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Abstract: The structure of turbulent flow over non-flat surfaces is a topic of major interest in
practical applications in both engineering and geophysical settings. A lot of work has been done
in the fully rough regime at high Reynolds numbers where the effect on the outer layer turbulence
structure and the resulting friction drag is well documented. It turns out that surface topology plays a
significant role on the flow drag especially in the transitional roughness regime and therefore, is hard
to characterize. Survey of literature shows that roughness function depends on the interaction of
roughness height, flow Reynolds number, and topology shape. In addition, if the surface topology
contains large enough scales then it can impact the outer layer dynamics and in turn modulate
the total frictional force. Therefore, it is important to understand the mechanisms underlying drag
increase from systematically varied surface undulations in order to better interpret quantifications
based on mean statistics such as roughness function. In this study, we explore the mechanisms
that modulate the turbulence structure over a two-dimensional (2D) sinusoidal wavy surface with
a fixed amplitude, but varying slopes that are sufficiently small to generate only intermittent flow
separation. To accomplish this, we perform a set of highly resolved direct numerical simulations
(DNS) to model the turbulent flow between two infinitely wide 2D wavy plates at a friction Reynolds
number, Reτ = 180, which represents modest scale separation. We pursue two different but related
flavors of analysis. The first one adopts a roughness characterization flavor of such wavy surfaces.
The second one focuses on understanding the nonequilibrium near-surface turbulence structure
and their impact on roughness characterization. Analysis of the different statistical quantifications
show strong dependence on wave slope for the roughness function indicating drag increase due to
enhanced turbulent stresses resulting from increased production of vertical velocity variance from
the surface undulations.
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1. Introduction

Surface undulations can have significant impact on turbulent boundary layers both in the
atmosphere as well as in engineering applications. In particular, engineering applications such
as internal flows in pipes and turbomachinery, external flows over fouled ship hulls [1], wind turbine
blades, and other aerodynamic surfaces are common examples. In the atmospheric side, while most
roughness such as grass and shrubs are very small, there exists medium-to-large scale roughness
in the form of tree canopies, man-made structures, and hills. The ubiquitous nature of such flows
has made understanding their dynamics a necessity. A significant amount of research has been
devoted to understanding turbulent flows over pipe roughness, for example, the work of Darcy [2]
nearly two hundred years ago, in the early half of twentieth century by Nikuradse [3], Colebrook [4],
and Moody [5] and more recently by various research groups [6–8]. In the last two decades,
fundamental investigation of turbulent flows over uniform roughness embedded in flat surface has
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been undertaken through a series of experimental studies [9–15] as reviewed in work by the authors
of [13,16]. In addition, there has been extensive simulation-based research of turbulent boundary
layers over systematically designed roughness using direct numerical simulation (DNS) [8,17,18]
and large eddy simulation (LES) [19]. There has also been interesting recent work on reproducing
Nikuradse-type sand grain roughness using DNS at moderately high Reynolds numbers [20,21].

Through this extensive and growing body of literature, the underlying goals and fundamental
questions remain consistent, namely, how to estimate flow drag over a given roughness topology at a
specified Reynolds number or flow rate. From a geophysical perspective, the goal is to model the outer
layer dynamics and understand the turbulent coherent structures within the roughness sublayer that
impact man-made applications in the lower atmosphere [22–24]. From a computational standpoint,
the question is one of modeling the effective dynamics within the roughness sublayer to bypass the
complexity of resolving the roughness elements.

Significant early attempts to answer some of the above questions were the work of Nikuradse [3],
and the subsequent extension by Colebrook [4] to relate flow drag with roughness. Both these efforts
classify roughness as hydraulically smooth, transitional or fully rough regimes depending on the
relationship between drag and roughness scales. In the fully rough regime, drag is independent of the
Reynolds number and depends only on the roughness scale whereas in the transitional regime both
of these are important as per [3,4]. These ideas are summarized in the popular Moody diagram [5].
A more generic quantification of roughness induced effects applicable across different classes of flows
is the Hama roughness function [25], ∆〈u〉+, which is commonly aligned with the classical view of
rough wall turbulent boundary layers. Specifically, the classical view is that roughness influences
the turbulence structure only up to a few roughness lengths from the mean surface location while
the outer layer flow is unaffected except for a modulation in the velocity and length scales—a rough
wall extension of Townsend’s Reynolds number similarity hypothesis [26]. Therefore, this notion
of ‘wall similarity’ [27] implies that shape of the mean velocity in the overlap and outer layers is
unaffected (relative to a smooth wall) by the roughness. This phenomenology is mostly consistent with
observations as per the work of Jiménéz [16], but exceptions do exist. Quantitatively, the roughness
function represents the downward displacement in the mean velocity profile plotted in a semi-log
scale indicative of the increased drag from the surface inhomogeneities. Combined with Townsend’s
wall similarity hypothesis, ∆〈u〉+ represents the shift in the intercept used to describe the logarithmic
region of the mean velocity profile as

〈u〉+ =
1
κ

ln(y+) + B
︸ ︷︷ ︸

Log law for smooth wall

− ∆〈u〉+︸ ︷︷ ︸
Roughness

function

, (1)

where, κ is the von Kármán constant, B is the additive constant, 〈u〉+ is the averaged streamwise
velocity over a rough surface, and y+ is the wall coordinate. Normalization is done using the inner
layer variables, such as friction velocity, uτ , and kinematic viscosity, ν, expressed as 〈u〉+ = 〈u〉

uτ
and

y+ = yuτ
ν .

Understanding the extent of universality and conditions for the existence of outer layer similarity
continues to be a major topic of interest [13,16]. The underlying assumption behind wall similarity
is that there is sufficient scale separation between the boundary layer thickness, δ and the roughness
height, k. Consequently, the roughness sublayer is expected to be relatively thin (compared to the
boundary layer thickness) as it scales with k. However, the precise nature of this scaling relationship
depends on the detailed roughness topology. Flack et al. [9,14] explored the concept of ‘critical’
roughness height and conditions for the existence of outer layer similarity. In their work, outer layer
similarity was consistently encountered even for moderately high Reynolds numbers over uniform
three-dimensional rough surfaces with reasonably large roughness elements. In fact, little to no
deviations in outer layer similarity was observed for δ/k & 20 and δ/ks & 6, where k and ks are
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the mean roughness height and equivalent sand grain roughness, respectively. Importantly, it was
reported that there exists no critical roughness height (i.e., a height corresponding to a sharp transition)
as the influence of roughness size on outer layer statistics is more gradual. These trends appear
to breakdown for two-dimensional roughness (especially periodic) which are known to generate
stronger vertical disturbances due to the absence of significant spanwise motions in the roughness
sublayer. This two-dimensional surface effect is clearly observed in higher-order statistics and less
so for the mean velocity profiles. Volino et al. [28,29] clearly illustrate this using experiments with
transverse two-dimensional bars and three-dimensional cubes as roughness elements (δ/ks ≈ 2–3)
and flow friction Reynolds numbers, Reτ = δ+ ≈ 2000. Subsequently, Krogstad and Efros [30] show
that flow over two-dimensional roughness elements with higher δ/k and at higher Reτ (larger scale
separation) generate outer layer similarity just like three-dimensional roughness. Therefore, the details
of the roughness topology along with the roughness scale and the flow Reynolds number modulate
turbulence structure. It is only their relative importance that changes across the different regimes.

The frictional drag from the surface is also strongly influenced by the surface topology and not
just the roughness scale. The correlation of friction coefficient with Reynolds number in the Moody
diagram [5] is parameterized for mean roughness height. By leveraging the existence of outer layer
similarity, the shift in the mean profile or roughness function is used as a surrogate for prediction of
increase in friction drag over a given rough surface. The roughness correlations of Nikuradse [3] or
Colebrook [4] relate ∆〈u〉+ to k+ (scaled roughness height) using ∆〈u〉+ = (1/κ) log(k+) + B− 8.5
and ∆〈u〉+ = (1/κ) log(1 + 0.3k+), respectively. The Nikuradse expression is calibrated for the
uniform sand grain roughness while the Colebrook relationship is designed for commonly occurring
surfaces. However, there exists many examples where ∆〈u〉+ does not depend solely on k+ such
as a turbulent flow over two-dimensional transverse (or wavy surfaces as reported in this work)
bars [31] separated by distances comparable to the height. Perry et al. [32] classify such cases as
“d-type” roughness in contrast to “k-type” roughness where ∆〈u〉+ scales with k+. In the case of
closely spaced transverse bars, there exist vortical flow cells between each of these elements thus
causing the turbulent flow to skim over which makes ∆〈u〉+ depend little if any on k+. Schultz and
Flack [12] systematically study turbulent flow over three-dimensional pyramid elements of different
heights and inclination angles to understand the role of roughness slope in addition to k on the
drag. Their results clearly indicate that smaller slopes produce significant deviation from the uniform
sand roughness behavior with ∆〈u〉+ changing slower with k+ in the transitionally rough regime.
Further, these deviations get stronger with increase in inner scaled roughness height. Nakato et al. [33]
report similar observations for sinusoidal wavy surfaces with slopes greater than ~6◦ mimicking
the uniform sand roughness behavior. Physical insight for these observations is available from the
numerical work of Napoli et al. [17] who superposed sinusoidal waves to generate a corrugated
two-dimensional rough surface. From their work, the anomalous relationship between ∆〈u〉+ and
k+ at small slopes or ‘waviness’ regime is attributed to the dominance of viscous drag over form
drag. On the contrary, in the ‘roughness’ regime involving higher slopes (as in works by the authors
of [3,14,20]), the form drag dominates. To characterize these deviations, they design a slope dependent
roughness parameter termed as effective slope, ES, that represents the average surface slope magnitude
over a given sampling region. In their findings, ∆〈u〉+ varies linearly with ES for ES < 0.15 (beyond
which ∆〈u〉+ is constant for a given k+), whereas Schultz and Flack [12] report that the transition
happens at ES < 0.35. Therefore, ES is an additional ‘waviness’ parameter along with k+ that modulates
∆〈u〉+, i.e., ∆〈u〉+ = f (k+, ES). Of course, one can build a rich enough parameter space in addition to
ES and a to learn f using advanced data science methods.

