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Abstract: In this paper, a simple shear flow of a dense suspension is studied. We propose a new
constitutive relationship based on the second grade fluid model for the suspension, capable of
exhibiting non-linear effects, where the normal stress coefficients are assumed to depend on the
volume fraction of the particles and the shear viscosity depends on the shear rate and the volume
fraction. After non-dimensionalizing the equations, we perform a parametric study looking at the
effects of the normal stress coefficients and the variable viscosity. The numerical results show that
for a certain range of parameters, the particles tend to form a region of high and uniform volume
fraction, near the lower half of the flow.
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1. Introduction

Flows of (solid) particles suspended in a fluid present many interesting problems for
mathematicians, engineers and physicist. Natural examples of such flows are mudslides, debris
flow (Davies, 1986) [1], snow or ice avalanches. Industrial examples of suspensions are slurries, (wet)
granular materials, fluidized beds, etc. (see Govier and Aziz (1972) [2], Zandi (1971) [3], Shook and
Roco (1991) [4]). In general, these suspensions show non-linear behavior such as normal stress
differences, yield stress, discontinuous changes in stresses, etc. [5].to mathematically model these
flows, from a continuum mechanics perspective, there are at least two distinct methods; we can look
at the suspension as a single continuum where a single constitutive relation for the stress tensor is
proposed and the material properties are variables (function of time and space, and perhaps function of
shear rate, volume fraction of the solids, etc.), or alternatively, we can look at the two components as two
distinct but interacting continua, using the methods of mixture theory, where two equations are needed
for the stress tensors and one equation for the interaction forces. For details of the second approach,
namely the mixture theory, we refer the readers to papers by Johnson et al. (1991) [6], Massoudi
(2003, 2008, 2010) [7–9]. In this paper, we will use the (single component) suspension approach.

From a historical point of view, Reynolds (1885) seems to have been the first scientist who noticed
that if a shearing motion in a bed of closely packed particles is to occur, the bed must expand to increase
the volume of its voids [10]. He named this phenomenon “dilatancy,” which is a manifestation of the
normal-stress effects. Reiner (1945, 1948, 1958) was one of the first who derived a non-Newtonian
fluid model to predict dilatancy in wet sand [11–13], even though his model did not show how the
volume fraction affects the stresses. Massoudi (2011) [14] modified and generalized this constitutive
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relation, also known as the Reiner-Rivlin [15] fluid model, by suggesting that the shear viscosity would
depend on the shear rate and the volume fraction. Later, Wu et al. (2012) considered the shearing
motion of such a material [16], and Wu et al. (2013) [17] studied the flow of granular materials down
an inclined plane. Their numerical simulations predicted only one non-zero normal stress difference,
as is expected in the Reiner-Rivlin fluid type models.

In this short paper, we continue this line of thinking and propose a new constitutive model for
the flow of a dense suspension by generalizing the second grade fluid model and assuming that
the viscosity depends on the shear rate and the volume fraction, while the normal stress coefficients
are only functions of the volume fraction. In the Section 2, the governing equations are introduced.
In Section 3, the constitutive equation for the stress tensor is discussed. In Section 4, we show the
geometry and the kinematics of the problem and in Section 5, we solve the simple shear flow and
perform a parametric study on several different dimensionless numbers.

2. Governing Equations

We assume that the motion and the behaviour of the suspension can be described using
the traditional methods of continuum mechanics. In the absence of any thermo-chemical and
electro-magnetic effects, the basic governing equations are the conservation laws for mass,
linear momentum and angular momentum (see Slattery (1999) [18]). As we are only considering
a purely mechanical system, the energy equation and the entropy inequality are not considered.

2.1. Conservation of Mass

The conservation of mass is:
∂ρ

∂t
+ div(ρv) = 0 (1)

where ∂/∂t is the derivative with respect to time, div is the divergence operator, v is the velocity vector,
and ρ is the density of the suspension given by:

ρ = ρsφ (2)

where ρs is the density of an individual particle (assumed to be constant) and φ(x, t) is the volume
fraction of the particles, where 0 ≤ φ < φmax < 1; φ is an independent kinematical field and is
a continuous function of position and time. We will see in Section 4, that the introduction of this
kinematical field will present new challenges to us, especially in the specification of the boundary
conditions. Furthermore, this term couples the density field and the velocity field and allows for
finding particle distribution.

2.2. Conservation of Linear Momentum

Let T represent the Cauchy stress tensor, then the balance of linear momentum is:

ρ
dv
dt

= divT + ρb (3)

where dv
dt = ∂v

∂t + (gradv)v and b stands for the body force.

