results shown in Figures 13–16, it can be inferred that the behavior of the
particle-laden flow upstream of the PFs is not influenced by the presence of the rear plugs. The present
study provides evidence that a significant amount of particles is deposited at the front area of the filters,
as indicated by the non-zero value of the PDF for X/L f < 0 (first bar in Figures 15b,d and 16b,d).
For both the intact and damaged filters, it is found that 3.4% and 4.7% of particles with dp = 200 nm
impact the frontal face at Rec = 204 and 1632, respectively. This denotes that particle deposition at
the front area of the filters is enhanced as the Reynolds number is raised. It should be noted that
the different values of the PDF for X/L f < 0 between the intact and damaged filters at a fixed Rec

are because Nd,tot in the latter case generally differs with varying Reynolds number, whereas Nd is
the same.

To obtain a clearer picture regarding the particle deposition on the frontal area of the PFs, we
examine the locations of deposited particles at Rec = 204 and 1632, which are shown in Figure 17a,b,
respectively. Results are presented for the intact filter, but exactly the same analysis also holds for
the damaged filter. A significant accumulation of particles is apparent at the edges of the entrance.
This is because the particles are transferred by the carrier phase following streamlines that cross the
permeable plugs and walls, as illustrated in Figure 17c. The streamlines correspond to the Z = 1 plane,
at which the particle trajectories are projected. The small deviation observed between the particle
trajectories and the streamlines close to the front porous wall is because the particles are actually
deposited at a different z plane, and in lower degree due to the random shift introduced to the impact
location by the Brownian force terms. The deposition of nanoparticles, especially at the filter entrance,
may lead to the formation of complicated dendrites. Their presence will certainly affect the fluid flow
inside the channels, the pressure losses, and the particle collection efficiency. The local recirculating
bubbles observed at the entrance of the intact and damaged filters at Rec = 1632 are isolated from the
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rest of the flow. These are surpassed by the fluid streamlines entering the channels and, thus, they
cannot interact with or capture the dispersed particles. The same also holds for the recirculations at the
exit of the PFs. However, the presence of recirculations has a pronounced effect on the distributions of
velocity and pressure and, thus, they affect indirectly particle deposition.
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Figure 16. Side x-y view of the locations of deposited particles (a), (c) and the probability density
function of particle deposition number inside the inlet channel of the damaged filter (b), (d). Results
correspond to particles with dp = 200 nm at Rec = 204 (a), (b) and 1632 (c), (d). For clarity, one in every
ten deposited particles is shown.

The numerical results on the particle deposition process in intact filters and damaged filters with
missing plugs are consistent with recent experimental findings [43]. For instance, the experiments
indicate clearly that the deposit soot accumulates almost uniformly in the central region of the intact
filter, whereas the deposit loading is gradually reduced from the entrance of the defective filter
obtaining a zero value at its exit. The present work focuses on the investigation of particle transport
and deposition at low filtration times in clean PFs. Under such conditions, it is reasonable to assume
that the distribution of the particle mass flow rate toward the walls will look like the through-wall
velocity profile [10]. The majority of previous 3D numerical studies predict two peak values in the
through-wall velocity profile at the ends of the intact filter (see, for example, References [9–12]).
They also indicate that a non-homogeneous deposition of particles occurs along the filter length.
However, enhanced particle deposition at the entrance and end of the inlet channel is found in some
works [10–12], while high soot concentration only at the end of the inlet channel is anticipated in other
studies [9]. The flow contraction that takes place at the filter entrance can potentially influence the
location at which particle deposition begins. The size of the plugs and whether they are permeable
or not can also affect the particle behavior in the entrance flow region of the filter. The present study
provides for the first time numerical results of particle deposition at the frontal surface of the wall-flow
filter, which are consistent with visual observations from experiments (see, for example, Reference [43]).
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Figure 17. Locations of deposited particles with dp = 200 nm in the front area of the intact filter at
Rec = 204 (a) and 1632 (b). Fluid streamlines at the Z = 1 plane near the filter entrance at Rec = 204
and several representative particle trajectories pi(i = 1, 2, 3, 4, 5) (c). The same results are obtained in
the case of damaged filter.

The removal of the rear plugs leads to a considerable particle leakage that has to be determined
and quantified. Figure 18 shows the efficiency of the damaged filter, the number of particles that
are captured by the porous walls, as a function of the Reynolds number for the three particles sets
with dp = 20, 60, and 200 nm. It is defined as E = Nd/Ntot, where Nd is the number of deposited
particles and Ntot is the number of total particles tracked in the simulations. As Rec is increased,
fewer particles are generally deposited, since the transverse fluid motions inside the unplugged inlet
channels are moderate and, thus, they transfer less effectively the particles near to the walls. Moreover,
the Stokes number is increased with increasing Reynolds number, and the particles become relatively
unresponsive to the surrounding flow changes and follow less closely the local through-wall flow
that controls their deposition. Similarly, the increase of particle size augments the Stokes number and,
consequently, it increases particle leakage from the damaged filter.

