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Abstract: Spontaneous radial imbibition into thin circular samples of porous material when they
have been subjected to radial temperature differences was analyzed theoretically and experimentally.
The use of the Darcy equation allowed us to take into account temperature variations in the dynamic
viscosity and surface tension in order to find the one-dimensional equation for the imbibition fronts.
Experiments using blotting paper showed a good fit between the experimental data and theoretical
profiles through the estimation of a single parameter.
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1. Introduction

The aim of this work is to study imbibition, i.e., the spontaneous capillary penetration of a viscous
liquid into a homogeneous, thin, circular, dry porous medium to which has been imposed previously
a temperature difference ∆T along the radial direction, r. Isothermal imbibition from an unlimited
liquid reservoir has received attention due its important applications in paper chromatography [1,2],
printing ink [3], paper absorption [1,4–6], and aerosol research [5,7]. In the latter case, the spreading of
liquid drops into a porous substrate is of much interest because it corresponds to radial imbibition
from finite liquid volumes [5,7,8].

Isothermal radial imbibition in horizontal porous samples has been studied, for example, in
samples of paper [1,5,6], in 3D cubical scaffold with cylindrical struts [8], and in thin Hele-Shaw cells
filled with granular material [9]. Moreover, studies of radial imbibition in Hele-Shaw cells following a
one-dimensional approach (without granular material) yield a similar equation for the advance front,
as a function of time [4,10], as those reported for thin radial porous samples.

Imbibition under high temperature is very common during enhanced oil recovery [11–13] and in
soldering when non-reactive liquid metals are involved [14]. Mean temperatures around 400 K are
typical during enhanced oil recovery, while higher temperatures (450–2300 K) occur during welding
with liquid metals. Temperature gradients also appear in both processes due to a non-uniform
heating. However, during imbibition under temperature gradients, the viscous drag and the driven
capillary force can change substantially because viscosity and surface tension are strongly dependent
on temperature [12,14]. The main assumption in our treatment is that the temperature spatial variations
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(T(x), where x is the position vector), in the absorbing medium, affect dynamic viscosity µ and surface
tension σ. Moreover, in many liquids, dynamic viscosity and surface tension decrease as temperature
increases (dµ/dT and dσ/dT < 0), and during imbibition under temperature gradients, both effects
compete [15]. The manner in which the wet region advances, in a radial geometry, as time proceeds is
the main subject of this work.

To establish the temperature gradient on the circular porous samples of small thickness e, we
have imposed a temperature difference between the internal perimeter of a central orifice and the
external perimeter of a metal circular plate upon which the circular strips of paper rest. This procedure
allows us to have very controlled temperature gradients on the paper, which is the porous medium of
our work.

To reach our goals, this work is divided as follows. In the next section, we give the solution
to the one-dimensional heat conduction problem in a solid impervious plate and in the absorbing
medium. In Section 3, by using the solution of the conduction problem, we treat the imbibition problem
with temperature differences along a thin porous medium. There, the theoretical study of imbibition
into porous media has been carried out by using the Darcy equation with viscosity dependent on
temperature. In order to compare several cases, isotherm imbibition was also analyzed. In Section 4,
a set of experiments in commercial blotting paper sheets, under temperature gradients, are performed,
and a good fit of the theoretical profiles was obtained. Finally, Section 5 presents the main conclusions
and remarks.

2. Temperature on Circular Plates

Lets us start with the description of the heat conduction problem to establish the temperature
difference ∆T = T1 − T0 in a horizontal, thin impervious metal plate through the use of cylindrical
coordinates (r, z, φ). The origin of this system is located at the center of the circular plate, as shown in
Figure 1, which has an orifice of radius R0. The temperatures were fixed as T0 in the inside perimeter
of an orifice of radius R0 and T1 along the outer perimeter of the circular plate of radius R1. This
allows imposing a steady-state temperature distribution only dependent on the radial coordinate r,
T = T(r), which can be obtained through the solution of the Laplace equation ∇2T = 0 under the
boundary conditions T = T0 at r = R0 and T = T1 at r = R1. The solution of the Laplace equation
yields a temperature distribution of the form:

