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Abstract: In this work, we examine the shear-banding flow in polymer-like micellar solutions with the
generalized Bautista-Manero-Puig (BMP) model. The couplings between flow, structural parameters,
and diffusion naturally arise in this model, derived from the extended irreversible thermodynamics
(EIT) formalism. Full tensorial expressions derived from the constitutive equations of the model,
in addition to the conservation equations, apply for the case of simple shear flow, in which gradients
of the parameter representing the structure of the system and concentration vary in the velocity
gradient direction. The model predicts shear-banding, concentration gradients, and jumps in the
normal stresses across the interface in shear-banding flows.
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1. Introduction

Beyond the local equilibrium hypothesis, the extended irreversible thermodynamics (EIT)
provides a consistent methodology to derive constitutive equations for systems far from equilibrium.
These equations, together with the conservation laws, predict flow-induced concentration changes
produced by inhomogeneous stresses in complex fluids [1–4].

Flow produces changes in the internal structure of complex fluids and induces fluctuations in
concentration and in the rheological properties. In some analyses of the rheology of these complex
fluids, the stress constitutive equation couples with an evolution equation of a scalar representing
the flow-induced modifications on the internal structure of the fluid (a variable such as the fluidity
or micellar length, in the particular case of giant micellar solutions). Simultaneously, the stress
coupling with the diffusion equation of the dispersed phase explains the phenomena arising from
concentration changes, as suggested in reports on flow-induced concentration fluctuations and
diffusive interfaces [5,6]. An additional coupling of diffusion and structural changes closes this scheme.

Rheological measurements in complex fluids, in particular those performed in wormlike micellar
systems, demonstrate that a unique selected shear stress exists independently of flow history [7].
The steady-state flow curve has a well-defined, reproducible plateau. Coexistence of low and
high viscosity bands has been observed by nuclear magnetic resonance (NMR) spectroscopy [8],
small-angle neutron scattering (SANS) [9], and from flow birefringence [10], which reveals a highly
oriented band coexisting with an isotropic one.

The Johnson-Segalman model (JS) predicts a history dependence of banded solutions after
imposing several flow histories, i.e., the apparent flow curves and the stress plateau depend on
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flow history. To find a unique stress selection, non-local gradient terms have been heuristically added
to the JS constitutive equation [11,12], although diffusion in the stress arises naturally in kinetic theory,
in particular in dumbbell models [13].

Although the non-local JS model has been useful to understand some features of the kinetics and
stability of band formation, nevertheless there are two important setbacks of this model. The first one is
that this model cannot describe the breaking and reformation processes of the micellar systems under
flow to enable an understanding of the relation between shear-band formation and microstructural
evolution. The second one refers to the inability of the model to describe the evolution of the stress and
normal stress differences under step-strain experiments in shear flow and it gives wrong responses in
extensional flow [14]. Furthermore, the non-local JS model may predict reversal in the band ordering
in Couette flows [9] in contrast to experimental data.

Relevant alternative approaches, particularly that by Yuan and Jupp [15] using a 2-fluid J-S
model, apparently give unique stress selection, even though interfacial terms were only present
in the equation of motion for the concentration dynamics, and not in the constitutive viscoelastic
equation. Vasquez et al. developed a two-species reptation-reaction network model [16] that captures
the continuous breakage and reformation of long entangled chains that forms an entangled viscoelastic
network, and the enhanced breaking that takes place during imposed shear deformation. The same
group compared the homogeneous flow predictions of their model with steady and transient shear
flow experiments performed in concentrated cetylpyridium chloride/sodium salicylate solutions [17].
In general, the predictions for nonlinear shear flow agree quite well with the rheological behavior for
shear rates below the stress plateau, including the first normal stress difference, but it cannot predict
a non-zero value of the second normal stress difference.

Concentration-coupling in the shear-banding transition of wormlike micellar systems has been
a generic explanation of the slightly upward slope of the plateau stress observed with increasing
shear rates [18–20]. This effect implies that a micellar concentration difference is established between
the bands as the high-shear band grows to fill the gap. A model of concentration-coupled shear
banding [21] was introduced by combining the diffusive (spatially non-local) J-S model [22] with
a two-fluid approach to concentration fluctuations [23]. This model does not address the microscopic
features of any particular viscoelastic system, but it should be regarded as a minimal model that
combines an unstable constitutive curve, such as that of semi-dilute wormlike micelles, with spatially
non-local terms in the viscoelastic constitutive equation and a simple approach to concentration
coupling. In the two-fluid approach, the viscoelastic stress causes the micelles to diffuse up in stress
gradients, and so it couples stress with concentration. If the viscoelastic stress then increases with
concentration, positive feedback occurs, causing net diffusion of micelles up their own concentration
gradient. This mechanism causes shear-enhanced concentration fluctuations and shear-induced
de-mixing (concentration coupling) in systems that shear-band.