In this study we explore the structure of near-wall turbulence and deviations from equilibrium
flat channel turbulence in the waviness regime using direct numerical simulation of wavy channel
flow at a friction Reynolds number, Reτ = δ+ ≈ 180. The simulation infrastructure uses higher-order
spectral like compact schemes [34] for both advection and diffusion terms while a third-order multistep
method is used for time integration. The wavy surface is represented using an immersed boundary
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method [35,36] similar to many other efforts [18,21]. The focus of our current analysis is to better
understand the mechanisms underlying the drag increase at small slope angles dominated by viscous
drag. For the sinusoidal two-dimensional surfaces considered in this study, the effective slope, ES is
directly related to the nondimensional ratio of the amplitude (a) and wavelength (λ) of the sinusoidal
shape, i.e., ES = 4a/λ = 2ζ where ζ is the steepness factor. In this research, ζ is deliberately varied from
0 to 0.022 (ES ≈ 0–0.044) which is nearly an order of magnitude smaller than the transition location (in
ES) beyond which ∆〈u〉+ becomes constant for a given mean roughness height a+. For this range of
slope parameter (ζ), there exists very little flow separation over the 2D surface and consequently, very
little spanwise flow. The roughness height or wave amplitude, a, is chosen to generate moderate scale
separation, i.e., δ/a ≈ 15 and the ratio based on the equivalent sand roughness height (assuming the
Nikuradse [3] form) turns out to be δ/ks ≈ 30–50. These values are normally sufficient to generate
outer layer similarity based on the three-dimensional surface roughness studies of Flack et al. [13,14],
but may not be adequate for the two-dimensional wavy surfaces used in this study. Therefore, analysis
in this work will focus on assessing the extent of outer layer similarity and the relationships between
roughness function, effective slope, and roughness/wave height. In addition, we delve into the
nature of roughness induced deviations on higher-order turbulence statistics and their production
mechanisms in order to generate a process level understanding. Note that the roughness Reynolds
numbers used in the work (a+ ≈ 13–14) fall within the transitional regime.

The rest of the article is organized as follows. In Section 2, we describe the numerical methods,
simulation design, quantification of statistical convergence and validation efforts. In Section 3,
we present the results from the analysis of outer layer similarity, roughness induced drag quantification.
We further characterize how the turbulence structure, namely, the flow stresses, components of the
Reynolds stress tensor and the different production mechanisms are modulated by the wavy surface
undulations. In Section 4 we summarize the major findings from this study.

2. Numerical Methods

In this study, we adopt a customized in-house version of the Incompact3D [34] code framework
to perform our DNS study. The dynamical system being solved is the incompressible Navier–Stokes
equation for Newtonian flow described in a Cartesian co-ordinate system with x, y, and z pointing to
streamwise, vertical, and spanwise directions respectively. The skew-symmetric vector form of the
equations are given by

∂u
∂t

= −∇p− 1
2
[
∇(u⊕ u) + (u∇)u)

]
+ ν∇2u + f and (2)

∇.u = 0. (3)

Here f represents the body force, p represents the pressure field. The fluid density (ρ) is considered
unity for this incompressible fluid as we solve these equations in nondimensional form. We denote the
advection–diffusion term by F for simplicity. Naturally, the above systems of equation can be rewritten
to generate a separate equation for pressure.

The system of equations are advanced in time using a 3rd-order Adam–Bashforth (AB3) time
integration with pressure–velocity coupling using a fractional step method [37]. For the channel flow,
the body force term f is dropped. The velocity is staggered by half a cell to the pressure variable
for exact conservation of mass. A 6th-order Central Compact Scheme (6OCCS) with quasi-spectral
accuracy is used to calculate the first and second derivative terms (contained in F) in the transport
equation. The pressure Poisson equation (PPE) is solved using a spectral method by applying fast
Fourier-transform on the elliptic equation to generate an algebraic equation; the right hand side of the
PPE is computed using a quasi-spectral accuracy using 6OCCS and then transformed to Fourier space.
To account for the discrepancy between the spectrally accurate derivative for the pressure gradient
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and a quasi-spectral accuracy for the divergence term, the algorithm uses a modified wavenumber in
the pressure solver.

A major downside to the use of higher-order schemes as above is the representation of the
complex geometry. In particular, the boundary conditions for higher-order methods are complex and
hard to implement without loss of accuracy near the surface. In this work, we adopt an immersed
boundary method (IBM) framework to represent the complex surface shapes. In the IBM the surface
representation is accomplished through an added body force term to the governing equations while
the background grid can be a simple Cartesian grid. Therefore, this approach saves significant grid
generation effort, but is prone to inaccuracies. In this study, we leverage the higher-order IBM
implementation in Incompact3D using the direct forcing method requiring reconstruction of the
velocity field inside the solid region. This can be illustrated using the schematic in Figure 1. Figure 1a
denotes the solid nodes in red, fluid nodes in blue, and the interfacial nodes in green. The solid curve
represents the continuous shape of the fluid–solid interface. Figure 1b shows local velocity variation
along the y direction corresponding to the black rectangle in Figure 1a for illustration purposes.
The IBM framework aims to enforce zero velocity at the interface through a velocity field reconstruction
in the red solid nodes so that the higher-order (6OCCS) gradient computations can be estimated without
sacrificing accuracy. Therefore, the key to the success of this approach is the velocity reconstruction
step inside the solid region (red nodes in the schematic) using information at the blue and green nodes.
To improve stability the grid point closest to the boundary (denoted by hollow circle) is ignored in
the extrapolation step. The numerous different IBM implementations [36] differ in the details of this
velocity reconstruction. In the current study, we adopt the one-dimensional higher-order polynomial
reconstruction as reported in the work by the authors of [38]. This reconstructed velocity field is
directly used to estimate the derivatives in the advection and diffusion terms of the transport equation.
An illustration of this approach is shown in Figure 1b. Using this 1D polynomial reconstruction, one
estimates different solid region velocity fields when computing the derivatives along the different
directions (x, y, and z). This is an advantage as well as a disadvantage. However, for the purposes of
this study, this approach has shown to be reasonably accurate as described in Section 2.3.

X

Y

Solid

F luid

(a)

V elocity

(b)

Figure 1. Illustration of 1D polynomial reconstruction based on Lagrangian polynomial. In (a),
we show the 2D grid distribution with the immersed boundary while (b) illustrates the 1D velocity
reconstruction along the vertical line enclosed by the dashed rectangle in (a).

2.1. Simulation Design

We carry out four different simulations of turbulent flows in flat and wavy channels with different
steepness levels (ζ), but with the same peak wave height (a) as shown in Figure 2a. We define an
average wave steepness, ζ = 2a/λ, where λ is the wavelength. In our study ζ varies from 0 to
0.022 corresponding to zero, one , one-and-one-half, and finally, two waves over the streamwise length
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of the domain. For all these cases, care was taken to ensure that the friction Reynolds number is
maintained to a nearly constant value of ~180. The corresponding bulk Reynolds number, Reb = ubδ

ν ,
for the flat channel case is ~2800. For the wavy channel turbulent flows with the same effective flow
volume and mean channel heights, maintaining the same flow rate (or bulk velocity) increases the
corresponding friction Reynolds number, Reτ = uτδ

ν , due to increase in uτ with wave steepness, ζ.
However, this increment is at most ~10% in the current work and is not expected to influence our
analysis significantly. The simulation parameters for the different cases are summarized in Table 1. The
simulation domain is chosen as 4πδ× 2.2δ× 4πδ/3 (including the buffer zone for the IBM) where δ is
the boundary layer height. This volume is discretized using a resolution of 256× 257× 168 grid points.
In the streamwise and spanwise directions, periodic boundary conditions are enforced while a uniform
grid distribution is adopted. In the wall normal direction, the no-slip condition representing the
presence of the solid wall causes inhomogeneity. To capture the viscous layers accurately, a stretched
grid is used. The grid stretching in the inhomogeneous direction is carefully chosen using a mapping
function that operates well with the spectral solver for the pressure Poisson equation. The different
inner scaled grid spacings are also included in Table 1.