T = T0 +
T1 − T0

ln R1 − ln R0
(ln r− ln R0) , (1)

and the temperature gradient G = dT/dr is given by:

G =
T1 − T0

ln R1 − ln R0

1
r

; (2)

notice that the temperature gradient is a function of r.
After the imposition of the temperature distribution on the horizontal metal plate, we place

upon it, very close together, a thin, circular porous sample of radii R0 and R1. Consequently, the
porous medium acquires, by conduction, the same temperature distribution of the metal plate. Since the
temperature difference ∆T = T1 − T0 can be positive or negative, we have that the spatially-averaged
temperature gradient, G, defined as:

G =

∫ R1
R0

Gdr∫ R1
R0

dr
=

∆T
(R1 − R0)

, (3)

can be positive if T0 < T1 (∆T > 0, temperature increases when r increases) or negative if T0 > T1

(∆T < 0, temperature decreases when r increases).
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Figure 1. Schematic of the imbibition process in a thin paper on a circular copper plate. The paper
sample has an inner radius R0 and an outer radius R1 and a thickness e. Temperatures at r = R0 and
r = R1 are T0 and T1, respectively. The green sector indicates the imbibed region, and the circular
profile r = R(t) indicates the instantaneous position of the imbibition front.

3. Imbibition into a Porous Medium

Isothermal imbibition into thin dry porous circular strips generates circular advance fronts of
radius r = R(t), where t is the elapsed time by the front to reach the radius R. At short time lapses, the
front evolves as R ∝ t1/2, which is the Washburn diffusive law [16], and for long times, the imbibition
front obeys a logarithmic relation, which will be discussed afterwards.

Imbibition into the thin circular porous samples under temperature gradients is studied here by
assuming that the saturation of the porous medium under imbibition is full, which is a simple and
realistic approximation for thin samples. In our study, we considered a sample of thin thickness e,
outer radius r = R1, and an inner radius r = R0, and it rested on the metal circular plate having a
radial temperature difference ∆T between their perimeters. Thus, the temperature distribution on
paper was the same as that given by Equation (1) for the metal plate. In porous media, typically, the
Reynolds numbers during imbibition are low [17]; thus, the use of the Darcy equation is adequate
here. Experimental observations given in the next section let us assume that radial imbibition under
homogeneous temperature gradients will maintain purely radial fronts. Therefore, the one-dimensional
Darcy equation for the filtration velocity, vr, takes the form:

vr = −
c1d2

µ(r)
dp
dr

, (4)

where d is the pore diameter, c1 is a lumped constant that involves the structure of the porous medium
(in a general context, the permeability of the porous media met that K ∼ d2 [18]), p is the pressure in
the liquid, and the term µ(r) specifies that the dynamic viscosity changes point to point where the
liquid is present because temperature is non-uniform.

When a liquid contacts a wettable porous medium, it is imbibed spontaneously due to the pressure
drop, ∆p = patm − pc, where patm is the atmospheric pressure, assumed as zero in this work, and
pc is the capillary pressure defined just at the imbibition front located at r = R. The surface tension
takes the value σ(r = R) because the existence of the temperature distribution in the porous medium
yields, just on the front, a value that depends on temperature. Then, the pressure drop is the capillary
pressure, which induces the liquid motion into the porous medium:

∆p = − c2σ(R)
d

; (5)

here, the new lumped constant c2 is related to the structure of the porous medium, the inter-fiber
and intra-fiber pores [19], and the contact angle between the liquid and the porous material, which is
assumed as not dependent on temperature for many liquids [20].
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The integration of the Darcy Equation (4) yields:

∆p = −
∫ R

R0

µ(r)vr

c1d2 dr, (6)

where we have considered that the dynamic viscosity is a function of the temperature itself and
temperature is a function of r.