Normal stresses may be the reason for vorticity structuring that can emerge in complex fluids.
A banding state may undergo a secondary linear stability due to the action of normal stresses across
the interface between bands. Recent experiments of gradient-banded solutions of wormlike micelles
show that they are unstable with respect to interfacial undulations with the wave vector in the vorticity
direction [11,12]. The underlying mechanism includes normal stresses and shear-rate jumps across
the interface.

In a previous work [24], we examined the non-homogeneous shear-banded flow of giant micelles
with the BMP (Bautista-Manero-Puig) model. Results included the phase portraits around the flow
curve and for the confined fluid, predictions were given for the velocity, stress, and fluidity fields as
functions of both space and time. It was found that the same stress plateau and critical shear rates are
approached independently of the initial conditions and shear history for a given applied shear rate or
shear stress. The flow histories included forward and backward sweeps under strain-controlled and
stress-controlled conditions.
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In this work, the shear-banded flow predictions of the generalized BMP (Bautista-Manero-Puig)
model [5], which contains the above-mentioned couplings, including normal stresses derived from EIT
for complex fluids, are analyzed here. In reference [4], we present the formulation of the governing
equations for flows that include normal stresses.

The derivation of the model’s main concepts is given in the Appendix A and in [5]. The predictions
of the phase portraits of the dynamics before approaching steady state and the variation of normal
stresses in space and time of the resulting banded state are exposed. As in the previous paper,
it is found that the same plateau is reached for various flow conditions; in this case, a stepping-up
variation of shear rate is imposed. The diffusion equation allows for concentration gradients and
gradients in the structural variable, and predicts stress gradient terms in the equation for the stress [13],
which naturally arise in the constitutive equation, without the need to include them in an ad-hoc
manner. Depleted regions where the concentration decreases are found near the moving boundary.
It is shown that jumps in the normal stresses across the interface are also predicted.

2. Theoretical Description

The set of equations of the generalized BMP model are [5]:

dϕ

dt
=

1
λ
(ϕ0 − ϕ) + k0(1 + ϑ(I ID))(ϕ∞ − ϕ)σ : D + ϕ0β′0∇ · J (1)

J + τ1
ϕ0

ϕ

∇
J = −Dϕ0

ϕ
∇c− β0

ϕ
∇φ +

β2 ϕ0

ϕ
∇ · σ (2)

σ +
1

G0φ

∇
σ =

2
ϕ

D +
ψ2

ϕ
D·D +

β′2 ϕ0

ϕ

(
∇J
)s (3)

where
(
∇J
)s stands for the symmetric part of ∇J and the upper-convected derivatives of the diffusive

concentration flux vector J and of the stress tensor σ are defined, respectively, as:

∇
J =

dJ
dt
− L·J, (4)

∇
σ =

dσ

dt
−
(

L·σ + σ·LT
)

(5)

here d/dt is the material-time derivative, D is the symmetric part of the velocity gradient tensor L,

and I ID is its second invariant. ϕ is the inverse of the shear viscosity (η) is the fluidity, ϕ0

(
≡ η−1

0

)
is

the fluidity at zero shear rate, G0 is the plateau shear modulus, λ is a structure relaxation time, and k0

can be interpreted as a kinetic parameter for structure breaking. τ1 is a relaxation time for the mass
flux, D is the Fickean diffusion coefficient, and ψ2 is the second normal stress coefficient; c is the local
equilibrium concentration and ϑ, β0, β′0, β2, and β′2 are phenomenological parameters. The structural
variable σ has been identified with the normalized fluidity φ = ϕ/ϕ0 [5].

Equations (1)–(3), together with the conservation equations, represent a closed set of time
evolution equations for all the independent variables chosen to describe the behavior of complex fluids.
Note the mutual coupling of these equations.