Table 1. Tabulation of different design parameters for the simulations such as: wavelength (λ),
amplitude (a), and steepness (ζ = 2a

λ ) of the wavy surface, friction velocity (uτ), Reynolds numbers (Re)
based on boundary layer height (δ), and different velocities expressed as the subscripts (‘cl’ = centerline
velocity; ‘b’ = bulk velocity; ‘τ’ = friction velocity) and the grid spacing in different directions (’∆x’ =
streamwise; ‘∆z’ = spanwise; ‘∆yw’ = wall normal near the wall; ‘∆ycl ’ = wall normal near the flow
centerline). Superscript ‘+’ refers to inner scaled quantity (scaled with respect to dynamic viscosity (ν)
and friction velocity (uτ)).

Case λ λ+ a+ ζ ∆x+ ∆y+
w ∆y+

cl ∆z+ Recl Reb Reτ uτ × 103

A ∞ ∞ 0 0 8.94 1.05 2.00 4.55 3263 2800 180.9 43.07
B 4π 2354 13.07 0.011 9.23 1.15 2.25 4.70 3277 2800 186.8 44.48
C 8

3 π 1618 13.48 0.017 6.34 1.19 2.32 4.84 3285 2800 192.6 45.85
D 2π 1252 13.92 0.022 9.82 1.23 2.39 5.00 3298 2800 198.7 47.32

We note that the current analysis tries to balance three issues:

• The major focus of the current work is on slope-dependent dynamics without presence of
significant separation. This is part of a broader analysis theme where we expect to characterize
how separation related dynamics impact turbulence structure differently from when significant
separation exists.

• At the same time, we wanted to realize high enough Reynolds numbers to characterize well
known turbulent behavior, and yet,

• minimize computational/storage cost.

The Reynolds number at which sustained separation will occur tends to reduce with increased
steepness (ζ). Therefore, if one were to consider higher Reynolds number, we expect to reduce the range
of ζ considered in the analysis which in turn requires very high grid resolution (and computational
cost) to resolve the thin viscous layers. That said, modeling higher Reynolds numbers subject to
availability of compute resources is a potential future work.
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Figure 2. Schematic illustration of the Cartesian grid with the immersed boundaries of different shapes
(a) and a close-up of the buffer region (b). The solid thick curve represents the wave for λ = 4π and
the dashed line for λ = 8π

3 . A similar setup is used for other surface shapes as well.

2.2. Convergence of Turbulence Statistics

In order to quantify the convergence of the simulation and ensure statistical stationarity of the
turbulence, we consider the streamwise component of the inner scaled mean spatial and temporally
averaged horizontal stress that includes both the mean viscous and Reynolds stress components
as τH,x = 〈 ∂u

∂y 〉+x,z,t − 〈u′v′〉+x,z,t. Here, 〈〉x,z,t represents the averaging operation with subscripts
denoting averaging directions. In the limit of statistically stationary and horizontally homogeneous
turbulence, τH,x(y) can be approximated to a linear profile, 1− y

δ as derived from the mean momentum
conservation equations. We estimate a residual convergence error εRes as

εRes = 〈
∂u
∂y
〉+x,z,t − 〈u′v′〉+x,z,t − (1− y

δ
), (4)

whose variation with y/δ is shown in Figure 3.

0.00 0.25 0.50 0.75 1.00

y/δ

−0.2

0.0

0.2

ε R
es

ζ = 0
ζ = 0.011

ζ = 0.017
ζ = 0.022

Figure 3. Quantification of statistical stationarity for the different DNS datasets using the residual of
mean horizontal stress from 2500 samples collected over ~12 δ

uτ
.

We note that this error is sufficiently small for the flat channel (ζ = 0) with magnitudes
approaching 0.01 near the surface and much smaller in the outer layers. The plot also shows
similar quantifications for wavy channel turbulence data with large residual errors near the surface.
This is not surprising given that closer to the wall, the turbulence structure is known to deviate from
equilibrium due to deviations from horizontal homogeneity. In fact, such deviations from equilibrium
phenomenology will be expounded further in the later sections of the article. Nevertheless, we show
here that farther away from the surface, the mean horizontal stress approaches equilibrium values as
an indicator of stationarity.
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2.3. Assessment of Simulation Accuracy

We perform a baseline assessment of the computational accuracy for the turbulent channel
flow using an immersed flat channel surface before adopting it for more complex surface shapes.
We compare the mean and variance profiles from the current DNS of immersed flat channel flow with
the well known work of Kim, Moin, and Moser [39] (KMM87 henceforth). This turbulent channel
flow corresponds to a bulk Reynolds number, Reb ≈ 2800, mean centerline velocity Reynolds number,
Recl ≈ 3300, and a friction Reynolds number, Reτ ≈ 180. KMM87 used nearly 4× 106 (128 × 129 ×
128 grid points and solved the flow equations by advancing modified variables, namely, wall-normal
vorticity, and Laplacian of the wall-normal velocity without explicitly considering pressure. They
adopted a Chebychev-tau scheme in the wall-normal direction, Fourier representation in the horizontal
and Crank-Nicholson scheme for the time integration. In our work, we adopt a spectrally accurate
6th-order compact scheme in space and a third order Adam–Bashforth time integration as reported
in the work by the authors of [34]. Figure 4 clearly shows that the inner-scaled mean (Figure 4a) and
root mean square of the fluctuations (Figure 4b) from the current simulations match that of KMM87.
We observe slight differences for the streamwise velocity fluctuation RMS in the outer layer which
can be attributed to the improved resolution (and accurate time integration) in our simulations. The
method employs a staggered grid arrangement for improved mass conservation.

100 101 102
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30
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〉+ x
,z
,t

〈u〉+x,z,t (Current)
〈u〉+x,z,t = 1

κlog(y+) + B

〈u〉+x,z,t = y+

〈u〉+x,z,t (KMM87)

(a) Normalized and averaged streamwise velocity
distribution in wall coordinates
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y+
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3.5

√
〈ū
′2 〉

+ x
,z
,t

√
〈u′2〉+x,z,t (KMM87)√
〈u′2〉+x,z,t (Current)√
〈v′2〉+x,z,t (KMM87)

√
〈v′2〉+x,z,t (Current)√
〈w′2〉+x,z,t (KMM87)√
〈w′2〉+x,z,t (Current)

(b) RMS-normalized velocity fluctuation profiles in wall
coordinates

Figure 4. Comparison of mean velocity and RMS velocity fluctuation between DNS of flat channel
turbulent flow with IBM and the Kim et al. [39] DNS without IBM.

3. Results

The primary goal of this study is two-fold: (i) to explore the nonequilibrium, near-surface
turbulence structure over systematically varied sinusoidal undulations and (ii) characterize the
roughness characteristics of such wavy surfaces. In addition, wherever possible, we quantify
deviations from equilibrium phenomenology as evidenced in flat channel turbulence, assess the
extent of outer layer similarity, and relate to characteristic roughness induced effects as appropriate.
To accomplish this, we use conventional turbulence quantifications such as mean first- and
second-order statistics (velocity variances and turbulent kinetic energy (TKE)), horizontal flow stress,
and mean nondimensional velocity gradient profiles. As discussed in Section 2.1, we consider four
different steepness (ζ) levels (Table 1), including the flat surface to understand the impact on turbulence
structure. The flat channel with ζ = 0 represents equilibrium turbulent flow due to horizontal
homogeneity and stationarity. To contrast, we consider turbulent flows over wavy surfaces with very
little separation as shown in Figure 5.
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(a) ζ = 0.011 (b) ζ = 0.017 (c) ζ = 0.022

Figure 5. Comparison of instantaneous flow separation for the different wave steepness, ζ. The wavy
surface is denoted in cyan and the separation is denoted in red. The coordinate system (a) is kept
consistent (b,c).

The analysis can be realized using both instantaneous as well as averaged turbulence structure.
In this article we focus on the streamwise-averaged or more commonly known as the ‘double-averaged’
turbulence structure which is a function of solely the wall normal distance. The term ‘double-averaging’
refers to the combination of averaging along homogeneous (z, t) and inhomogeneous (x) directions.
For the spatial averaging, we include both streamwise (x) and spanwise (z) spatial directions, and for
the temporal (t) averaging, we include 2500 three-dimensional snapshots over 20 flow through times
for the chosen friction Reynolds number. We use the notation 〈u〉x,z,t to specify a quantity u being
averaged over x, z, and t. For the flat surface, horizontal homogeneity and stationarity implies that
x, z, and t are equivalent in the averaging operation, 〈 〉x,z,t (i.e., generate equivalent results in the
limit of sufficient samples). However, when dealing with two-dimensional non-flat surfaces as in this
work, only z and t are equivalent and provide the same results, but depend on x due to absence of
streamwise homogeneity near the surface. Therefore, in such situations it is only natural to consider
averaged quantities that have both streamwise (x) and vertical (y) variability. This allows one to
characterize the near-surface inhomogeneity along both directions. However, in order to quantify
deviations from equilibrium and assess the impact of near-surface inhomogeneity on the turbulence
we consider streamwise averaged statistics.