When liquid loss due to evaporation from the porous media can be neglected, the mass
conservation implies that vr = (R/r)dR/dt, from which it follows, through the use of Equations (5)
and (6), that:

R
d2

dR
dt

∫ R

R0

µ(r)
r

dr =
cσ(R)

d
, (7)

being c = c1c2.
From the fundamental point of view of the dynamic viscosity and the surface tension depends

on temperature in a non-linear form, computationally and experimentally, it has been proven
that the use of linear approximations is valid in small ranges [13–15]. It allows introducing
linear laws for µ and σ such that µ(r) = µ0(1 + 1/µ0[(dµ/dT)(dT/dr)]R0 (r− R0)) and σ(R) =

σ0(1 + 1/σ0[(dσ/dT)(dT/dR)]R0 (R− R0)), where µ0 and σ0 are the values of dynamic viscosity and
surface tension at a reference temperature, T = T0, where r = R0. The substitution of the temperature
gradient given in Equation (2) into the previous relations yields:

µ(r) = µ0

(
1 +

1
µ0

(
dµ

dT

)
T0

T1 − T0

ln [R1/R0]

[
r

R0
− 1
])

, (8)

σ(R) = σ0

(
1 +

1
σ0

(
dσ

dT

)
T0

T1 − T0

ln [R1/R0]

[
R
R0
− 1
])

. (9)

Using the linear relations (8) and (9) in Equation (7) allows us to find the motion equation in
the form:

µ0

d2 R
dR
dt

{
ln
(

R
R0

)
+

1
µ0

(
dµ

dT

)
T0

T1 − T0

ln [R1/R0]

(
R
R0
− 1− ln

R
R0

)}
= (10)

cσ0

d

[
1 +

1
σ0

(
dσ

dT

)
T0

T1 − T0

ln [R1/R0]

(
R
R0
− 1
)]

.

Through the introduction of the dimensionless radius ξ = R/R0, the dimensionless time τ = t/tc,
with the characteristic time tc defined as:

tc =
µ0R2

0
cσ0d

, (11)

and the dimensionless parameters:

A =

(
dµ
dT

)
T0
[T1 − T0]

µ0 ln [R1/R0]
, B =

(
dσ
dT

)
T0
[T1 − T0]

σ0 ln [R1/R0]
, (12)

into Equation (10), we found the dimensionless non-linear differential equation for the imbibition front
in the porous medium under a temperature gradient:

ξ
dξ

dτ
[ln ξ + A (ξ − 1− ln ξ)] = 1 + B (ξ − 1) , (13)
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which will be solved using the initial condition ξ = 1 at τ = 0. The solution of the differential
Equation (13) will be computed numerically in the following section.

In the context of the imbibition under temperature gradients, the physical parameters of
the problem tc (Equation (11)) and A and B (Equation (12)) have specific meanings: tc is the
viscous-capillary time indicating that the initial imbibition radius at τ = 0 is finite [8], and it also
involves the structure of the porous medium through d; A is the non-dimensional relative variation of
viscosity with temperature, and B is the dimensionless relative variation of the surface tension with
temperature. Later on, we will notice the dynamical changes produced by A and B.

If imbibition occurs at uniform temperature, we have that A = B = 0. Clearly, the case of
isothermal imbibition produces the dimensionless non-linear differential equation ξ(dξ/dτ) ln ξ = 1,
and its solution gives the non-dimensional imbibition front, ξ, as:

ξ2
(

ln ξ2 − 1
)
+ 1 = 4τ. (14)

For a small dimensionless radius of imbibition (ξ = 1 + ε, with ε� 1), the asymptotic imbibition
front now is given by:

ξ = 1 +
√

2τ, (15)

which is the Washburn law for radial isotherm imbibition [6]. In the following section, we will discuss
a set of experiments made in order to prove the validity of our model.

4. Experiments

The validity of our previous approach to dealing with the imbibition under temperature radial
gradients will be analyzed here. To impose the gradients, we used a circular copper plate of 5× 10−3 m
in thickness, drilled at its center with an inner radius R0 = 2× 10−3 m, and having an exterior radius
R1 = 3.15 × 10−2 m. The central orifice was joined to a copper vertical pipe of radius slightly smaller
than 2× 10−3 m to get a good contact between the pipe and the plate (see Figure 1). Additionally,
the short pipe was brimful with dry sand, and it also was in contact with a copper reservoir, which
was maintained at a temperature T0. All these contacts allowed having a temperature T0 at r = R0

in the copper plate. The external rim of the disk was surrounded by a copper pipe through which
water was recirculated to maintain the external perimeter of the disk at a uniform temperature T1,
just at r = R1. This array lets us achieve controlled temperature gradients through the difference
∆T = T1 − T0 between the internal and the external perimeters.