For simple-shear (where x is the direction of the macroscopic flow velocity, y is the direction
of the velocity gradient, and z is the vorticity direction), we assume small inertia and that the mass
flux relaxation time is negligible compared to the stress relaxation time, i.e., (G0 ϕ)−1 � τ1 (which
a plausible assumption for wormlike micelles). Equations (1)–(3) become:

dϕ

dt
=

1
λ
(ϕ0 − ϕ) + k0(1 + ϑ(I ID))(ϕ∞ − ϕ)σ : D + ϕ0β′0

[
∂Jx

∂x
+

∂Jy

∂y

]
(6)
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Jx = −Dϕ

ϕ0

∂c
∂x
− β0

ϕ

∂ϕ

∂x
+

β2 ϕ0

ϕ

[
∂σxy

∂y
+

∂σxx

∂x

]
(7)

Jy = −Dϕ

ϕ0

∂c
∂y
− β0

ϕ

∂ϕ

∂y
+

β2 ϕ0

ϕ

∂σxy

∂y
(8)

σxy +
1

G0 ϕ

[
∂σxy

∂t
− .

γσyy

]
=

.
γ

ϕ
+

β′2 ϕ0

ϕ

[
∂Jx

∂y
+

∂Jy

∂x

]
(9)

σxx +
1

G0 ϕ

[
∂σxx

∂t
− 2

.
γσyy

]
=

β′2 ϕ0

ϕ

∂Jx

∂x
(10)

σyy +
1

G0 ϕ

[
∂σyy

∂t

]
= ψ2

.
γ

2 ϕ0

ϕ
+

β′2 ϕ0

ϕ

∂Jy

∂y
(11)

σzz +
1

G0 ϕ

[
∂σzz

∂t

]
= 0 (12)

where
.
γ is the shear rate. Equations (6)–(12) are the ones given particular attention in this work.

To close the system of equations, the conservation of mass, concentration, and momentum are:

ρ
∂vx

∂x
= 0 (13)

∂c
∂t

= −
[

∂Jx

∂x
+

∂Jy

∂y

]
(14)

ρ
∂vx

∂t
=

∂σxy

∂y
+ ηs

∂2vx

∂y2 +
∂σxx

∂x
, (15)

where ηs is the solvent viscosity. In Equations (7), (8), and (15), the derivatives of the normal stresses
involve terms of third order in the derivatives of the fluidity and concentration, which we neglect.
In addition, a solution for Equations (13) and (15) can be obtained by taking the derivative of each
term of Equation (15) with respect to x. This leads to:

∂2σxy

∂x∂y
+

∂2σxx

∂x2 = 0 (16)

Next, the normal stress differences are defined in the usual form:

N1 = σxx − σyy, N1 = σyy − σzz (17)

From Equations (10)–(12) we obtain:

N1 +
1

G0 ϕ

[
∂N1

∂t
− 2

.
γσxy

]
=

β′2 ϕ0

ϕ

[
∂Jx

∂x
−

∂Jy

∂y

]
(18)

N2 +
1

G0 ϕ

[
∂N2

∂t

]
= ψ2

ϕ0

ϕ

.
γ

2
+ β′2

ϕ0

ϕ

∂Jy

∂y
(19)

Until now, Equations (6), (9), (18), and (19) have been the more general expressions in two
dimensions (the shear plane), including normal stresses. They preserve the tensorial character
of the equations, upon the assumptions of small inertia and negligible mass flux relaxation time.
Following the translational symmetry of the flow, we address the particular case where the derivatives
in the direction of flow are negligible. In such case, we have:

∂Jx

∂x
=

∂Jy

∂x
= 0 (20)
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∂Jx

∂y
= β2 ϕ0

∂

∂y

[
1
ϕ

∂σxy

∂y

]
(21)

∂Jy

∂y
=

∂

∂y

[
1
φ

(
−β0

∂φ

∂y
+ β2φ0

∂σyy

∂y

)]
+

∂

∂y

(
−Dφ0

φ

∂c
∂y

)
(22)

N1 +
1

G0φ

[
∂N1

∂t
− 2

.
γσxy

]
= −ψ2

φ0

φ

.
γ

2 − β′2
φ0

φ

[
∂Jy

∂y

]
(23)

while (19) remains equal. Written in terms of the non-dimensional variables:

φ = ϕ/ϕ0, φ∞ = ϕ∞/ϕ0,

Equation (9) becomes:

φσxy + τσ

[
∂σxy

∂t

]
= η0

.
γ +

.
γτσ N2 +

β2β′2
2

∂

∂y

[
1
φ

∂σxy

∂y

]
(24)

where τσ is the stress relaxation time (τσ = (G0φ0)
−1) and η0 is the zero shear-rate viscosity. In the

limit of creeping flow φ→ 1 , Equation (24) reduces to:

σxy + τσ

[
∂σxy

∂t

]
= η0

.
γ +

1
2

β2β′2
∂2σxy

∂y2 (25)

