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Abstract: The aim of this study was to provide scientists with a straightforward correlation that can be
applied to the prediction of the Fanning friction factor and consequently the pressure drop that arises
during blood flow in small-caliber vessels. Due to the small diameter of the conduit, the Reynolds
numbers are low and thus the flow is laminar. This study has been conducted using Computational
Fluid Dynamics (CFD) simulations validated with relevant experimental data, acquired using an
appropriate experimental setup. The experiments relate to the pressure drop measurement during
the flow of a blood analogue that follows the Casson model, i.e., an aqueous Glycerol solution that
contains a small amount of Xanthan gum and exhibits similar behavior to blood, in a smooth, stainless
steel microtube (L = 50 mm and D = 400 µm). The interpretation of the resulting numerical data led to
the proposal of a simplified model that incorporates the effect of the blood flow rate, the hematocrit
value (35–55%) and the vessel diameter (300–1800 µm) and predicts, with better than ±10% accuracy,
the Fanning friction factor and consequently the pressure drop during laminar blood flow in healthy
small-caliber vessels.
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1. Introduction

The flow behavior of non-Newtonian fluid in small-caliber tubes is of high interest in practical
applications (e.g., flow, mixing and separation of various biological species in microchips) [1]. Blood
exhibits non-Newtonian behavior, meaning that its viscosity depends on shear rate. The ability to
predict blood flow pressure drop is essential in therapy strategy and the design of surgical repairments
and implantable medical devices [2]. An investigation on blood flow in small arteries is of both
fundamental interest and practical significance [2].

Blood is a two-phase suspension of plasma and cells that behaves as a non-Newtonian
shear-thinning viscoplastic liquid. The plasma exhibits Newtonian behavior with a viscosity ranging
from 1.10 to 1.35 mPa·s at 37 ◦C. It comprises of proteins (albumin, globulins and fibrinogen) that
represent about 7–8 wt% of plasma, glucose, clotting factors, inorganic ions, dissolved gases, hormones
and other substances at low concentration [3]. The most abundant cells are the red blood cells (RBCs)
or erythrocytes comprising about 95% of the cellular component of blood while the remaining 5% are
comprised of white cells and platelets. The non-Newtonian shear-thinning character of blood results
from variations in the aggregation and deformation of the red cells. On the other hands, its viscosity is
primarily affected by the volume percentage of red blood cells in blood, i.e., the hematocrit value.

The equations that define non-Newtonian flow, although well established, are highly complex
compared to those defined for Newtonian flow [4]. This is why in many papers, blood is treated as a
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Newtonian fluid. Although this assumption holds practically true for high shear rates, i.e., greater
than 1000 s−1, it is not valid for blood flow in small vessels [5], where the Reynolds numbers are low,
and the flow is laminar.

Research that addresses non-Newtonian fluid flow is based on the pioneering work of Metzner
and Reed [6] in 1955. According to their approach the same friction factor chart could be used for
Newtonian and time-independent non-Newtonian fluids in the laminar or turbulent region. However,
only provided that an appropriate effective Reynolds number can be estimated. In this way the
problem reduces to the quest of an appropriate effective viscosity, which would relate the behavior of
the non-Newtonian fluid to an equivalent one of a hypothetical Newtonian fluid [7]. Nevertheless,
the calculations seem to be complex and rather laborious because the suggested equations must be
solved iteratively.

Many models have been developed to describe blood viscosity, e.g., Casson, Hershel-Bulkley,
Carreau and Quemada [8]. Chilton and Stainsby [4] suggested a model for Hershel-Bulkley fluids
that iteratively computes the friction factor both in laminar and turbulent flow in pipes. However,
this method does not take into account the effect of hematocrit. Cruz et al. [9] proposed a generalized
method for predicting friction factors in fully developed non-Newtonian laminar flow in circular
pipes using several viscoelastic models i.e., Herschel-Bulkley, Bingham, Casson and Carreau-Yasuda.
Their method, apart from the fluid velocity, the pipe diameter and the parameters of each rheological
model utilized an apparent flow behavior index, where estimation was quite complicated. Therefore,
the most prevalent model for predicting blood viscosity is the Casson model [10] because its constants
can be expressed as a function of hematocrit [8] and it is reported to lead to reliable results [11].