Once the steady temperature profile was reached on the copper disk, circular samples of blotting
paper sheets of R0 = 2× 10−3 m inner radius and R1 = 3.1 × 10−2 m outer radius were placed on
the copper disk (having a hydrophobic coating to avoid wetting) in order to obtain by conduction
exactly the same temperature profile as that of the disk itself; then, the imbibition was set in motion
when the lower reservoir was filled with water, and it rose through the sand in the pipe up to the
plate where sand, contacting circular samples of blotting paper by its inner rim, allowed the radial
imbibition process.

To carry out the imbibition experiments, we have selected commercial blotting paper as the
porous material because it is thin, e = 3.1× 10−4 m average thickness. The nominal paper permeability
in this case was 5 Darcy, and consequently, its average pore diameter was d ∼

√
K ≈ 2.23× 10−6 m.

When the dry blotting paper was placed on the copper disk, the heat was diffused through the paper
thickness, allowing establishing the same temperature profile as that of the metal disk; this process
involved a diffusion time given by tDp = e2/αp [21], where αp is the thermal diffusivity of dry paper,
which had a value αp = 8. 7× 10−8 m2/s [22]; thus, the approximate time it takes the dry paper to
reach the temperature of the metal disk was tDp = 1.1 s.

Three values for the mean gradients were attained: (a) the case of a positive mean temperature
gradient T0 = 301.4 K (28.2 ◦C), T1 = 304.4 K (31.2 ◦C), G+ = 103.45 K/m; (b) the case of a negative
gradient T0 = 302.4 K (29.2 ◦C), T1 = 299.4 K (26.2 ◦C), G− = −103.45 K/m; and (c) the isotherm



Fluids 2019, 4, 86 6 of 10

case with G = 0 and temperature T0 = T1 = 301.2 K (28 ◦C). Note that we have chosen
∣∣G−∣∣ = G+ in

order to have a direct comparison between cases with negative and positive gradients. The spatial
temperature profiles were obtained by means of an infrared camera Model Thermacam Flir PM595,
with ±0.1 K of error in the measurement. Several representative profiles on the dry paper are shown
in Figure 2. In this figure, the plots on the right-hand side show the temperature profiles, and their
fluctuations are related to the measurement error, which in this case was around ±0.1 ◦C.

Figure 2. Temperature distribution on dry blotting paper for several cases: (a) (top) positive mean
gradient, (b) (middle) negative mean gradient, and (c) (bottom) isothermal case. Thermographies
are on the left-hand side, while the measured temperature profiles are on the right-hand side. The
respective profiles fit approximately Equation (1), and fluctuations are related to the measurement
error, which in these cases was around ±0.1 ◦C.

When the temperature profiles were imposed on the paper and the water imbibition occurred, we
performed measurements of the radial imbibition fronts R as a function of time, t. In Figure 3, the plot
of R vs. t is shown for the three temperature distributions (symbols).
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We can compute the dimensionless factors A and B, for each respective case, from data for
viscosity and water-air surface tension given in the plots of Figure 4 and the temperature distributions
already established, and we obtained that A = −2. 58× 10−2 and B = −2. 90× 10−3 for positive
average gradient and A = 2. 61× 10−2 and B = 2. 91× 10−3 for negative average gradient. Notice
that A is an order of magnitude larger than B; this means that the viscosity variation will produce
stronger effects on the evolution of the imbibition fronts as temperature changes.

0 100 200 300 400 500
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1.0

1.5

2.0

2.5

3.0

R
 (

c
m

)

t (s)

 Isothermal

 Negative temperature gradient

 Positive temperature gradient

Figure 3. Dimensional plot of the time evolution of the experimental imbibition fronts (symbols) for
positive and negative gradients and for the isotherm case where T0 = T1 = 301.2 K (28 ◦C). Dashed
curves correspond to the respective numerical solutions: red dashed line for case G > 0, green dashed
line for G < 0, and blue dashed line for G = 0. Symbol sizes correspond to the standard deviation
of 5%.