3.1. Streamwise Averaging of Turbulence Statistics

In this section, we focus on the deviations from equilibrium in turbulence structure using
streamwise averaged statistics that depend only on y

δ and ζ.
To average along the wavy surface, we define a local vertical coordinate, ylocal,1 at each streamwise

location with ylocal,1 = 0 at the wall. Its maximum possible value is the mid channel height and changes
with streamwise location. We then perform streamwise averaging along constant values of ylocal,1
to generate mean statistical profiles. A slight variant of the above is to use a rescaled coordinate
ylocal,2 = ylocal,1 × δ

δlocal
which stretches ylocal,2 everywhere between [0, δ] where δ is the mean half

channel height. One averages over constant values of ylocal,2 to generate another set of double-averaged
mean statistics. Both approaches implicitly approximate the terrain as nearly flat with a large radius
of curvature in a local sense and therefore, nearly homogeneous. This approximation works well
when a

δ << 1. In our study a
δ = 0.07 which is an order of magnitude larger than the typical viscous

length scale, Lv = ν/uτ = 1/Reτ ≈ 0.0055, but smaller than the log layer (y+ ≈ 50) with strong
inertial dynamics.

For the mean velocity results presented in this section, we compare both the averaging approaches
to illustrate their closeness to each other. Specifically, we use thick solid lines to denote the mean
profiles averaged over constant local coordinate ylocal,1 and thin lines with markers to denote averaged
quantities using scaled local coordinate ylocal,2. However, for the rest of our analysis, we average over
ylocal,1 in a manner consistent with the literature although a second possibility exists. Furthermore,
the results from the two approaches are close enough to each other (Figure 6) to not warrant two
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different approaches for this analysis. The different colors, namely, blue, green, red, and lime are
associated with different wave steepness, ζ = 0, ζ = 0.011, ζ = 0.017, and ζ = 0.022, respectively.
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Figure 6. Inner scaled mean (a) streamwise velocity, (b) vertical velocity, and (c) defect velocity
computed using local coordinate-based average; zoomed version near the surface (d). The thick lines
represent averaging at constant ylocal,1 and the thin lines with markers represent averaging at scaled
ylocal,2. Three vertical straight lines correspond to the different a+ for ζ > 0 (see Table 1).

3.2. Outer Layer Similarity and Mean Velocity Profiles

As the mean channel height (for wavy geometry) is kept constant across all different steepness,
ζ, the observed changes in the mean statistics are only due to surface effects and not the outer
layer dynamics. In Figure 6, we show the inner-scaled, double-averaged streamwise and vertical
velocity for the different cases. The prominent observation for the streamwise velocity is an upward
shift (downward shift in the u+ − y+ plot) with increasing wave steepness, ζ (Figure 6a), which
increases with y+ before showing near linear growth in the log-layer. This trend is well known
for rough-wall turbulent boundary layers [16] and is indicative of slowing down of the flow near
the wall from increased drag due to the wavy surface for a fixed mass flow rate (bulk Reynolds
number). This would naturally result in higher centerline velocities and Recl as seen in Table 1 in order
to maintain the prescribed flow rate. The vertical mean velocity structure (Figure 6a) is consistent
with this interpretation as the wavy undulations generate increasingly stronger net vertical velocity
close to the surface with increase in ζ. As seen from Figure 6a, the mean vertical velocity profile
shows systematic upward flow in the viscous and buffer layer along with a weak downward flow
in the logarithmic region in order to maintain zero net flow in the vertical direction. It is well
known that the mean vertical velocity is zero due to horizontal homogeneity for the flat channel
(ζ = 0). Therefore, these well-established vertical motions in the mean over wavy surfaces, although
small (〈v〉+ = O(0.1)), represent the most obvious form of deviations from horizontal homogeneity,
a prerequisite for equilibrium.

In particular, the vertical velocity is asymmetric with respect to the symmetric wavy shape as
seen from isocontours of time-averaged mean vertical velocity shown in Figure 7. We observe that the
upward and downward slopes display varying tendencies due to presence of adverse and favorable
pressure gradients, which decelerate (push the flow upward) and accelerate (push downward) the
flow as expected. However, the extent of upward deceleration dominates the downward acceleration
which breaks the symmetry of the flow patterns around the wave crest. This asymmetry increases with
ζ resulting in stronger net vertical flow in the lower buffer layer (Figure 6a).

A better insight into the steepness dependence of this asymmetry can be gained by investigating
the averaged structure of spanwise vorticity (ωz) as given by ωz =

∂〈v〉z,t
∂x − ∂〈u〉z,t

∂y . As illustrated in
Figure 7c, the spanwise vorticity is predominantly attached to the surface in the upslope region for
different ζ, which is qualitatively reminiscent of a flat surface. However, the thickness of the strong
vorticity region shows streamwise dependence. However, in the downslope region, the region of strong
vorticity exists away from the surface indicating lifting of the shear layer at higher ζ. This suggests
incipient flow separation in the mean although intermittent flow separation exists (Figure 5) for all the
non-zero ζ considered in this work. This separation however is not consistent enough to show up in
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the mean statistics. Such incipient separation can be interpreted as the streamwise gradient of vertical
velocity ( ∂〈v〉z,t

∂x ) approaching the vertical gradient of streamwise velocity ( ∂〈u〉z,t
∂y ) at higher values of ζ

closer to the surface. At higher steepness, the shear layer is expected to completely detach from the
wall and a layer of positive vorticity is expected to emerge underneath in an averaged sense due to
strong and consistent separation downslope of the peak.
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Figure 7. Spanwise and temporally averaged (a) streamwise velocity, (b) vertical velocity, and (c)
spanwise vorticity over wavy surfaces in turbulent channel flow.

In spite of these near surface deviations, the dynamics outside the roughness sublayer tend to be
similar when normalized and shifted appropriately. To illustrate this outer layer similarity, we show
the defect velocity profiles in Figure 6b that indicate little to no deviation between ζ = 0 and ζ = 0.022.
If anything, the deviation is slightly higher near the surface in the roughness sublayer, as illustrated in
Figure 6c.

3.3. Quantification of Mean Velocity Gradients and Inertial Sublayer

The normalized mean streamwise velocity gradients identify the different regions of the turbulent
boundary layer and are especially useful to quantify the extent of the inertial sublayer (or the
logarithmic region) and the von Kármán constant. In this study, we estimate the normalized

premultiplied inner-scaled mean gradient γ = y+
d〈u〉+x,z,t

dy+ , as shown in Figure 8a. This function
achieves a near constant value of 1/κ (where κ is the von Kármán constant) in the inertial sublayer
due to normalization of the mean gradient by characteristic law of the wall variables, i.e., surface
layer velocity (uτ) and distance from the wall (y). In this study, for the chosen bulk Reynolds number,
Reb (and the realized narrow range of friction Reynolds numbers, Reτ) we observe that the inertial
layer exists over y+ ∼ 60− 110 for ζ = 0 which shifts to y+ ∼ 75− 125 for ζ = 0.022. At the outset,
this upward shift (rightward in the plot) in the log layer appears to be associated with the change in
wave steepness, ζ and not the small changes (~10% or lower) in friction Reynolds number, Reτ . In this
context, we refer to the work of Moser et al. [40], who show that similar shifts in the logarithmic region
occur only over significant changes in Reynolds number, much larger than the variations observed
in this study. The estimated von Kármán constants are tabulated in Table 2, and show a range of
0.38 to 0.40 for the different runs. In this study, we use the appropriate value of κ to compute the
different metrics.
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Figure 8. Variation of nondimensional mean streamwise velocity gradients (a) γ = y+ d〈u〉+x,z,t
dy+ and

(b) Φ =
κy
uτ

d〈u〉x,z,t
dy . The thin dashed black line (a) corresponds to the mean γ valued 2.5604 computed

based on y+ = 60− 110.

A related quantification often employed to interpret near wall structure is the nondimensional
mean streamwise velocity gradient, Φ = κy

uτ

d〈u〉x,z,t
dy whose variation with inner-scaled wall normal

distance is shown in Figure 8b. It is easy to see that γ = Φ/κ. We observe that the Φ profiles for
different ζ mimic the characteristic equilibrium structure starting from zero at the wall followed by a
peak at the edge of viscous layer and subsequently, a gradual decrease in the buffer layer to a value
of one in the inertial sublayer. The deviations from surface layer similarity in Φ for y+ > 120 clearly
indicates the increasing influence of outer layer scales in that region. This is easily verified from the
outer layer similarity observed in Figure 6b. In fact, there exists an overall shape similarity in Φ hinting
at the potential for universality if only the appropriate scales at the different regimes can be identified.

The origin of the ‘overshoot’ or near-surface peak is well known and is related to the inconsistency
from normalization of the mean gradient using inertial scale variables closer to the surface (viscous
layer) where the physically relevant characteristic length scale is Lv = ν/uτ . With some analysis, one
can easily show that Φ undergoes a linear growth as Φ = κy/Lv near the surface (Lv being a constant).
In the buffer layer, one can similarly formulate Φ = κy/Lbl , with Lbl increasing super linearly and with
y to cause the peak followed by a decrease as one approaches the inertial sublayer. In the inertial layer,
Φ = κy/Lil with Lil varying linearly with y as per law of the wall (resulting in Φ and γ assuming
constant values).