The pressure drop exerted during blood flow depends mainly on the diameter of a blood vessel,
the blood flow rate as well as the hematocrit value [11]. The aim of this study was to provide engineers
and physicians with a simple, straightforward algorithm that could be applied to the prediction of
the pressure losses, or equivalently, the Fanning friction factor during blood flow in small-diameter
healthy vessels. As the experiments were difficult to perform and time consuming, the effect of
the various parameters was evaluated by performing a series of Computational Fluid Dynamics
(CFD) simulations, using a previously validated code. Due to the small diameter of the conduit,
the corresponding Reynolds numbers were low (i.e., less than 50) and consequently the flow was
regarded laminar.

2. Experimental Setup and Procedure

It is common practice prior to proceeding with simulations to validate the CFD code using data
acquired by performing relevant experiments. The experimental setup used for the pressure drop
measurements (Figure 1) comprised the test section (Figure 2), two syringe pumps (AL-2000, World
Precision Instruments®, Sarasota, FL, USA), a three-way valve and a digital pressure transducer (68035,
Cole Palmer, Vernon Hills, IL, USA).

The use of two pumps was necessary to cover the desired Reynolds number range (i.e., 1–50).
The three-way valve allowed for the refilling of the syringes without exposing the system to the
atmospheric air. The pressure was monitored by connecting one of the manometer tubes to the
microtube inlet, while the second was left open to the atmosphere.

The test section (Figure 2) consisted of a 50 mm microtube, i.e., a stainless steel (SS 304)
chromatography needle (Gauge 33, Hamilton, Merck, Darmstadt, Germany) adjusted on a polymethyl
methacrylate (PMMA) cube and connected to the feed and the manometer. All experiments were
conducted at room temperature (i.e., 20 ± 1 ◦C).

The functionality of the setup was confirmed by performing experiments with a Newtonian fluid
(i.e., water), while the CFD model was validated with data obtained from performing experiments
with a non-Newtonian fluid, i.e., a blood analogue.
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Figure 1. Experimental setup for pressure drop measurements. 
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Blood Analogue

As experiments with blood are difficult to perform due to coagulation, blood-mimicking fluids
were used, i.e., fluids whose rheological properties are similar to blood and whose viscosity follow the
Casson model. As previously mentioned, the constants of the Casson model depend on the hematocrit
value where the normal range is between 30% and 55% [8].

The viscosity of blood can be expressed by Equation (1) [3]:

µ =

(√
τy

γ
+
√

nN

)2

(1)

where µ is the viscosity of blood, γ is the shear rate, τy is the yield stress and nN is the viscosity
corresponding to high shear rates (asymptotic value). The yield stress is a measure of the amount
of energy required to break down the aggregates of red blood cells formed at very low shear rates.
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Merrill [8] extensively investigated blood rheology and confirmed the strong relationship between
viscosity and hematocrit (Ht) and suggested that the terms nN and τy of Equation (1) could be expressed
as functions of hematocrit, i.e.,

nN = np

[
1 + 0.025Ht + 7.35·10−4H2

t

]
(2)

where np is the viscosity of the plasma,

τy = A(Ht − Htc)
3 (3)

and Htc is the critical hematocrit below which the yield stress (τy) can be considered negligible.
For normal blood, Htc ranges between 4 and 8 and A is a constant, ranging between 0.6 × 10−7 and
1.2 × 10−7 Pa. These expressions are employed hereafter for predicting blood viscosity as a function of
hematocrit [8]. In this study, the values selected for A and Htc were 0.9 × 10−7 Pa, and 6, respectively,
i.e., the middle values of the corresponding range.

For the sake of simplicity, the variations in viscosity previous mentioned, could be attributed to
several factors and were expressed in the simulations as a function of hematocrit alone. Blood density
(ρ) was assumed to be constant, i.e., independent of the hematocrit value investigated and equal to
1060 kg/m3.