Equation (25) is similar to the diffusion equation for the stress analyzed in the current literature
to predict diffusion of interfaces [12,13,25]. In fact, following similar assumptions (simple shear,
small inertia), Equation (25) is equal to that derived from the constitutive equation:

σ + τσ
�
σ = 2η0D + τσD∇2σ (26)

where
�
σ is the (Gordon-Schowalter) convected time derivative defined in the Johnson-Segalman

model [26]. In creeping shear flows, Equation (26) reduces to Equation (25), providing the
phenomenological coefficients β2β′2 to be identified with τσD. This identification of the coefficients
allows a physical interpretation and measurement of their magnitudes. Similarly, the coefficients β0β′0
may be identified with the structure diffusion coefficient D′, and β0β′2 can be identified with ρDD′.
With these identifications, and considering that Equation (23) is decoupled, Equations (6), (9), (19),
and (23) become:

∂Jy

∂y
=

∂

∂y

[
1
φ

(
−ρD’

∂φ

∂y
+ τσ

∂N2

∂y

)]
+

∂

∂y

(
−D

φ

∂c
∂y

)
(27)

∂φ

∂t
=

1
λ
(1− φ) + k0

(
1 + ϑ

.
γ
)
(φ∞ − φ)σxy

.
γ +

1
ρ

∂Jy

∂y
(28)

τσ

[
∂σxy

∂t

]
= η0

.
γ +

.
γτσ N2 +

Dτσ

2
∂

∂y

[
1
φ

∂σxy

∂y

]
(29)

φN1 + τσ

[
∂N1

∂t
− 2

.
γσxy

]
= −ψ2

.
γ

2
+D

[
∂Jy

∂y

]
(30)

φN2 + τσ

[
∂N2

∂t

]
= ψ2

.
γ

2 −
[

∂Jy

∂y

]
(31)

Equations (28)–(31) are the main results of this section. It is noticeable that this formulation leads
to structure-dependent variables, i.e., viscosity (η0/φ), stress relaxation time (τσ/φ), and diffusion
coefficients (D/φ and ρD′/φ). The structure itself follows an evolution Equation (28). In the limit
φ→ 1 (constant structure) with no normal stresses, Equation (29) reduces to the simple-shear version
of Equation (26). These equations contain seven constants. Five of them (λ, k0, η0, φ∞, τσ) can be
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evaluated from independent rheological experiments [4]. Under heterogeneous (shear banding) flow,
ϑ (the shear-banding intensity parameter) is related to the position of the stress plateau (set by the
equal-areas criterion or equal minima in the dissipated energy) and D may be evaluated from data of
interface diffusion. Dhont [27] has suggested an expression for the relaxed stress under simple shear
(without normal stresses) similar to that of Equation (25), in which the term (D/φ) is identified with the
“curvature viscosity”, which actually follows the same form of the shear-thinning viscosity observed
in worm-like micellar solutions. According to the magnitudes shown in [27], usual values for the
zero-shear rate viscosity are around 20 Pa·s. In the absence of normal stresses, the reaction-diffusion
character of equation is preserved

σxy + τσ

[
∂σxy

∂t

]
= η0

.
γ +

Dτσ

2
∂

∂y

[
1
]φ

∂σxy

∂y

]
which reduces to the simple shear version of Equation (25) as φ→ 1 . It is worth mentioning that the
inclusion of diffusion in the constitutive equations leads to a finite thickness of the interface between
the bands, as shown in the results presented in the next section.

2.1. Steady-State Solution

Under steady state, the conservation Equations (14) and (15) lead to[
∂Jy

∂y

]
= 0,

∂σxy

∂y
= 0

which means that both Jy and σxy are independent of the coordinates, and since there is no flux at the
boundaries, then Jy = 0 for all y. Furthermore, Equation (8) leads to:

ρD′
[

∂φ

∂y

]
= −D

[
∂c
∂y

]
+ τσ

[
∂N2

∂y

]
(32)

In the particular case when the mass and viscosity diffusion coefficients and the stress relaxation
times are constant, Equation (32) can be integrated to give:

φ = φc −
(
D/ρD′

)
c +

(
τσ/ρD′

)
N2

For a given constant φc, the ratio of the diffusion coefficients is positive, and hence the fluidity
increases with decreasing concentration. In addition, under steady state, Equations (28)–(31) become

0 =
1
λ
(1− φ) + k0

(
1 + ϑ

.
γ
)
(φ∞ − φ)σxy

.
γ (33)

φσxy = η0
.
γ +

.
γτσ N2 (34)

φN1 =
(
2τσσxy − ψ2

.
γ
) .
γ (35)

φN2 = ψ2
.
γ

2 (36)

Substitution of Equations (36) and (34) in (33) leads to a fifth and third order equation for the
shear rate and fluidity, respectively:

0 = (1− φ)φ2 + k0λ
(
1 + ϑ

.
γ
)
(φ∞ − φ)

(
η0φ + τσψ2

.
γ

2
) .