In this context, we see that as the friction velocity, uτ increases with ζ (see Table 1), the viscous
length scale, Lv decreases resulting in faster growth of Φ = κy/Lv in the viscous layer, but over a
smaller height that scales with Lv. This is consistent with Figure 8a,b which show that the magnitude
of the peak at the viscous-buffer layer transition decreases with increase in ζ. In addition, we observe
an upward (rightward) shift in the log region (i.e., region of nearly constant Φ and γ) with ζ. Taken
together, the above observations, namely the upward shift in the log region (Figure 8a) and the smaller
peak in Φ with increase in ζ, indicate that the buffer layer becomes increasingly thicker for steeper
waves. The ‘buffer layer’ is known as a region of high turbulence production [41], where both the
viscous and Reynolds stresses are significant. Therefore, the expansion of the buffer layer with ζ is a
consequence of the turbulence production zone expanding due to the wavy surface. This is evident
from Figure 9 where the decay in turbulence kinetic energy (TKE) production is slower for higher
ζ in the buffer region (y+ ≈ 10− 50) in both inner-scaled (Figure 9a) and dimensional (Figure 9b)
forms. A consistent trend is observed in the TKE dissipation which is known to peak at the wall
before decreasing sharply with height in the surface layer while undergoing relatively little change
in the buffer layer increasingly dominated by inertial dynamics before decreasing gradually away
from the surface. The inner scaled dissipation profiles (Figure 9c) clearly suggest that at higher ζ the
region of nearly constant dissipation (corresponding to buffer layer dynamics) is more pronounced
and extending over a larger region of the TBL. In addition, the normalized dissipation rate is smaller
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for higher ζ. We expect this trend to be even stronger in the presence of significant separation at larger
values of ζ. This trend is consistent with prevalent understanding of classical rough wall boundary
layers at high Reynolds numbers, especially in the lower atmosphere where the roughness elements of
size a+ & 50− 100 tend to completely destroy the viscous layer [16], if not most of the buffer layer. In
our studies, a+ ≈ 13 for the different ζ (see Table 1) and only modulates the buffer layer. A related
observation is that the vertical location of the inner scaled peak turbulence production (y+ ≈ 12) does
not change with ζ, but the magnitude decreases. This is not surprising as for ζ > 0, there exists other
sources of turbulence generation, i.e., from the surface roughness or undulations which contributes to
the total friction.
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Figure 9. Schematic illustration of the wall-normal variation of streamwise averaged production of
TKE in (a) inner variable nondimensionalized and (b) dimensional (m2/s3) forms. Corresponding
nondimensional and dimensional forms of TKE dissipation are shown (c,d).

3.4. Characterization of the Roughness Function and Roughness Scales

A common way to assess the influence of the wavy surface on turbulence structure is to quantify
the effective drag and its influences on the flow structure. While the increase in friction velocity for
a fixed Reb (apparent from Table 1) is a natural way to quantify the increased drag, estimating the
downward shift in the mean streamwise velocity profile (Figure 6a) is another approach and often
used to characterize the effective roughness scales. It is well known that the logarithmic region in the
equilibrium flat channel turbulent boundary layer (TBL) is given by

〈u〉+x,z,t =
1
κ

ln(y+) + B (5)

where the additive constant B is typically estimated to fall within the range of ~5.0 to 6.0, and depends
on the details of the buffer and viscous layer for a given simulation or measurement. The flat channel
data in the current work provides an estimate of ~5.6, possibly due to a combination of the friction
Reynolds number regime and simulation algorithm. In the presence of surface undulations of scale
a, we observed from the earlier discussion that the log region underwent a upward shift due to an
expanding buffer layer. As per the works by the authors of [13,16,25], the influence of these buffer
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layer modulations on the log layer shift is characterized in terms of a modified logarithmic profile for
rough-wall turbulent boundary layers (TBLs),

〈u〉+x,z,t =
1
κ

ln(y+) + B− ∆〈u〉+x,z,t (6)

where ∆〈u〉+x,z,t is defined as the roughness function. The roughness function, ∆〈u〉+x,z,t can be related
to the characteristic ”equivalent” sand grain roughness, ks as

∆〈u〉+x,z,t =
1
κ

ln(k+s ) + B− 8.5, (7)

and the characteristic roughness length, k0 as

∆〈u〉+x,z,t =
1
κ

ln(k+0 ) + B. (8)

It is easily seen that k0 = kse−8.5κ . While ks and k0 are used to quantify the nonequilibrium
’roughness’ effects near the surface, they mostly cater to complex roughness such as grasslands, urban
canopies, or sand grain type surfaces. Of course, ks corresponds to a case where the buffer layer
dynamics is significantly modified by the roughness, while k0 corresponds to a situation where the
buffer and viscous layers are completely destroyed by the roughness. Therefore, such metrics do not
represent the smooth, low steepness surfaces adopted in this work. Table 2 compiles estimates of the
roughness function, 〈∆〈u〉+x,z,t〉y, averaged over the entire logarithmic region given by y+ ≈60–120 as
illustrated in Figure 10d over which the values are nearly constant. For all the metrics reported
in this work, we use data from the averaged profiles across constant values of the nonscaled local
coordinate, ylocal,1.

For comparison sake, we also report the equivalent sand grain roughness, ks of Nikuradse [3]
and the characteristic roughness length, k0 scaled by the inner-layer variables for different values of
ζ. As expected, these different roughness metrics increase linearly with wave steepness as seen in
Figure 10a–c. The effective sand grain roughness assumes a non-zero value of ≈3.3 for ζ = 0 due to
the upward shift caused by the viscous and buffer layers. Therefore, k+s ≈ 4 is indicative of a nearly
smooth wall which in our study corresponds to ζ ∼ 0–0.01. The higher values of ζ considered in this
work generate k+s ∼ 6 although no substantial flow separation is observed. As expected, the k+0 is
extremely small indicating that the flow is smooth enough to retain the viscous and buffer layers.

Given that a+ is nearly constant for all the cases while k+s and k+0 show near linear growth
confirm that such wavy surfaces do not fit the k-type roughness description [16,42]. In addition, given
that the boundary layer height in fully developed channel flow turbulence is fixed as a constant δ,
the independence of ks, k0 on δ indicates a departure from d-type classification [42]. In fact such
surfaces as considered in this work belong to the ‘transitional’ and ‘waviness’ regime as a+ ∼ 13 does
not represent a sufficiently large (i.e, O(100)) roughness Reynolds number, Rea = auτ/ν. We have also
reported the λ+ values for the different cases in Tables 1 and 2.

Table 2. Tabulation of estimated turbulence parameters, namely, von Kármán constants for the different
cases and commonly used roughness parameters.

ζ κ 〈∆〈u〉+x,z,t 〉y k+
s k+

0 a+ λ+

0.000 0.3954 0.0000 3.2838 0.1139 0.0000 ∞
0.011 0.3805 0.8150 4.5867 0.1592 13.070 2354
0.017 0.3839 1.3242 5.6514 0.1961 13.480 1618
0.022 0.4033 1.7655 6.7725 0.2350 13.920 1252
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Figure 10. Variation of the different roughness quantifications with ζ (a–c) and wall normal variation
of mean roughness function (d).

The ‘waviness’ regime implies a surface that is very different from a Nikuradse roughness
dominated by form drag caused by flow separation and vortical recirculation zones within the
roughness sublayer. Therefore, strong waviness causes the drag (as estimated by the roughness
function ∆〈u〉+x,z,t) to be smaller than the corresponding Nikuradse value for a given k+ = a+. At low
slopes (waviness) the overall drag is more dominated by viscous shear and less by the form drag.
The opposite is true in the roughness regime. This is clearly illustrated in Figure 11a, where the
correlation between ∆〈u〉+x,z,t and k+ = a+ from Nikuradse [3] and Colebrook [4] are compared with
our current DNS data. We clearly see that for the current study with nearly constant a+, ∆〈u〉+x,z,t
increases with wave steepness ζ which we anticipate will approach the corresponding value for
a sand–grain roughness with similar roughness Reynolds number, a+ (or the Nikuradse value for
this a+). However, verifying this requires additional simulations at high ζ and possibly, other values
of a+. The wave slope dependence on the flow drag is evident from Figure 11b, where ∆〈u〉+x,z,t is
shown against the effective slope, ES = 2ζ. Figure 11b also shows the data from Schultz and Flack [12],
who performed experiments with systematically varied pyramid roughness elements of different
slope. These data trends indicate that the slope transition from waviness to Nikuradse type roughness
regime (denoted by a vertical line in Figure 11b) occurs between ES ∼ 0.25–0.4 (ζ ∼ 0.12–0.18) with
possible dependence on the extent of separation between the surface and outer layer scales (δ/k)
and Reynolds number (Reτ). This transition has been correlated to the dominance of form drag over
viscous drag [12,17]. We note that our data from the reported simulations closely follow the trend
of Napoli et al. [17], i.e., ∆〈u〉+x,z,t increases with ES. As stated earlier, we anticipate this increase to
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cap at a value of ∆u+ corresponding to a sand–grain roughness Reynolds number, a+. Although
this extrapolated trend is consistent with the observed experimental data [12], it needs to be verified
through additional simulations at larger ζ. If this is indeed true, then the capping value of ∆〈u〉+x,z,t
for the fully rough case (with high effective slope surface) can be estimated from the Nikuradse
correlation [3] for sand grain roughness (denoted by the horizontal line in Figure 11b for our DNS
data). For the benefit of the reader, we have explicitly documented the roughness function correlations
of Nikuradse and Colebrook used above in Appendix A.
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Figure 11. Variation of mean roughness function (a) with roughness Reynolds number and (b) with
effective slope in comparison with reported data from known literature. In (a) we compare the
roughness function from current DNS with the correlations of Nikuradse [3],Colebrook [4] and the
fully rough asymptote (see Appendix A for the correlations). In (b) we show comparison with data
from Napoli et al. [17] and Schultz et al. [12].