Thus, human blood with a Ht of ~55% can be simulated by a 30% v/v aqueous glycerol solution
that contains 0.035% w/v xanthan gum, i.e., a polysaccharide that acts as a rheology modifier and
renders the fluid non-Newtonian. The viscosity curve of the fluid was measured in our laboratory
via a magnetic rheometer (AR-G2, TA Instruments, Sussex, UK), for shear rates between 1–1000 s−1

(Figure 3) resulting in an excellent fit shown by a Casson-type curve (Equation (1)).
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Figure 3. Viscosity measurements of the blood analogue (Ht = 55%).

3. Numerical Simulations

CFD modeling is considered a dependable tool for studying blood flow characteristics in
small-caliber vessels [11]. In this study, a CFD code (ANSYS CFX 18.1, ANSYS, Inc., Karnosboro, PA,
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USA) was employed for simulating the flow. The code comprised of the usual parts of a standard
CFD code, i.e., the pre-processing part, where the computational domain and the grid are constructed,
the solver, where the discretized differential equations are iteratively solved and the post processing
part where the results are analyzed and displayed in an illustrative way.

A blood vessel was modeled as a three-dimensional (3D) computational domain, while the
geometry of the computational domain and the mesh were designed using the parametric features of
the ANSYS Workbench package (version 18.1). The length of the conduit was 5 cm, the fluid density
was assumed to be constant (i.e., 1060 kg/m3), while the diameter of the conduit was a parametric
variable and was set to be between 0.3–1.8 mm. With the aim of reducing memory consumption and
CPU time and as the geometry consisted of two symmetry planes, only one fourth of the domain was
used (Figure 4).
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Due to the small characteristic dimension of the conduit, the flow is laminar. Hence, the Direct
Numerical Simulation (DNS) model was selected while the high-resolution advection scheme was
used for the discretization of the momentum equations. A custom-made high-performance unit for
parallel computing was used (24 nodes, 64 GB RAM). The simulations were run in a steady state,
the vessel walls were considered smooth and the non-slip boundary condition was imposed at the
walls, while the flow rate was kept constant for each run.

As the numerical diffusion in the CFD calculations are known to influence the accuracy of the
calculations, an optimum grid density was chosen by performing a grid dependency study. Figure 5
shows typical results that illustrate the dependence of pressure drop on the number of cells and
corresponds to the maximum flow rate that was tested. Hence, 270,000 cells were chosen to ensure
that the solution was independent of the grid density.
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3.1. Code Validation

Usually, the validity of a CFD code is checked by comparing the numerical results with
relevant experimental data. In the present study, appropriate experiments were performed using
the experimental setup described in Section 2. Furthermore, the experimental data presented in
Figure 6 together with the computational results proved to be in very good agreement (±10%). Since
the viscosity of the non-Newtonian fluids was not constant, the pressure drop was plotted versus a
modified Reynolds number Re* (Figure 6)

Re∗ =
UDρ

µ∗
(4)

which in place of the fluid viscosity uses an effective viscosity µ*, that corresponds to the pseudo-shear
rate γ* defined by Equation (5) [3].

γ∗ =
U
D

=
4Q

πD3 (5)

Here, U is the average fluid velocity, Q is the volumetric blood flow rate and D is the inside diameter
of the vessel.

Figure 7 presents typical CFD results of the pressure distribution along the axis of the conduit.
The shape of the curve (i.e., straight line) denotes that the flow was fully developed.
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3.2. Numerical Procedure

A parametric study was performed by employing the Design Exploration features of the ANSYS
Workbench® package. The design variables selected along with the imposed upper and lower bounds
are presented in Table 1. The upper bound of the vessel inside diameter corresponds to the larger
arterioles and venules of an adult male [12], while the corresponding lower bound was chosen to be
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500 µm to avoid the consequences of the Fahraeus-Lindqvist effect [12]. Due to this effect in small
vessels (smaller than 300 µm), red blood cells tend to drift towards the central axis of the vessel,
forming a cell-free layer called a plasma layer along the vascular wall. This effect results in an apparent
blood viscosity, which declines substantially with decreasing diameter [13]. The hematocrit range that
was chosen is typical for healthy adult humans [8] and the blood flow rate bounds imposed are typical
for such µ-vessels.

Table 1. Constraints of the design variables.