2.3. Conservation of Angular Momentum

In absence of couple stresses the Cauchy stress tensor is symmetric, that is,

T = TT (4)

In the next section, we will discuss the constitutive modeling of the stress tensor.
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3. Constitutive Equation for the Stress Tensor

In this paper, we model the dense suspension of particles as a single component non-linear
fluid-like material. Rajagopal and Massoudi (1990) [19] and Rajagopal et al. (1994) [20] proposed a
model, where the Cauchy stress tensor depends on the symmetric part of velocity gradient and another
second order tensor related to the density gradient (see also Massoudi and Mehrabadi (2001) [21]).
And more recently, Massoudi and Tran (2016) [22] proposed a modified third grade fluid model for a
dense suspension of particles.

In this paper, we focus our attention on suspension models where the normal stress effects are
present (see Massoudi (2004, 2010) [23,24]). One of the simplest constitutive equations capable of
describing both of the normal stress effects is the second grade fluid, or the Rivlin-Ericksen fluid of
grade two (Rivlin and Ericksen (1955) [25], Truesdell and Noll (1992) [26]). For a second grade fluid,
the Cauchy stress tensor is given by:

T = −pI + µA1 + α1A2 + α2A2
1 (5)

where I is the identity tensor, p is the constraint due to incompressibility (pressure), and the kinematical
tensors A1 and A2 are defined through

A1 = L + LT

A2 = dA1
dt + A1L + LTA1

L = grad v
(6)

where L is the velocity gradient, µ is the coefficient of viscosity, α1 and α2 are material moduli which
are commonly referred to as the normal stress coefficients. We modify the traditional second grade
fluid model and assume that the suspension can be modeled as

T = (p(φ) + βr)I + µ
(
φ,

.
γ
)
A1 + α1(φ)A2 + α2(φ)A2

1 (7)

where
.
γ =

√
1/2tr(A1

2) is the shear rate, (p(φ) + βr)I is the spherical (isotropic part of the) stress
tensor (which includes the pressure effects) (see Serrin (1959) [27]);In this paper, we assume p(φ) = βp

where βr can be a function of the principal invariants of A1, A2 and φ, and we also assume that the
shear viscosity, µ, depends on the volume fraction and the shear rate and the normal stress coefficients,
α1 and α2, depend on the volume fraction. That is, we assume:

µ = µr
(
φ + φ2)

α1 = α10
(
φ + φ2)

α2 = α20
(
φ + φ2) (8)

These expressions can be viewed as the Taylor series approximation for the material parameters
(Rajagopal, et al. (1994) [20]). Clearly, in Equation (7), the term ‘p’ does not have the same meaning
or implications as the pressure term in Equation (5). More accurately, as pointed out by Rajagopal
(2015) [28], ‘p’ should be referred to as the “mean value of the stress.”

The thermodynamics and stability of fluids of second grade have been studied in detail by Dunn
and Fosdick (1974) [29]. They showed that if the fluid is to be thermodynamically consistent, then

µ ≥ 0 (9a)

α1 ≥ 0 (9b)

α1 + α2 = 0 (9c)
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It is known that for many non-linear fluids which are assumed to follow Equation (9),
the experimental values reported for α1 and α2 do not satisfy the restriction of Equations (9b) and (9c).
In an important paper, Fosdick and Rajagopal (1979) [30] show that irrespective of whether α1 + α2 is
positive, the fluid is unsuitable if α1 is negative. For further details on this and other relevant issues in
fluids of differential type, we refer the reader to the review article by Dunn and Rajagopal (1995) [31].
In certain applications, where the fluid is known to be shear- thickening (or shear- thinning), then
modified (or generalized) forms of the second-grade fluid have been proposed (see Man (1992) [32],
Massoudi and Vaidya (2008) [33], Man and Massoudi (2010) [34], Massoudi and Tran (2016) [22]).
In this paper, we assume that the viscosity changes with the shear rate and can be modeled as a
power-law type relation, where µr is given by:

µr = µr0
.
γ

m (10)

where µr0 is a reference viscosity, assumed to be a constant,
.
γ

m represents the effect of the shear
dependency. We should note that when m < 0, the fluid is shear-thinning, and if m > 0, the
fluid is shear-thickening. The above power-law relation, as is well-known, suffers from the
fact that for shear-thinning fluids, the model predicts that the viscosity goes to infinity as the
shear rate approaches zero. To overcome this short-coming, we can use an expression of the
type µr = µr0b1 +

(
tr A1

2)1/2cm which predicts a constant value for the zero shear rate viscosity.
Alternatively, we can use the well-known improvements such as the Carreau-type viscosity models
(see Carreau et al. (1997, pp. 39–41) [35]). In this paper, we will use Equation (10).