In summary, the modulations in the mean-averaged first-order statistics from wavy surface
undulations manifest as (i) increase in drag (through friction velocity uτ) and a (ii) modified buffer
region including (iii) a systematic upward flow in the buffer layer and a smaller downward flow at the
lower logarithmic layer. To interpret the above effects better, we analyze the horizontal flow stress and
components of the Reynolds stress tensor in the following sections.

3.5. Characterization of Horizontal Flow Stress and Implications to Drag

The horizontal flow stress directly impacts the flow drag through the boundary layer and in turn
the mean velocity profiles discussed above. The viscous flow stress τV acting on a fluid particle is
described including both spanwise and streamwise components as τV = τV

xy î + τV
zy k̂, where τV

xy =

µ(
∂〈u〉x,z,t

∂y +
∂〈v〉x,z,t

∂x ) and τV
zy = µ(

∂〈w〉x,z,t
∂y +

∂〈v〉x,z,t
∂z ). Similarly, the Reynolds stress is given by τR =

τR
xy î + τR

zy k̂, where τR
xy = −〈u′v′〉x,z,t and τR

zy = −〈w′v′〉x,z,t. The total horizontal stress is then τH =

τR + τV with τH , τR and τV without overbars denoting their magnitudes.
Figure 12a shows the inner-scaled double-averaged horizontal stress magnitude, τH felt by a fluid

particle. We further split this into the inner-scaled viscous and turbulent parts, τV and τV respectively
as shown in Figure 12b,c. In the viscous layer, the total stress is dominated by the viscous stress for the
different cases A-D with different ζ varying between 0 and 0.022. The inner scaled mean viscous shear
stress magnitude (Figure 12b) decreases with steepness (Figure 12b) in the viscous layer where it is
nearly constant before decreasing across the buffer layer. Away from the mean surface level, in the
buffer layer, the inner-scaled Reynolds stress magnitude grows (from near-zero values in the viscous
layer) into a peak value at y+ ≈ 35 (Figure 12c) whose magnitude increases with ζ before collapsing
over each other in the log layer. Overall, the viscous stress dominates in the viscous layer while
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the Reynolds stress grows through the buffer layer (a region where the viscous stresses continually
decrease in importance) to peak at the buffer–log transition region.
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Figure 12. The schematic shows the inner scaled mean (a) horizontal stress, (b) viscous stress, and (c)
Reynolds stress in the top row and the dimensional mean (d) horizontal stress, (e) viscous stress, and
(f) Reynolds stress in the bottom row. The vertical lines correspond to the different a+ values.

The decrease in magnitude of the inner-scaled viscous stress with ζ in the viscous and lower
buffer layers is a consequence of the normalization using the averaged wall stress, u2

τ which increases
with wave steepness. We observe that the mean τV is relatively unaffected, but its contribution to the
total drag decreases with increase in ζ. In general, the mean streamwise flow near the wall slows down
due to the presence of wave-like undulations (see Figure 6a), which in turn reduces its gradient in the
wall normal direction. This reduction in the average viscous stress is compensated by the non-zero
vertical velocity and its variation along the streamwise and vertical direction. This explains why the
net double-averaged (i.e., both temporally and spatially averaged) dimensional viscous stress sees
very little increase in the viscous layer as seen from the dimensional stress profiles in Figure 12e.
This observation clearly indicates that the increase in net wall stress (u2

τ) with ζ has its origins in the
increase of Reynolds stress in the buffer–log layer transition as seen in Figure 12f which is reflected
in the total mean stress variation as well (Figure 12d). Given that the nondimensional roughness
scale, a+ ≈ 13 corresponds to the buffer layer, it is not surprising that the buffer layer shoulders
much of the effect of increasing wave steepness. However, the mechanism underlying increase in the
peak double-averaged Reynolds stress with ζ will invariably depend on the structure of the attached
(or detached) shear layers in the vicinity of the wavy surface resulting in a coupling between the
viscous shear layers and buffer layer turbulence production. The nature of this coupling will be
further explored in the future. Of course, when the shears layers are detached as in a separated flow,
the interactions could entail very different characteristics.

3.6. Characterization of Reynolds Stress Tensor and its Production

In the earlier discussions, we focused on the mean gradients and their impact on the horizontal
flow stresses. In this section, we focus on the effect of changing ζ on elements of the Reynolds stress
tensor and the turbulent kinetic energy that are borne out of the interaction between mean gradients
and the Reynolds stress. We observed earlier (Figure 8) that the peak in the mean gradients at the
start of the buffer layer decreases with surface undulations, which also impacts turbulence production
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(Figure 9) in the lower buffer layer and, in turn, the individual components of the Reynolds stress
tensor 〈ui

′uj
′〉x,z,t.

3.6.1. Streamwise Variance

In fact, the most noticeable deviations from equilibrium in wavy wall turbulence occur in the
second-order statistics. In particular, we observe in Figure 13a the inner-scaled streamwise variance
that peaks in the buffer layer and this peak value decreases with increase in ζ. In addition, the inner
scaled profiles nearly collapse in the outer region for all ζ, while the location of peak streamwise
variance shifts upward as ζ increases. Given the lack of significant flow separation, this upward shift
in the peak variance is modest, but noticeable. We identify the peak location for each curve with
color-matched horizontal lines so that the trends can be identified. Using this, we see a systematic
upward shift of the peak value of 〈u′2〉+x,z,t with ζ in Figure 13a. Related research by Ganju et al. [43]
showed that this upward shift is tied to significant increases in roughness scale, a+, which can cause
very different dynamics around the wave including flow separation. Further, the effect of changing λ

was reported to be minimal in their investigation. Their first observation is consistent with classical
understanding of high Reynolds number rough wall turbulence [16,41], where the peak variances occur
at nearly the roughness height, a. In fact, wall stress boundary conditions for large eddy simulation
over rough surfaces are designed to model the same. In our study, the amplitude, a is fixed while the
wavelength λ is decreased in order to change ζ = 2a/λ. For a fixed bulk Reynolds number, the decrease
in λ (or increase in ζ) increases the net drag, and in turn the friction velocity, uτ . The resulting decrease
in the viscous length scale, Lv = ν

uτ
changes the inner-scaled wave height, a+ = a/Lv rather modestly

from 13.07 to 13.92 when ζ doubles from 0.011 to 0.022 (see Table 2). Therefore, this systematic upward
shift in the location of peak streamwise variance cannot be solely attributed to these very modest
increases in a+. In fact, the wave steepness significantly impacts the buffer layer dynamics and in turn
the variance distribution through the turbulence production mechanisms as delineated under.
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Figure 13. Inner scaled mean (a) streamwise variance and (b) production of streamwise variance,
〈P11〉+x . We further split the streamwise production term into its dominant components, (c) 〈Pu′u′

11 〉+x
and (d) 〈Pu′v′

11 〉+x . The horizontal lines correspond to height with maximum value of the statistics along
the profile.
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Figure 14. Inner scaled mean (a) covariance 〈u′v′〉+x,z,t, (b) covariance 〈u′v′〉+x,z,t (zoomed near the
surface), and (c) vertical gradient of streamwise velocity, d〈u+〉x,z,t/dy+. The black horizontal line
corresponds to the average of the maximum magnitude of 〈u′v′〉+x,z,t for the different ζ. Note that the
individual peak values were too close to each other to be shown separately.

We further dissect the above observations using the variance production (Figure 13b) term
〈P11〉x, in the Reynolds stress transport equation. Note that we further split this component
variance production into its dominant contributions, 〈Pu′u′

11 〉x = 〈〈u′u′〉z,td〈u〉z,t/dx〉x and 〈Pu′v′
11 〉x =

〈〈u′v′〉z,td〈u〉z,t/dy〉x as shown in Figure 13c,d, respectively. We clearly observe that the inner-scaled
streamwise variance production due to interaction of the scaled mean shear (i.e., inner-scaled
vertical gradient of the mean horizontal velocity, d〈u〉+z,t/dy+) with the vertical momentum flux
(〈u′v′〉z,t) denoted by 〈Pu′v′

11 〉+x clearly peaks in the buffer layer (y+ ≈ 11− 15 as seen in Figure 13d),
and this peak shifts upward (with minimal change in magnitude) for increasing ζ. This trend can
be interpreted through the double-averaged profiles of normalized covariance 〈u′v′〉+x,z,t and mean
gradient, d〈u〉+z,t/dy+, respectively as shown in Figure 14a,c. It is to be noted that 〈u′v′〉+x,z,t peaks
at the edge of the buffer layer at y+ ≈ 32, whereas the normalized mean gradient achieves its
maximum value near the surface. In addition, the location of the peak in 〈u′v′〉+x,z,t (at y+ ≈ 32)
shows very little variation with no clear trend, but its magnitude increases with ζ all through the
buffer and log layers. Contrary to this, the magnitude of d〈u〉+z,t/dy+ decreases with ζ due to surface
undulations, whose influence decreases away from the surface (through the viscous and buffer
layers). In summary, we understand that the combined influence of the surface-induced trends in
〈u′v′〉+x,z,t and d〈u〉+z,t/dy+ yields the trends observed for 〈Pu′v′

11 〉+x , as shown in Figure 13d, with peak
values occurring over y+ ≈ 11 − 15 for different ζ. In addition, the surface undulations play a
secondary role in the variance transport (see Figure 13c) with significant production in the roughness
sublayer (y+ / a+) followed by destruction above the roughness scale, a+ that decays with height.
This production and destruction process clearly represents deviation from equilibrium as its origins lie
in the streamwise mean velocity gradient, d〈u〉z,t/dx being non-zero from horizontal inhomogeneity.
A key consequence of this inhomogeneity driven destruction process is that both the peak inner-scaled
variance production and the peak variance decrease with ζ (Figure 13a). However, it also turns out
that the systematic upward shift observed for the peak in 〈Pu′v′

11 〉+x is nonexistent for the 〈P11〉+x profiles
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(the peak occurs at or around y+ ≈ 12), see Figure 13b. In summary, we observe that more severe the
surface inhomogeneities, smaller the rate of streamwise turbulence production through d〈u〉+z,t/dy+,
d〈u〉+z,t/dx+, and 〈u′v′〉+x,z,t, but the location of peak production in wall coordinates remain unaffected.