Parameter Lower Bound Upper Bound

Vessel inside diameter (mm) 0.50 1.80
Hematocrit (%) 35 50

Blood flow rate (mm3/s) 7.0 88.0

To extract the necessary information from a limited number of test cases, the Design of
Experiments (DOE) methodology was followed. In the present study, the effect of the design
parameters was investigated by performing a series of “computational experiments” for certain values
of the design parameters chosen by employing the Box-Behnken method [14], i.e., an established
DOE technique.

A DOE technique leads to reliable conclusions from the least possible number of design points.
Table 2 presents the various design points selected. Based on the computational results, the aim is

to formulate appropriate design correlations that can be applied for the prediction of friction factor
values during laminar blood flow in micro vessels.

Table 2. Design and verification points.

Design Points
Verification Points

Box-Behnken Additional Points

Q D Ht Q D Ht Q D Ht
mm3/s mm % mm3/s mm % mm3/s mm %

72.0 1.15 35 6.0 0.40 35 6.7 0.40 55
72.0 1.15 50 8.5 0.40 35 7.0 0.50 40
72.0 1.80 43 11.0 0.40 35 10.0 0.40 55
72.0 0.50 43 13.0 0.40 35 11.7 0.40 55
80.0 0.50 35 16.0 0.40 35 15.0 0.40 55
80.0 0.50 50 18.0 0.40 35 20.0 0.30 45
80.0 1.15 43 21.0 0.40 35 33.4 0.40 55
80.0 1.80 35 23.0 0.40 35 40.0 0.90 50
80.0 1.80 50 25.0 0.40 35 66.8 0.40 55
88.0 1.15 35 45.0 0.40 35 68.0 1.20 35
88.0 1.15 50 50.0 0.60 37 83.0 0.60 37
88.0 1.80 43 7.0 0.30 43 83.5 0.40 55
88.0 0.50 43 - - - - - -

The first three columns of Table 2 include the design points dictated by the Box-Behnken method.
The following three columns contain some additional points that extend the D range to 0.3 mm. The last
three columns of Table 2 present appropriate verification points that lay within the range of design
points. These were arbitrarily chosen and were used for testing the applicability of the design equation.

4. Results

In Figure 8, the measured pressure drop values for various blood flow rates (Q), are compared
with pressure drop losses (Equation (6)):
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∆P
L

= f
2
D

ρU2 (6)

where f is the Fanning friction factor given by:

f = 16/Re∞ (7)

where Re∞ is a Reynolds number that uses the asymptotic value (µ∞) of blood viscosity. From Figure 8
it is obvious that by no means can the correlation for Newtonian fluids be applied to non-Newtonian
fluids because it underestimates ∆P by 30%.

Fluids 2018, x, x  9 of 14 

range of design points. These were arbitrarily chosen and were used for testing the applicability of 
the design equation. 

4. Results 

In Figure 8, the measured pressure drop values for various blood flow rates (Q), are compared 
with pressure drop losses (Equation (6)): 𝛥𝑃𝐿 = 𝑓 2𝐷 𝜌𝑈2 (6) 

where f is the Fanning friction factor given by: 

𝑓 = 16 𝑅𝑒  (7) 

where Re∞ is a Reynolds number that uses the asymptotic value (μ∞) of blood viscosity. From Figure 8 
it is obvious that by no means can the correlation for Newtonian fluids be applied to 
non-Newtonian fluids because it underestimates ΔΡ by 30%. 

 
Figure 8. Comparison of experimental results for the blood analogue with the theoretical prediction 
of ΔΡ using the correlation for Newtonian fluids (f = 16/Re∞). 

Initially, the numerically predicted pressure drop value was used to calculate Equation (6), the 
Fanning friction factor that corresponds to each “experiment”. In Figure 9, the calculated friction 
factors were compared with the values predicted by Equation (8) that related the Fanning friction 
factor with Re* (defined by Equation (4)), i.e., 𝑓 = 16 𝑅𝑒∗ (8) 

The calculated friction factors deviated considerably from the ones predicted by Equation (8) 
especially for the lower Re* values. It was obvious that a new correlation had to be formulated. 