Based on previous studies (Rajagopal and Massoudi (1990) [19]), we assume

βp = β00 < 0 (11)

see also [19,36]. We also assume that βr, a parameter which accounts for the compacting (a measure of
the rigidity) of the particles, can be given by,

βr = h(φ)Crg(φ) (12)

h(φ) =

{
0, φ < φc

1, φ ≥ φc
(13)

where φc is the critical value of the volume fraction. In this paper, we assume g(φ) = φ. In a sense, Cr

is a material parameter related to how much the particles can be compacted. For very rigid particles,
Cr is large, ensuring that the local volume fraction of the particles cannot be larger than φc. We assume
that h(φ) in Equation (12) is a smooth step function, such that

h(φ) =
1

1 + exp(−2S(φ− φc))
(14)

where S is a parameter related to the slope of the step function. For example, if S is chosen as 3000,
then h(φc − 0.001)/h(φc) < 0.01 and h(φc − 0.005) ∼ o

(
10−13), therefore βr is negligible when φ is

not close to φc.
Thus the equation for the stress tensor used in our paper, in expanded form is:

T =
(

βpφ + Cr
1+exp(−2S(φ−φc))

φ
)

I + µr0
.
γ

m(
φ + φ2)A1 + α10

(
φ + φ2)A2 + α20

(
φ + φ2)A2

1 (15)

where βp, Cr, φc, µr0, m, α10 and α20 are material constants. Note that in the above equation T
goes to zero when φ→ 0 , as is expected. Finally, we need to emphasize that Equation (15) being
a generalization of the second grade fluid model, contains higher order derivatives of the velocity
gradient and as a result, once Equation (15) is substituted in the linear momentum equation, the order
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of the ensuing partial differential equations is one order higher than the Navier-Stokes equations.
Therefore, in general, depending on the kinematics of the flow, we may need additional boundary
conditions. For a detailed discussion of this issue, we refer the reader to Rajagopal (1995) [37].

4. Geometry and the Kinematics of the Flow

The geometry and the kinematics of the flow are shown in Figure 1. Whenever a new model is
proposed or developed, it is worthwhile to consider some simple flow situations, usually referred to as
viscometric flows (see Truesdell (1974) [38]). This is to see if analytical solutions can be obtained and
whether we can gain some physical insights into the nature of the model and perhaps even compare
the results with ideal one-dimensional experiments. In this paper, we consider a simple shear flow
between two horizontal flat plates (see [16]).Fluids 2018, 3, x FOR PEER REVIEW  5 of 12 
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The non-dimensional form of the conservation of linear momentum is:

φ
[

∂V
∂τ + (gradV)V

]
= Bpgradφ + (gradφ)h(φ)Br + φgrad(h(φ)Br)

+ R
(
Γmdiv

((
φ + φ2)A1

)
+ A1

(
φ + φ2)gradΓm)+ 1

Fr φ

+ M1div
((

φ + φ2)A2
)
+ M2div

((
φ + φ2)A2

1
) (16)

where we have used the following reference parameters:

Y = y
H ; X = x

H ; V = v
u0

; τ = tu0
H ;

where
div∗(·) = Hdiv(·); grad∗(·) = Hgrad(·); L∗ = grad∗V

A1
∗ = L∗ + L∗T ; A2

∗ = dA1
∗

dτ + A1
∗L∗ + L∗TA1

∗

Bp =
βp

ρsu2
0
; Br =

Cr
ρsu2

0
; Fr = u2

0
Hg ; R = µr0

ρsu0
1−m H1+m ;

Γ = H
.
γ

u0
; M1 = α10

ρs H2 ; M2 = α20
ρs H2 ;

(17)

where H is a reference length, for example, the distance between the two plates, and u0 is a reference
velocity, for example the (shearing) velocity of the upper plate, U0. In Equation (16) the asterisks have
been dropped for simplicity. Among the above dimensionless numbers, M1 and M2 are related to the
normal stress coefficients, Bp is related to the compressibility factor (the pressure term), Br is related
to the compacting effect of the particles. Bp and Br are always less than zero, indicating that with
compression there is a tendency for densification. Fr is the Froude number, R is related to the viscous
effects (similar to the Reynolds number), and Γ is the dimensionless shear rate parameter.