γ
2

In most cases, the order of magnitude of ψ2 is negligible in comparison with η0φ, and the previous
equation reduces to a third and second order equation for the shear rate and fluidity, respectively,
which has been previously analyzed [4].
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2.2. Numerical Method

To analyze the transient behavior at the inception of flow predicted by the model,
Equations (28)–(31) were numerically solved together with equations

∂c
∂t

= −
∂Jy

∂y
(37)

ρ
∂vx

∂t
=

∂σxy

∂y
(38)

which are, respectively, the simplified version, where the derivatives in the direction of flow (x direction)
as well as the solvent viscosity, ηs, are negligible. The moving plate is located at position y = L, while the
fixed plate is at y = 0, with boundary conditions:

vx(t, 0) = 0, vx(t, L) = vL(t) (39)

vL(t) ≥ 0 is the upper plate velocity, which follows the following dynamics:

vL(t) = vL,0 + (vL,ss − vL,0)(1− e−t/τc),

where vL,0 is the initial velocity of the moving plate, vL,ss is the steady state velocity, and τc is
a characteristic time. This time is linked to a controller, which regulates the velocity of the moving
plate, which in general is of the same order of magnitude of the characteristic time of the system τσ.
In addition to the conservation law (Equation (38)) and mass conservation, we have to satisfy the
following conditions:

∂σ(t, 0)
∂y

= 0,
∂σ(t, L)

∂y
=

1
ρ

dvL(t)
dt

(40)

Jy(t, 0) = 0, Jy(t, L) = 0 (41)

As pointed out before [24], due to the conservation of momentum and the flow history vL(t),
the spatial derivative of the stress on the upper plate cannot be zero. The boundary conditions in
Equation (40) imply that the spatial derivative of the shear stress at the upper plate is zero only when
steady state is reached. Thus, the boundary conditions at the upper plate are also history-dependent.
In some cases, these boundary conditions give rise to a stable three-band state, similar to that found
for Dirichlet boundary conditions, wherein the stress distribution in the gap depends on both the
boundary condition and stress gradient [28,29].

Equations (28)–(31), (37), and (38), together with boundary conditions (39)–(41), are solved using
the numerical method described in reference [24], where the ordinary differential equations resulting
in discretization in space are integrated to obtain numerical solutions as a function of time.

3. Results

Figure 1 illustrates the variation of the stress, first normal stress difference (N1), and the absolute
value of the second normal stress difference (N2) with shear rate, under shear-rate controlled flow
starting from rest. The shear rate was increased in a stepwise mode allowing attainment of steady-state
at each step. At the highest shear rate, N2 approaches within a tenth of the value of N1; this is the
upper bound of N2 as suggested by the scarce experimental data. N1 shows a behavior similar to that
of the stress-shear rate curve depicting, in fact, a shear-banding unstable region. In contrast, N2 grows
monotonically. For low shear rates, the slope of N1 tends to a value of 2, although this range is not
shown in Figure 1.
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m−1s−1, 𝑘଴ = 3.28 × 10−4 m s−1 kg−1, 𝜆 = 0.136 s, 𝜗 = 0.0061 s, 𝜌 = 1000 kg m−3, 𝒟 = 1 × 10−5 m2 s−1, 𝒟ᇱ 
= 1 × 10−11 m2 s−1, 𝜓ଶ = 0.0388 s. 

 

Figure 2. Dynamics and steady state under controlled shear rate. Reference shear rate is 3 s−1. 
Temporal trajectory of the stress and shear rate for various spatial positions (a), evolution of the 
normal stress differences 𝑁ଵ  (b) and 𝑁ଵ  (c), velocity (d), shear stress (e), fluidity (f), and 
concentration (g), in space and time. 