The same scenario is also valid for the particle deposition in the front face of the filters.
In particular, the flow rate corresponding to the fluid motions that cross the frontal surface is relatively
small. Thus, smaller size particles are more capable of gaining sufficient momentum from the carrier
phase in order to reach the front area as compared with the larger size particles. The particles with
dp = 200 nm have a very low response time so that their trajectory approximates the underlying fluid
motions. However, the trajectory of such particles may intercept with the front surface in locations
away from the edges of the channel entrance due their greater size, resulting in a non-uniform scatter
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of the impact positions. In contrast to what happens inside the channels, the fluid flow upstream of the
filter elements acquires more momentum as the Reynolds number is raised. Thus, the fluid motions
associated with the convective transfer toward the frontal face become stronger and, eventually, local
particle deposition is enhanced for the whole spectrum of particle response times and sizes examined
here. Consequently, a different Rec dependence of the efficiency is obtained regarding the particle
deposition process in the frontal face of the filters, which is also shown in Figure 18.
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Figure 18. Efficiency of particle capture in the overall element and in its frontal surface as a function of
the Reynolds number in the damaged filter without rear plugs.

6. Conclusions

We have investigated the time-dependent 3D particulate flow in intact filters and partially
damaged filters in which the rear plugs have been removed. For the purposes of this study, we
accounted for the flow in the clear fluid region and the permeable walls and plugs by solving the
Navier–Stokes equations and the volume-averaged Navier–Stokes equations based on the Brinkman
model with an additional Forchheimer term, respectively. Discrete particle simulation was utilized to
model the dynamic behavior of the suspended nanoparticles in rarefied gas flow regimes for the two
filters. The particle trajectories were determined based on the drag force that accounts for the partial
slip effect and the Brownian motion. We performed extensive comparisons in representative flow
cases, in order to verify the validity of the developed code and then we conducted a grid sensitivity
analysis to ensure grid convergence of the present results. The main interest of this work was focused
on addressing the differences in the flow pattern for representative Reynolds number in the range
of 204 ≤ Rec ≤ 1632 and the deposition process of mono-dispersed ensembles of particles having
diameters dp = 20, 60, and 200 nm between the intact and the damaged filter elements.

We presented iso-contours of the fluid velocity which describe the main flow features developing
inside the channels and in areas upstream and downstream of them. This assisted the identification of
those particular flow characteristics that affect the transport and deposition of the particles.

For both geometries, a smooth flow contraction takes place in the entrance, while local
recirculating bubbles appear adjacent to the walls and the fluid stream obtains its smallest area,
a local maximum velocity and a local minimum pressure, reaching a condition of vena contracta at the
largest Reynolds number examined here.

The plug flow observed at the entrance of the inlet channels evolves into a laminar parabolic
distribution that is completely weakened in front of the rear plug, forcing the fluid to pass through the
permeable walls into the outlet channels. Our results provide evidence of pressure increase at the end
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of the inlet channels at Rec = 408, 816 and 1632, leading to a considerable back-flow. The flow transfer
across the porous walls is relatively uniform along the axial flow direction at low Reynolds numbers
and it becomes highly non-uniform at large Rec values, exhibiting two peak values at the entrance and
the end of the inlet channel. The minimum flow rate is found in the middle of the channel length that
is attenuated and shifted toward the entrance with increasing Reynolds number.

The removal of the rear plugs results in a different velocity distribution inside the channels
allowing the fluid flow to exit from the defective inlet channels at greater rates as compared with the
outlet channels. The overall pressure losses at the exit are smaller relative to those found in the intact
filter element. The flow modifications, which depend on the Reynolds number, are reflected on the
spatial distribution of the through-wall flow rate that obtains a local peak value near the entrance of
the damaged filter and it is gradually diminished as the exit is approached.

At the region downstream of both filters, the flow exits in the form of strong coherent jets that
are accompanied by recirculating bubbles. At certain distances from the exit and at certain flow
parameters, the jets may break up, enhancing mixing and favoring transition to turbulence. The size
and strength of the jets and the recirculating regions, as well as the characteristics of the achieved
turbulence differ between the intact and the damaged filters.

The above mentioned flow features agree reasonably well with previous numerical studies [9–14]
and that they have been identified in recent experiments [18].

We described the particle trajectories and show that the particles follow closely the streamlines of
the carrier fluid flow. St� 1 generally holds and, thus, the particles respond quickly to all scales of
fluid motion. High transverse fluid velocities develop inside the intact and unplugged inlet channels
due to the presence of the permeable walls. As an outcome, the streamlines are not parallel to the walls
and plugs but they may cross them.

The positions of the particles evolve in time in a similar manner to the variation of the streamwise
fluid velocity in the x-direction. Thus, the differences of velocity fields between the intact and the
damaged filters at the same Reynolds number are reflected on the spatial distribution of the particles.
The removal of the rear plugs allows a considerable number of nanoparticles to escape from the
defective channels, reducing the filtration efficiency.

We characterized the particle deposition in the intact and damaged filters. The convective fluid
transport toward the porous wall is the key mechanism that controls particle transfer and deposition
for both filters. The deposited particles are distributed along the filter length in a similar way to
the streamwise variation of the through-wall velocity. For the intact filter, the particle concentration
obtains large values near the entrance and exit of the inlet channel. For the damaged filter, high particle
concentration is observed close to the channel entrance and it is diminished at the exit.

We also investigated the particle deposition on the frontal surface of the filters. A noticeable
particle accumulation occurs at the edges of the filter entrance, which is enhanced for particles with
low response times in flows with high flow rates.

We examined and quantified the particle leakage due to the removal of the rear plugs. Fewer
particles are captured in the damaged filter with increasing Reynolds number and particle response
time owing to the augmented unresponsiveness of the particles to the local flow changes.
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