For a simple shear flow, we assume:

v = U(Y)ex; φ = φ(y) = ρ(y)/ρ0 (18)
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where ex is the unit vector along the x direction, then using Equation (18), we have,

D = 2A1 =
1
2

(
gradv + (gradv)T

)
=

1
2

 0 U′ 0
U′ 0 0
0 0 0

 (19)

trD = divv = 0 (20)

A1 =

 0 U′ 0
U′ 0 0
0 0 0

; A2 = 2

 0 0 0
0 U′2 0
0 0 0

 (21)

where D is the symmetric part of the velocity gradient. In the above equations, prime designates the
derivative with respect to y. Substituting (18)–(21) into (16), the governing equations are simplified
and we obtain a system of non-linear ordinary differential equations.

The momentum equation in the x-direction is:

R
∣∣U′∣∣m(1 + 2φ)φ′U′ + R

(
φ + φ2

)
(1 + m)

∣∣U′∣∣mU′′ = 0 (22)

And in the y-direction is:

Bpφ′ + Brφ′h(φ) + Brφh′(φ) + (2M1 + M2)φ
′U′2(1 + 2φ) + 2(2M1 + M2)(φ+φ2)U′U′′ − 1

Fr φ = 0 (23)

From Equation (22) we can see that dimensionless number, R, can be canceled for this problem.
The normal stress differences for this problem are,

Txx − Tyy = −2M1

(
φ + φ2

)
U′2 (24)

Tyy − Tzz = 2M1

(
φ + φ2

)
U′2 + M2

(
φ + φ2

)
U′2 (25)

From Equations (22) and (23), it is clear that we need two boundary conditions for U and one
boundary condition for φ. We use the no-slip condition at both boundaries for the velocity:

U(Y = 0) = 0; U(Y = 1) = 1 (26)

It is possible that the particles may slip at the walls (see Kim and Rosato (1994) [39], Zhao and
Massoudi (2014) [40]). For volume fraction, φ, the appropriate boundary condition may be given as an
average value defined in an integral form:

∫ 1

−1
φ dY = N (27)

or φ could be prescribed at Y = −1:
φ→ Θ as Y → −1 (28)

where Θ is the value of the volume fraction at the boundary. In this paper, the condition of the average
volume fraction is used (Equation (27)). Note that since we are including the effect of gravity, we do not
use the symmetry boundary condition for the volume fraction, to allow for the settling of the particles.

5. Results and Discussion

The system of the non-linear ordinary differential Equations (22) and (23) with the boundary
conditions (26) and (27) are solved using the MATLAB solver bvp4c, which is a collocation boundary
value problem solver [41]. The step size is automatically adjusted by the solver. The default relative
tolerance for the maximum residue is 0.001. The boundary conditions for the average volume fraction
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are numerically satisfied by using the shooting method. Since the model we have proposed is a new
model, there are no experimental data available to use for the material properties. Therefore, we will
perform a parametric study for a limited range of the dimensionless numbers specified in Table 1.

Table 1. The studied dimensionless numbers.

Dimensionless Numbers Studied Value

m −0.5, 0.0, 1.0
(2M1 + M2) 0, 1, 10

Bp −0.5, −2.0, −10.0
Br 0.0, −0.1, −10
φc 0.5, 0.6, 0.68
Fr 0.25, 0.5, 2.5
N 0.2, 0.35, 0.4, 0.5
R 1.0

5.1. The Effect of the Compacting of the Particles

First, we consider the isotropic (spherical) part of the stress tensor due to the particle contact.
Recall that Br is related to the level of the rigidity of the particles and φc is related to the maximum
packing of the particles. Figure 2 shows the effect of Br on the volume fraction profiles. The influence of
this dimensionless number on the velocity profiles, for the range of dimensionless parameters selected
in this paper, is negligible and as a result we do not show it. The value of Br is always equal to or
less than zero which ensures that with compression, the density increases. We can see that due to the
effect of the gravity, the particles tend to accumulate near the bottom plate. Figure 2 shows that as Br

changes, near the bottom plate the particles cannot be further compacted once the volume fraction
has reached φc; as a result, a high concentration layer/region seems to be formed. In this region,
the volume fraction is uniform; while from the edge of this region, along the y-direction (see Figure 1
for the definition of the coordinates) the gradient of the volume fraction profile suddenly becomes
large. When Br is small, near the lower plate the local volume fraction continues to increase; from
Figure 2 we can see that the spherical stress, βr, is important even when the magnitude of Br is small,
see the cases for Br = 0 and Br = −0.1.
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Figure 2. The effect of Br on the volume fraction profile, when R = 1, m = 1, (2M1 + M2) = 1,
Bp = −1, φc = 0.68, S = 100, Fr = 0.5, N = 0.4.