In Figure 3a–g, the reference shear rate has been increased to 10 s−1 (point B in Figure 1) 
corresponding to the top-jumping stress. The dynamics shown in Figure 3a are different to that in the 
homogeneous region, although the attainment to steady state is fast. The trajectory before steady-

Figure 1. Steady state constitutive curves obtained under controlled shear rate starting from rest.
Parameters used in the simulations are: c0 = 5 wt %, ϕ∞ = 847 m·s·kg−1, τσ = 1.06 s, η0 = 36.56 kg
m−1s−1, k0 = 3.28 × 10−4 m s−1 kg−1, λ = 0.136 s, ϑ = 0.0061 s, ρ = 1000 kg m−3, D = 1 × 10−5 m2 s−1,
D′ = 1 × 10−11 m2 s−1, ψ2 = 0.0388 s.

Figure 2a–g depict the dynamics and attainment of steady state under controlled shear rate when
the reference shear rate is 3 s−1 (see point A in Figure 1). At this shear rate, the flow is homogeneous,
and the steady state is reached at the time scale of the Maxwell relaxation time. The position y = L
corresponds to the moving plate and y = 0 refers to the fixed boundary. Figure 2g depicts uniform
concentration throughout the geometry. The shear stress increases monotonically (Figure 2e) in the
same form observed in the fluidity, while first and second normal stress differences are depicted
in Figure 2b,c,f, respectively, and a velocity profile corresponding to a single shear rate is observed
in Figure 2d.
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In Figure 3a–g, the reference shear rate has been increased to 10 s−1 (point B in Figure 1)
corresponding to the top-jumping stress. The dynamics shown in Figure 3a are different to that in the
homogeneous region, although the attainment to steady state is fast. The trajectory before steady-state
includes an overshoot before landing at the top jumping stress. Once again, the concentration
is uniform (Figure 2g) and the fluidity and second normal stress difference grow monotonically
(Figure 2c,f, respectively). In contrast, the shear stress (Figure 2e) and the first normal stress difference
(Figure 2b) present an overshoot at the inception of flow before they reach steady state. The velocity
profile corresponds to a single shear rate (Figure 2d).
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A different situation is shown when the reference shear rate increases to 50 s−1, within the shear
banding region (point C). The dynamics now oscillate between the two attractors located at the critical
shear rates (at the binodals or extremes of the plateau stress) after describing an overshoot in the stress
(Figure 4a). The concentration is not uniform (Figure 4g) and transient and steady state banding is
predicted as the velocity profile changes as a function of time from a single into a two-banded profile
corresponding to two shear rates, with the steepest one located next to the moving plate (Figure 4d),
within the region where the concentration decreases. A depletion zone then appears near the moving
plate in the high shear rate region resulting in a concentration gradient; the fluidity in turn increases
next to the moving plate (Figure 4f). As before, the shear stress (Figure 4e) and N1 (Figure 4b) describe
an overshoot at the inception of flow, but rapidly they attain steady state. A remarkable result in both
stress differences is the decrease in N1 simultaneous to an increase in N2 in the region next to the
moving plate (Figure 4b,c, respectively). In fact, a jump in both stress differences across the interfaces
is revealed in these predictions.
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In Figure 5, the reference shear rate is now 120 s−1, which is in the region near the minimum
of the flow curve (high shear rate attractor, point D in Figure 1). The dynamics rapidly converge to
the extreme of the plateau stress (Figure 5a) after an overshoot and oscillations along the plateau.
Once again, concentration gradients are predicted, including a sudden decrease of concentration at
the interface (Figure 5g) inducing a sudden rise in the fluidity (Figure 5f) next to the moving wall.
The high shear rate band covers most of the flow region (Figure 5d) and past a pronounced maximum
the total stress is uniform along the flow cell (Figure 5e). As found in the shear banding region, there is
a jump in the normal stresses across the interface (Figure 5b,c), but N1 develops this sudden change
after a short overshoot, in contrast to N2, which monotonically increases in the high shear rate band
and decreases to almost zero in the low shear rate band.
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Finally, in Figure 6a–g, the reference shear rate is 300 s−1 located in the high shear-rate branch
(point E in Figure 1). Past an overshoot, the transient dynamics ends at the high shear-rate branch of
the flow curve. The flow is again homogeneous, since a single velocity gradient is predicted (Figure 6d).
Concentration gradients are absent at steady state and fluidity is uniform again (Figure 6f,g). The shear
stress and N1 rapidly attain steady state after maxima following the inception of flow (Figure 6b);
N2 attains steady-state monotonically (Figure 6c).
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4. Discussion and Conclusions

The model presented here contains three constitutive equations: the equation for the stress, for the
structural parameter, and for the diffusion of mass. They are mutually-coupled by phenomenological
coefficients, and their physical significance arises as they identify with the mechanisms acting on the
system. The mechanisms included here are the kinetics involved in the attainment of steady state,
after which a banding state is induced by the non-monotonic nature of the constitutive equation.
The existence of a banded state induces jumps in the normal stresses and concentration differences
amidst the bands, which constitute important predictions of the model. The diffusion of structure
and mass are governed by the diffusion coefficients, as it should be in situations where concentration
gradients or “structure gradients” arise. The latter is a consequence of the existence of ordered phases
or bands coexisting with more disordered or isotropic bands in the flow cell.