Therefore, the observed upward shift in the peak of 〈u′2〉+x,z,t (Figure 13a) should arise from other
turbulent transport mechanisms including return to isotropy.

3.6.2. Vertical Variance

The effect of surface undulations on vertical variance profiles is opposite to that observed for the
streamwise variance, i.e., the peak variance in the buffer–log transition region (y+ ≈ 55) increases and
shifts downward with ζ in comparison to flat channel turbulence data. While the shift in the peak
location is systematic, we note that the peak value in itself changes very little from ζ = 0.011 to 0.022
after making a sharp jump from ζ = 0.0 to 0.011. It is well known [41] that streamwise turbulent
fluctuations are generated closer to the surface in the (buffer) layer, and is then distributed to the other
components through the pressure–strain term [44]. Consequently, the vertical and spanwise variances
peak further away from the surface, closer to the log layer. Among the two, the vertical variance is
nominally expected to achieve maximum value further away from the surface due to the wall effect,
i.e., vertical fluctuations are damped closer to the wall. In our investigations, the vertical variance
peaks closer to the log layer (y+ ≈ 55) while the spanwise variance peaks lower in the buffer–log
transition (y+ ≈ 35) as observed in Figures 15a and 16a respectively.
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Figure 15. Inner-scaled mean (a) vertical variance and (b) production of vertical variance, 〈P22〉+x .
We further split the vertical production term into its cominant components, (c) 〈Pu′u′

22 〉+x and (d) 〈Pu′v′
22 〉+x .

The horizontal lines correspond to height with maximum value of the statistics along the profile.

Due to the presence of surface undulations (non-zero ζ), vertical velocity variance is produced
closer to wall (or effective wall for wavy surfaces) in the roughness sublayer (i.e, y+ . a+) as
seen from the inner-scaled vertical variance production, 〈P22〉+x in Figure 15b. The extent of near
surface production increases with wave steepness, ζ. To dissect further, 〈P22〉+x is further split into
〈Pv′u′

22 〉+x = 〈〈v′u′〉z,td〈v〉z,t/dx〉+x and 〈Pv′v′
22 〉+x = 〈〈v′v′〉z,td〈v〉z,t/dy〉+x as shown in Figure 15c,d

respectively. The dominant variance production originates from non-zero streamwise gradient of
vertical velocity (see Figure 6a) which is positive below the roughness scale and negative above
it. Consequently, the surface imhomogeneity driven non-zero mean vertical flow over the wavy
surface impacts turbulence production by generating vertical variance below the roughness scale
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and destroying some of it above in the buffer layer (Figure 15c). Therefore, unlike flat channel
turbulence, the return to isotropy is accelerated with increasing ζ, causing 〈v′2〉+x,z,t to grow faster
(Figure 15a) through the viscous and buffer layers to ultimately peak closer to the surface (in the
buffer–log transition). The location of peak vertical variance is illustrated in Figure 15a through
coloured horizontal lines that show a clear downward shift from ζ = 0− 0.022.

In essence, what we are observing is that changes in λ with fixed a impacts the growth rate in the
buffer layer with perceptible effect on the peak location and magnitude. This trend is maintained until
strong separation-related dynamics, including detachment of the shear layer, which sets in at higher ζ.
As shown in Ganju et al. [43], this causes a secondary peak in the buffer layer for both vertical and
spanwise variance, possibly due to turbulence production within the separation bubble as well as
above it. Such effects are absent in the current study as evidenced by just a single peak for the vertical
variance production. While these observations are intriguing, it is not clear how these trends respond
to the choice of Reynolds numbers, thus requiring further investigation. A limitation with increasing
Reynolds numbers is that even relatively shallow surface undulations can produce separation which is
known to perceptibly modulate the flow physics.

3.6.3. Spanwise Variance

Similar to 〈v′2〉+x,z,t, the inner-scaled spanwise variance 〈w′2〉+x,z,t also shows stronger growth
(see Figure 16a) through the viscous and lower regions of the buffer layer to ultimately peak in the
buffer layer (y+ ≈ 35). Intriguingly, we note a systematic shift in the peak location and magnitude
only for ζ = 0.0 to 0.011, but little variation from ζ = 0.011 to 0.022. This may be attributed to the
peak occurring farther away from the surface where the inhomogeneity effects are small. As we are
dealing with mildly steep two-dimensional wavy surfaces in this study, we observe that 〈w′2〉x,z,t is not
produced near the surface as evidenced by the production terms in the variance transport equation (not
shown here), being nearly zero throughout the boundary layer due to d〈w〉z,t/dx = d〈w〉z,t/dy = 0.
In spite of the quasi-two-dimensional wavy surfaces employed here, the above trends will breakdown
in the presence of strong separation that can introduce three-dimensional flow patterns. As part of an
ongoing research study we are exploring higher values of ζ to verify the above statement.
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Figure 16. Inner scaled mean (a) spanwise variance and (b) turbulent kinetic energy (TKE).
The horizontal lines correspond to height with maximum value of the statistics along the profile.
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In the absence of three-dimensional flow (both forced by a three-dimensional surface and induced
by separation over a two-dimensional surface), the location of peak 〈w′2〉+x,z,t shows no clear monotonic
trend although a consistent downward shift is observed for ζ > 0. This can be attributed to either
the small amounts of separation observed in these flows (see Figure 5) or due to conversion of the
vertical variance produced from the surface undulation through the pressure–strain term. We expect
the latter to be the likely mechanism, although no quantification is provided work to support this
hypothesis. As one would expect away from the surface, the 〈v′2〉+x,z,t and 〈w′2〉+x,z,t profiles across
different values of ζ approach each other in the outer layer indicating that the effect of the surface
undulations is concentrated closer to the surface. We nevertheless note that in this region of the TBL,
〈v′2〉+x,z,t (Figure 15a) and 〈w′2〉+x,z,t (Figure 16a) are slightly higher for non-zero ζ when compared to
the flat channel with ζ = 0.

3.6.4. Mean Turbulent Kinetic Energy

The mean inner scaled turbulent kinetic energy, TKE+, displays the cumulative effect of the
individual variances as shown in Figure 16b. In particular, we observe an exaggerated upward shift
(note the horizontal lines in Figure 16b) in the location of peak k+ in the buffer layer. This is caused by
the combined effects of the upward shift in 〈u′2〉+x,z,t along with the downward shifts in both 〈v′2〉+x,z,t

and 〈w′2〉+x,z,t. Beyond the peak, the different curves nearly collapse in the outer layer although in the
inertial logarithmic region, TKE+, shows consistently higher values for the wavy turbulence cases due
to systematically higher 〈v′2〉 and 〈w′2〉 for ζ > 0.

3.6.5. Characterization of Reynolds Stress Anisotropy

The anisotropy of the Reynolds stress tensor is quantified directly through the normalized
anisotropy tensor [41], and is expressed as

bij ≡
〈uiuj〉
〈ukuk〉

− 1
3

δij (9)

One commonly interprets bij through its invariants and parameterized as ξ and η [45] given by

6η2 = bijbji and 6ξ3 = bijbjkbki. (10)

The ξ and η variables for a given flow are plotted along with a triangular region of realizability
for the Reynolds stresses, popularly known as the Lumley triangle. The bounding curve in the
first quadrant corresponds to one large positive eigenvalue and two small negative eigenvalues of
bij, i.e., −1/3 ≤ λ1 = λ2 ≤ 0 and λ3 = −(λ1 + λ2), where λi (i = 1, 2, 3) are the eigenvalues of
bij. On the contrary, the bounding curve in the second quadrant corresponds to opposite case as
above with signs switched, 0 ≤ λ1 = λ2 ≤ 1/6 and λ3 = −(λ1 + λ2) . The third bounding curve
(at the top) corresponds to a two-component case with λ1 + λ2 = 1/3. For example, the sharp
corner at the top right corresponds to λ3 = 2/3 and λ1 = λ2 = −1/3, while the one on the left
corresponds to λ3 = −1/3 and λ1 = λ2 = 1/6. The bottom vertex of the triangle at the origin
represents λ1 = λ2 = λ3 = 0 corresponding to fully isotropic Reynolds stress tensor (RS). It is well
known that in turbulent boundary layers over flat topology, closer to the surface, the RS is dominated
by the streamwise variance (1C) that becomes increasingly axisymmetric first and subsequently,
more isotropic as one moves further away from the surface. Figure 17 illustrates this trend clearly
through the blue data points for ζ = 0. As ζ increases, we see more of a 2C flow near the surface (as
against 1C) that transitions to states with a mix of axisymmetric and isotropic nature away from the
surface. This transition towards isotropic RS structure is more rapid at higher values of ζ bolstering
the claim made in Section 3.6.2. These trends are further confirmed by Figure 18, which shows the
diagonal elements of pressure–rate-of-strain term (R) in the variance transport. Both in the viscous
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and inertial layer,R11,R22, andR33 are observed to be more pronounced in magnitude for higher ζ,
further confirming the tendency to approach isotropy faster with higher ζ.