Figure 4. Plots of (a) dynamic viscosity of water and (b) water-air surface tension as a function of
temperature. Data taken from [23,24].

The isotherm case is useful to show the effect of the temperature gradients on the evolution of the
imbibition fronts, but also, this case lets us determine the value of the lumped constant c as follows:
the dimensional form of Equation (15), which is valid for small radii R, has the form:

R(t) = R0 +

√
2tcσ0d

µ0
, (16)
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by taking into account the corresponding experimental values of R0, σ0, µ0, d, and the time t, in this
formula, we can obtain the theoretical data for R(t). By correlating data for the theoretical R(t) and
the experimental data for R, at short times, given in the plot of Figure 3 for the isotherm case, we can
obtain through the least squares method that the best value for c is c = 2.2× 10−3. This value was
used to compute the solution of Equation (13) numerically for positive and negative mean gradients
and to compute the overall imbibition front for the isothermal case.

The numerical profiles (curves) fit satisfactorily the experimental data, as is shown in Figure 3.
The non-linear differential equation was solved numerically using a fourth order Runge–Kutta method,
under the initial conditions described before.

The temporal changes on the imbibition fronts for each value of G are related to the respective
values of A and B. From Figure 3, it is clear that, at short times, the three curves followed approximately
a behavior R ∼ t1/2 (Equation (16)), but for later times, the curves were separated between themselves.
A more detailed behavior of the imbibition fronts can be shown more clearly in Figure 5, where we plot
the mean velocity of fronts as a time function. There, it is easily appreciated that for intermediate times,
the velocity of each front is different, but for larger times, again, they are similar, i.e., at intermediate
times, the relative changes for negative and positive gradients play a different role between them, but
at large times, these relative variations of viscosity and surface tension will vanish, because far from
r = R0, the local gradients are weakest.
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Figure 5. Plots of the averaged of velocity front as a function of time for several mean gradients. The
same data as in Figure 3 were used.

Finally, it is important to comment that, generally speaking, the capillary penetration in the
porous medium should be affected by the temperature, if the local temperature difference between the
local bulk temperature of the liquid and the temperature of the most immediate grain or fiber can be
neglected. This condition will be satisfied provided that the dimensionless relation (dR/dt) d/αw �
dg/d is valid [21], where αw is the liquid thermal diffusivity, dg is the grain average diameter, and d, as
before, is the pore diameter. The quantity (dR/dt) d/αw = Pe is the Peclet number, and it compares
the bulk transport of heat under forced convection (with velocity dR/dt) with respect to the heat
transfer by conduction. Thus, a very small Peclet number refers to a very slow flow where heat
conduction dominates. Due to d ∼ dg approximately in blotting paper, we have that the condition
Pe� 1 must be maintained for imbibition under temperature gradients. Consequently, the imbibition
model relies on these assumptions. In our case, experiments allowed to estimate that for the initial
times, where the front velocities were large, the Peclet number was Pe ∼ 0.018, because for water,
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αw = 0.147× 10−2 cm2/s (at room conditions), and thus, our imbibition experiments fulfilled this
criterion. At the end, when each experiment was completed, we verified that approximately the
respective temperature profiles (as those thermographies given in Figure 2 for dry paper) in the
imbibed papers were the same; it occurred effectively.

5. Conclusions

In this work, we have studied both theoretically and experimentally the radial imbibition in thin
samples of blotting paper. We showed that spatial temperature differences induced important changes
in the water viscosity and in the water-air surface tension, which finally modified the time evolution of
the imbibition fronts with respect to isothermal imbibition. Moreover, the simple theoretical model
developed here to describe imbibition into a porous medium (blotting paper) with radial geometry
was consistent with our present experimental results. It appears, despite the complexity of the
phenomenon, that a simple, one-dimensional model can describe the main facts involved when there
is not a uniform temperature.
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