Instabilities leading to undulations of the interface [9,10] appear from the action of normal
stresses across the interface between the bands. Accordingly, the mechanism of instability is not fully
understood, but it is likely to stem from steep gradients in the normal stress and shear rate across
the interface. Various authors have found instabilities due to the jump of normal stresses across the
interface in polymeric systems [30,31]. Alternating vorticity bands [32] and concentration gradients in
polymer solutions that exhibit shear banding have been predicted.

One of the advantages of the present model is that it describes the breakage-reformation process of
the micelles under flow so as to enable an understanding of the relation between shear band formation
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and microstructure evolution. In the BMP model, the relation between the fluidity, relaxation time τ,
and micellar length n is [24]:

τ =
1

G0 ϕ
= τ0

(
n
n0

)
where τ0 is the relaxation time when ϕ = ϕ0. Substitution of this equation into the evolution equation
for the fluidity (see Equation (1)) yields an equation expressed in terms of the average micellar length,
which is the microstructural variable. The physical interpretation is that the micellar length n follows
an evolution equation related to the breakage and reformation process of the micelles.

Results of the present model and those contained in reference [24] (see Figure 5 therein), where no
normal stresses are included, reveal predictions of multiple bands in the absence of normal stresses.
In fact, a comparison at similar imposed shear rates (those near the high shear-rate extreme of the
plateau) of the velocity and stress fields are similar, but the fluidity presents two regions with high
fluidity next to the walls (without normal stresses). With normal stresses, we observe a single region of
high fluidity next to the moving wall (see Figure 5 of the present paper).

We have shown that the EIT formalism described here is consistent with previous works on
shear-banding inhomogeneous flows. In fact, in the two-fluid approach, the viscoelastic stress causes
the micelles to diffuse up in gradients of the stress, and so it couples stress with concentration. In the
present work, predictions of a depleted layer next to the moving surface reveal agreement with this
underlying mechanism, i.e., the existence of a positive feedback, which causes diffusion of micelles up
their own concentration gradient. As an explanation to micellar migration [21], the strain component
Wyy is more negative in the high shear rate phase than in the lower shear phase, then micelles migrate
to the low-shear band. This corresponds to the strongly sheared micelles stretched strongly along the
flow direction.

A model for wormlike micellar solutions involving scission and reforming of chains based on
non-affine network theory and a discrete version of the Cates theory was forwarded [16]. Although the
model does not predict N2, one of the variants of the model (PEC + M, partial extended convected
derivative with two interacting species) predicts a behavior of N1 as a function of shear rate
quantitatively similar to that predicted by the present model. In reference [16], the first normal
stress difference also shows a banded structure and a sudden drop at the interface. Predictions of the
overshoot at the onset for flow follow the same manner as predictions by the BMP model.

Further concordance with predictions of other models arises. The stress overshoot predicted in the
banded state in Figure 4 agrees with the three stages predicted by the non-local JS model after a step
growth in shear rate [33], i.e., band destabilization, interface reconstruction, and interface traveling.
As indicated in this reference, the instability and reconstruction of the interface in the first two stages
end when the interface between stable bands sharpens. Front propagation is controlled by the diffusion
constant D, as in the BMP model.

Predictions of the concentration profiles in entangled polymeric systems [34] depict a sudden
decrease (quasi-step like) of concentration at a given position in the flow cell, and this change occurs
nearer to the moving wall when the shear rate is smaller. These predictions agree qualitatively with
those depicted in Figures 4 and 5 of the present paper. Band migration and band shapes are similar
in both systems, illustrating that this phenomenon is common to wormlike micelles and entangled
polymeric systems

In summary, the relevant predictions of the present model are the depleted concentration region
near the moving boundary and the jumps in normal stresses across the interface. Stress diffusion arises
naturally in the constitutive equations. Two diffusion mechanisms are involved, the mass and the
structural diffusion, which arise in the equations for the stress and stress differences, but in addition,
they are present in the equation for the reformation-breakage of the structure.
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Appendix A