From Figure 3, we see that as φc decreases, near the bottom plate the thickness of the high
concentration layer/region increases; in this region, the local volume fraction is uniform and close to
φc. As Figure 3a shows, when φc decreases, near the bottom plate the velocity increases and the profile
becomes more linear in the region with high volume fraction. This may be due to the fact that when φc
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is small, the volume fraction distribution is more uniform, which leads to a more uniform distribution
of the viscosity.
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Figure 3. The effect of φc on the velocity profile (a) and the volume fraction profile (b), when R = 1,
m = 1, (2M1 + M2) = 1, Bp = −1, Br = −10, S = 100, Fr = 0.5, N = 0.4.

5.2. Effects of the Normal Stress Coefficients and the (Variable) Viscosity

In our model, the normal stress differences are related to the dimensionless parameters M1 and
M2. Their effect appears as the combined parameter (2M1 + M2), see Equations (24) and (25). From
Figure 4b, we can see that as (2M1 + M2) increases, near the upper plate, the volume fraction increases;
this indicates that more particles have moved to that region. While near the bottom plate, the high
concentration region tends to disappear. The velocity increases as (2M1 + M2) increases. Recall that
Bp is a dimensionless parameter related to the pressure. As Figure 5b shows, when the magnitude
of Bp increases, the concentration profiles become more uniform and linear-like, which indicates that
the effects of gravity (Fr), spherical stress (Br), and the normal stress differences (2M1 + M2) are less
important (see Equation (23)). As Bp increases, the volume fraction distribution becomes more uniform
and the velocity profiles become more linear.
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Figure 5. The effect of Bp on the velocity profile (a) and the volume fraction profile (b), when R = 1,
m = 0.5, (2M1 + M2) = 1, Br = −10, φc = 0.68, S = 100, Fr = 0.5, N = 0.4.

Another important quantity of interest is the (dimensionless) wall shear stress, |τw| which is
related to the skin-friction coefficient [42]. In this problem, |τw| has the following expression:

|τw| = R
(

φ + φ2
)∣∣U′∣∣m√2U′2

∣∣∣
w

(29)

Table 2 shows the effect of the normal stresses, (2M1 + M2) and Bp, on the wall shear stress.
As the effect of the normal stresses increases, the wall shear stress also increases.

Table 2. The effect of the normal stresses (2M1 + M2) and Bp on the wall shear stress.

(2M1 + M2) |øw| Bp |øw|
0 0.6010 −0.25 0.4527
1 0.6886 −2.00 0.7343
10 0.7874 −10.0 0.7894

In our model, m is the parameter related to the effects of variable (shear-dependent) viscosity.
Recall that m > 0 and m < 0 imply shear-thickening and shear-thinning behavior, respectively.
Figure 6 shows the effect of m on the velocity and the volume fraction distributions. As the
magnitude of m increases, the volume fraction distribution becomes more non-uniform and the
high concentration region near the lower plate becomes more significant when m is positive. As m
increases, the velocity decreases.

5.3. Effects of Gravity and the Bulk Volume Fraction

Figure 7 shows the effect of Fr number, which is the ratio of the inertial forces to the gravitational
force. As Fr number decreases, that is, lower flow rates, more particles seem to accumulate in the lower
half of the flow, and therefore the volume fraction near the bottom plate increases. When Fr number
is large, the velocity seems to be more linear. The effect of the bulk volume fraction on the flow is
shown in Figure 8. The thickness of the high concentration region increases as N increases. Increasing
N seems to lead to a more linear-like velocity distribution and more uniform volume fractions.
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6. Conclusions

In this paper, we study the simple shear flow of a non-linear fluid (a dense suspension of particles
in a liquid) between two horizontal plates. The fluid is modeled as a modified second grade fluid.
Important rheological properties such as the shear rate and the volume fraction dependency of the
viscosity and the normal stress coefficients are considered. Through numerical simulations, we find
that for a certain range of parameters, the particles tend to accumulate near the bottom plate where a
region with high concentration of particles is formed. In addition, the results also show that as the
normal stress effects increase, there is an increase in the value of the wall shear stress. As the model
developed in this paper is a new model, there are no experimental data with which we can compare
the results of our studies.
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