0

6,000

12,000

18,000

0 10 20 30 40 50

ΔP
, [

Pa
]

Q,  [mm3/s]

correlation for Newtonian fluid
 blood analoque

error,   30%

D= 400 μm
Ht =35%

Figure 8. Comparison of experimental results for the blood analogue with the theoretical prediction of
∆P using the correlation for Newtonian fluids (f = 16/Re∞).

Initially, the numerically predicted pressure drop value was used to calculate Equation (6),
the Fanning friction factor that corresponds to each “experiment”. In Figure 9, the calculated friction
factors were compared with the values predicted by Equation (8) that related the Fanning friction
factor with Re* (defined by Equation (4)), i.e.,

f = 16/Re∗ (8)

The calculated friction factors deviated considerably from the ones predicted by Equation (8)
especially for the lower Re* values. It was obvious that a new correlation had to be formulated.

As blood is a non-Newtonian fluid, we attempted to strengthen the contribution of its viscoplastic
nature [7] by multiplying Re* with the Bingham number, which for viscoplastic materials, expresses
the relative importance of yield stress to viscous stress. This is defined as:

Bm = τy D/µ∗U (9)

It is found that the friction factor can be well predicted using Equation (10):

f = 5.974 Bm−0.266 Re*−1.064 (10)
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Coefficients are determined by fitting the numerical data that correspond to the design points
(Figure 10). The validity of Equation (10) was further tested by comparing it with the data obtained
using the verification points. Figure 10 shows that the proposed correlation was in excellent agreement
with all the results.
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Figure 11 compares the friction factor values (fcalc), calculated by Equation (10) with the values
that resulted from the CFD simulations (fCFD). It was proven that Equation (10) could predict the
Fanning friction factor with 10% uncertainty.
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5. Concluding Remarks

In this study, a simplified model that can predict Fanning friction factors of laminar blood
flow in small-caliber vessels was proposed. The study was conducted using CFD simulations that
were validated with relevant experimental data acquired by employing an appropriate experimental
setup. The effect of the flow rate, the hematocrit value and the vessel diameter on the pressure drop
was considered. The interpretation of the resulting data led to the proposal of a straightforward
method of estimating with reasonable accuracy (i.e., better than ±10%) the Fanning friction factor
and consequently, the pressure drop during the flow of blood (for a hematocrit range 35–55%) in
small-diameter vessels (300–1800 µm).

The calculation procedure comprises the following steps:

1. For a given volumetric flow rate (Q) and vessel inside diameter (D), the pseudo-shear rate (γ*) is
calculated using Equation (5).

2. For a given hematocrit value (Ht), an effective viscosity (µ*), that corresponds to the pseudo-shear
rate is estimated using Equations (1)–(3).

3. The corresponding Re* and Bm numbers are calculated by Equations (4) and (9).
4. The Fanning friction factor (f ) is then calculated by the proposed correlation (Equation (10)).
5. Finally, the pressure drop (∆P/L) is calculated using Equation (6).

The proposed methodology (Figure 12) is an easy-to-use tool that can help scientist to quickly
and accurately estimate the pressure drop exerted during blood flow in healthy, small caliber vessels.
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It is clear, that this methodology is not exclusively applicable for blood flow, however, if step two is
excluded, it can be applied to any shear thinning Casson fluid.
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Nomenclature

Bm Bingham number, -
D Inside vessel diameter, m
f Fanning friction factor, -
fCFD Fanning friction factor from CFD simulations, -
fcalc Fanning friction factor from Equation (7), -
Ht Hematocrit, %
Htc Critical hematocrit, %
L Length, m
np Plasma viscosity, Pa·s
P Pressure, Pa
Q Volumetric flow rate, mm3/s
Re∞ Reynolds number corresponding to µ∞

Re* Effective Reynolds number (Equation (4)), -
U Mean velocity, m/s
x Axial coordinate, m
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Greek letters
γ* Pseudo shear rate, s−1

∆P Pressure drop, Pa
µ Blood viscosity, Pa·s
µ* Effective viscosity, Pa·s
µ∞ Asymptotic viscosity value, Pa·s
ρ Blood density, kg/m3

τ Shear stress, Pa
τy Yield stress, Pa
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