3.6.6. Vertical Turbulent Momentum Flux

In addition to the diagonal components of the Reynolds stress tensor discussed above, we also
look at the dominant off-diagonal terms, namely, −〈u′v′〉+x,z,t and −〈w′v′〉+x,z,t as shown in Figure 14.
In the limit of high Reynolds number (i.e, Reτ ≥ 4000), for channel flow turbulence over smooth flat
surfaces, there exists a well-defined log layer with nearly constant 〈u′v′〉+ [46]. This nearly constant
〈u′v′〉+ layer is very narrow at low Reynolds numbers. Nevertheless, this study still lets us characterize
the influence of the wavelike undulation on the turbulence structure. As discussed earlier, the location
of the peak in 〈u′v′〉+x,z,t (at y+ ≈ 32) shows very little variation with no clear trend, but its magnitude
increases with ζ. The peak location in 〈u′v′〉+x,z,t falls roughly between the peak values of 〈u′2〉+x,z,t
and 〈v′2〉+x,z,t, as shown in Figures 13a and 15a. This increase in peak value is not surprising as the
wavy surfaces naturally generate (Figures 13b and 15b) stronger u′ and v′ fluctuations. As shown in
Figure 14a,b, increase in the positive peak of −〈u′v′〉+x,z,t is correlated with a small negative peak in
the viscous layer at higher values of ζ, indicative of the surface shape induced mixing that is different
from turbulence induced stress. This negative value of −〈u′v′〉+x,z,t close to the surface indicate that
higher momentum fluid particles move away from the wall due to up slope part of the wavy surface.
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Figure 17. (a) Representation of the Reynolds stress structure in a Lumley triangle on the plane of
invariants ξ and η of the Reynolds stress anisotropy tensor. Lines and vertices correspond to different
states of turbulent stresses (i.e., iso, axi, 1C, and 2C represent isotropic, axisymmetric, one-component,
and two-component states of turbulence, respectively). (b) Zoomed version (a) near the 1C corner;
(c) even more zoomed to clearly illustrate the trend.



Fluids 2019, 4, 161 24 of 28

−0.05 0.00
〈R11〉+x

0

10

20

30

40

50

60

y
+

ζ = 0
ζ = 0.011
ζ = 0.017
ζ = 0.022

(a)

−0.03 0.00 0.03
〈R22〉+x

0

10

20

30

40

50

60

y
+

(b)

0.00 0.05
〈R33〉+x

0

10

20

30

40

50

60

y
+

(c)

Figure 18. Schematic illustration of the wall-normal variation of the inner–scaled, streamwise-averaged
diagonal elements of pressure–rate-of-strain tensor, 〈R11〉+ in (a),〈R22〉+ in (b) and 〈R33〉+ in (c).

4. Conclusions

In this work, we report outcomes from a DNS-based investigation of the turbulence structure
and its deviation from equilibrium using turbulent boundary layer flow with modest scale separation
between two infinitely parallel plates with 2D wavy undulations. In particular, we set out to assess
the influence of small wave slopes (with very little flow separation) on the turbulence structure and
their correspondence to common roughness characterization that invariably deals with the high slope
regime. To maximize the shape sensitivity on the flow structure, we operate in a transitional roughness
Reynolds number (k+ = a+ ∼ 13), which is much smaller than the fully rough regime corresponding
to (k+ = a+ & 70).

The streamwise mean velocity structure indicates a characteristic downward shift (to higher
y+) of the logarithmic region of the TBL, indicating increased flow drag with increase in wave slope,
ζ. This is associated with a sustained upward vertical flow in the lower roughness sublayer and
corresponding downward flow in the buffer layer. The strength of these vertical motions increases
with ζ and have a dominant role to play in the near surface turbulence production processes. In fact,
analysis of the mean nondimensional streamwise velocity gradients and inner-scaled turbulence
production show that the buffer layer expands with increasing wave slope, ζ, indicating that the
well-known equilibrium understanding of near-wall turbulence processes is modulated even for such
highly shallow wavy surfaces.

In fact, characterization of the roughness effects from such shallow surface undulations with
minimal flow separation is very different from the separation and form drag dominated Nikuradse-type
sand grain rough surfaces. Therefore, in our case, drag as represented by the roughness function turns
out to be very weakly dependent on the wave amplitude (related to roughness height, k+ = a+) and
more on the effective wave slope (2ζ). These conclusions are consistent with works by the authors
of [12,17], where wavy surfaces in the high slope limit approach Nikuradse type roughness. Therefore,
in such cases, one needs to model ∆〈u〉+ as f (a+, ζ).

In the absence of flow separation, the turbulence generation process within the roughness sublayer
is primarily topology driven. For the two-dimensional surface undulations considered in this work,
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the differences in turbulence generation for different ζ originate in the production of small quantities of
vertical velocity variance closer to the surface due to non-zero values for the vertical velocity gradients.
In contrast, for the equilibrium TBL over a flat surface, horizontal homogeneity implies that the mean
vertical velocity and its gradients are zero. However, the predominant generation of vertical variance
still occurs through redistribution of the streamwise velocity variance (generated closer to the surface)
through the return to isotropy term. Therefore, these two different production mechanisms interact to
cause 〈v′2〉+x,z,t to peak at a larger value and closer to the surface (relative to a flat TBL) with increasing
wave steepness, ζ; similar trends are observed for the inner-scaled spanwise velocity variance.

The effect on the streamwise velocity variance, 〈u′2〉+x,z,t is more complicated. Specifically,

the inner-scaled streamwise variance, 〈u′2〉+x,z,t (and consequently, TKE+) displays a distinct upward
shift in the location of this peak value for increasing wave steepness. In addition, the normalized
peak variance magnitude decreases with ζ. Our analysis shows that even though surface-driven
changes impact the various production terms (〈Pu′u′

11 〉+x and 〈Pu′v′
11 〉+x ) for 〈u′2〉x,z,t, the overall variance

production, 〈P11〉+x , does not show an upward shift in the peak. Therefore, plausible mechanisms
for generation of this upward shift still point to the vertical variance being modulated through the
pressure–strain term.

Overall, in the absence of significant flow separation, the surface undulations seem to generate
vertical turbulence fluctuations closer to the surface which in turn modulates the entire near-wall
turbulence structure. In the presence of steeper 2D waves with significant flow separation or
three-dimensional wavy surfaces, the complexity will be enhanced due to the generation of spanwise
fluctuations near the surface.
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Abbreviations

The following abbreviations are used in this manuscript.

DNS Direct numerical simulation
IBM Immersed boundary method
TKE Turbulent kinetic energy
TBL Turbulent boundary layer
PPE Pressure Poisson equation
6OCCS 6th-order central compact scheme
KMM87 Kim, Moin, and Moser (1987) [39]

Appendix A

Appendix A.1. Nikuradse’s Correlations

The logarithmic velocity profile corresponding to the law of the wall for turbulent boundary
layers is given by

〈u〉+ =
1
κ

ln(y+) + A, (A1)
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where A is the intercept. Nikuradse [3] generated correlations for this intercept as a function of
roughness Reynolds number, k+ = kuτ

ν as Anik = f (k+). For the hydraulically smooth regime this
correlation is

Anik,smooth = 5.5 + 5.75log10k+; for 0 ≤ log10k+ ≤ 0.55. (A2)

The transitionally rough regime is further divided into three regions and different correlations
were proposed as follows

Anik = 6.59 + 3.5log10k+; for 0.55 ≤ log10k+ ≤ 0.85; (A3)

Anik = 9.58; for 0.85 ≤ log10k+ ≤ 1.15; (A4)

Anik = 11.5− 1.62log10k+; for 1.15 ≤ log10k+ ≤ 1.83. (A5)

For the fully rough regime the intercept is a constant:

Anik,rough = 8.48; for log10k+ ≥ 1.83. (A6)

Using these correlations, the mean roughness function can be expressed as

∆〈u〉+ = Anik,smooth − Anik (A7)

Appendix A.2. Colebrook’s Correlation

Colebrook [4] proposed an alternative relationship for the entire roughness Reynolds number
regime given by

∆〈u〉+ =
1
κ

ln(1 + 0.3k+), (A8)

k+ being the normalized equivalent roughness height. The asymptotic behavior in the fully rough
limit assumes κ = 0.4, and is then written as

∆〈u〉+ =
1
κ

ln(0.3k+) (A9)
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