Extended Thermodynamic description of complex fluids (see [4]). The non-equilibrium
thermodynamic state of a complex fluid is described by a formulation contained in the usual procedure
of Extended Irreversible Thermodynamics (EIT). The thermodynamic state shall be described by
taking as conserved variables {C} the internal energy density (e), the mass density ($), and the relative
concentration of the dispersed phase (c) that is embedded in a Newtonian liquid of concentration
c’, i.e., c + c’ = 1. As for the set {R} of non-conserved state variables, a scalar representing the
internal structure of the fluid ς, the diffusive concentration flux J, and the traceless symmetric part
of the stress tensor σ are included. Hence, the space of state variables for this system is given
by the set G = C U R = {e, ς, c; ρ, J, σ}. As the first basic assumption of the theory, EIT assumes the
existence of a sufficiently continuous and differentiable function ηE, defined over a complete space
G: ηE = ηE {e, ς, c; ρ, J, σ}. This assumption aims to generate a differential form, which, in a strictly
formal sense, will generalize the Gibbs relation of local equilibrium thermodynamics. For an
incompressible fluid at constant temperature, applying the usual procedure of EIT to the given
generalized-entropy function and restricting the scheme to the lowest order in the non-conserved
variables, we obtain the following generalized Gibbs relation:

T
dηE
dt

= −µ
dc
dt

+
1
ρ

α0
dς

dt
+

1
]ρ

α1.
dJ
dt

+
1
ρ

α2 :
dσ

dt
(A1)

here T and µ are the local equilibrium values of the temperature and the chemical potential of the
dispersed phase; α0, α1, and α2 are phenomenological coefficients that are defined as the partial
derivatives of ηE with respect to the state variables, and hence, depend on the equilibrium value of
c. The scalar α0, the vector α1, and the tensor α2 should be constructed as the most general scalar,
vector, and tensor expressions that may be obtained in terms of all independent variables in G.
Thus, according to the theory of invariants in space G and to the first order in the non-conserved
variables, they are given by:

α0 = α00ζ, α1 = α10 J, α2 = α20σ (A2)

where αi0 (i = 0, 1, 2) are scalar coefficients. It should be stressed that these phenomenological
coefficients can only be determined from experiment or from a microscopic theory.

The second postulate of EIT assumes that the function ηE satisfies a balance equation, namely,

ρ
dηE
dt

+∇.Jη = Sη (A3)

Jη and Sη denote the flux and source term associated to ηE, respectively. They should be expressed
as the most general vector and scalar in G. Consistency with the order considered in arriving at
Equation (A1) requires that

Jη = β0ςJ + β1 J + β2 J · σ (A4)

Sη = X0ς + X1 · J + X2 : σ (A5)

where the phenomenological coefficients βi depend on the local equilibrium value of c.
Furthermore, we consider Xi, up to first order, as the most general quantities in G. It is important to
point out that in order to recover the usual results of the linear irreversible thermodynamics (LIT) near
equilibrium, ηE, Jη , and Sη should reduce to the entropy production, the entropy flux, and the entropy
production, respectively. Therefore, β1 = −µ/T.
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By computing the divergence of Equation (A4) and using Equation (A1) and the mass conservation
equation, we get:

ρ
dc
dt

= −∇ · J (A6)

The following explicit expression is obtained from Equation (A3):

ρ
dηE
dt +∇·Jη = ς

T

[
α00

dς
dt + β0T∇ · J

]
+ 1

T J ·
[
α10

dJ
dt − T∇( µ

T ) + β0T∇ς + β2T∇ · σ
]

+ 1
T σ :

[
α20

dσ

dt + β2T∇J
] (A7)

By substituting Equation (A5) into Equation (A3) and using Equation (A7), the following coupled
relaxation equations for the non-conserved variables are obtained:

τ0
dς

dt
= −X0 + β0∇ · J (A8)

τ1
dJ
dt

= −X1 −∇µ + β0∇ς + β2∇ · σ (A9)

τ2
dσ

dt
= −X2 + β2∇J (A10)

It is important to stress that in Equation (A5), Sη may also depend on the parameters that
lie outside G, but which are essential to specify the non-equilibrium state of the system. For the
model under consideration, the velocity gradient tensor ∇v is required to formulate the constitutive
equations for the stress tensor. Therefore, the expressions for X0, X1, and X2 are written in terms of the
non-conserved variables and ∇v. With these considerations, the explicit form of Equations (A8)–(A10)
is given in Equations (1)–(3).
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