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Abstract: The classical Dupuit–Forchheimer approach, commonly used in analysing unconfined
groundwater-flow systems, relies on the assumption of a negligible vertical component of the flow.
This approximation is valid only when the convergence of streamlines is very limited and the
drawdown of the phreatic surface is small, or the thickness of the horizontal layer of the heterogeneous
aquifers is sufficiently small. In this study, a higher-order one-dimensional model is proposed
for groundwater-flow problems with significant inclination and curvature of the phreatic surface.
The model incorporates non-hydrostatic terms that take into account the effects of the vertical velocity
of the flow, and was solved with an implicit finite-difference scheme. The accuracy of the proposed
model was demonstrated by simulating various unconfined seepage- and groundwater-flow problems
with moderate curvilinear effects. The computational results for steady-state flows were compared
with the results of the full two-dimensional potential-flow methods and experimental data, resulting
in a reasonably good agreement. In general, the comparison results exhibited the efficiency and
validity of the model in simulating complex unconfined flows over curved bedrock and curvilinear
flows over planar bedrock with a steep slope.

Keywords: groundwater hydrodynamics; unconfined flow problems; porous media; seepage surface;
hillslope hydrology; free-boundary problems

1. Introduction

Groundwater, being a vital part of the water resources system, has attracted the attention of
researchers and practising engineers during recent years. Previous investigation results have shown
that a large amount of fresh water supply for domestic and industrial uses is stored in aquifers.
When this fact is considered together with the increasing emphasis on the proper management of
underground resources, it is clear that analytical and numerical models play a crucial role in assessing
the quality and quantity of groundwater, including its dynamic characteristics. Moreover, numerical
modelling of the dynamics of groundwater flow can find a wide range of practical applications in
areas such as farm-land drainage, stability of earth-fill dams, analysis of land slides, and prediction of
phreatic-surface positions near ditches and wells.

The analyses of the unconfined seepage- and groundwater-flow problems are complex due to
the variation of the position of the phreatic surface (free surface) in space and time, and also by
the fact that the geometry of this surface is an unknown of the problem. The earliest mathematical
modelling approach, which neglects the presence of streamline vertical curvature, is based on the
Dupuit–Forchheimer (DF) hypotheses. The DF theory assumes that for small inclinations of the
phreatic surface of a gravity-flow system, the streamlines can be taken as horizontal so that the
hydraulic gradient, which is given by the slope of the phreatic surface, is independent of the flow
depth [1]. This approximation clearly contravenes the boundary conditions at the phreatic surface,
which has a downward vertical component of the flow stemmed from infiltration and seepage, or the
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changing flow geometries resulting from geologic formations or open channels. As described by Zijl
and Nawalany [2] (pp. 82–83), the DF approximation of negligible vertical velocity is justified when
dealing with perfectly layered thin heterogeneous aquifers. Further comprehensive discussions on
the validity and limitations of the DF approach were presented by Bouwer [3], DeWiest [4], Glover [5]
and van Schilfgaarde [6]. Nonetheless, the classical DF approach has remained popular, mainly
because of its simplicity and reasonable approximation to more rigorous solutions of complex flow
problems. To deal with the problem of steep flow, Boussinesq [7] relaxed the assumption of horizontal
impermeable bedrock and developed an equation for groundwater flow over planar bedrock with a
steep slope. His approach, which was based on the assumption of nearly parallel-streamline flow over
the sloping bedrock, led to the following one-dimensional equation:

q = −KN
(

∂N
∂s

cos θ − sin θ

)
, (1)

where q is the discharge per unit width; K is the saturated hydraulic conductivity; s is a coordinate
tangent to the planar bedrock; N is the depth of flow normal to the bedrock; and θ is the slope of
the planar bedrock. Utilising Boussinesq’s assumption, Hilberts et al. [8] extended Equation (1) by
allowing the curvature of the bedrock profile and the effects of the geometry of the hillslope in the
transverse direction.

Higher-order modelling approaches, which take into account the effects of the vertical component
of the flow, have been proposed by many investigators for the problem of groundwater flow with a
phreatic surface. A method, based on the numerical integration of Laplace’s equation by linearising the
boundary condition of the phreatic surface, was employed to analyse the problem of two-dimensional
(2D) plane flow (see, e.g., [9,10]). In similar studies, DeWiest [11] and Dagan [12] systematically
extended the linearising technique by applying the perturbation method. Based on the assumption
of a parabolic distribution of piezometric head across a vertical section, Knight [13] overcame the
DF approximation, but did not yet extend his solution to sloping bedrock. A further alternative
method, which accounted for the effects of the curvature of the impermeable bedrock, was presented
by Chapman and Dressler [14]. They formulated the equations in a bed-fitted curvilinear coordinate
system by using a shallow-flow expansion, valid for when variation in the streamwise direction is much
slower than in the vertical. Fenton [15] examined the Chapman and Dressler approach and presented
a method to derive relatively simple equations having the same order of accuracy as the Chapman
and Dressler equations. Similarly, Chapman and Ong [16] applied a simplified procedure, based on
the assumption of small bedrock curvature, to obtain a governing equation for a non-hydrostatic
shallow groundwater flow. Nonetheless, their equation and the Hilberts et al. [8] equation for a
unit-width aquifer are structurally identical to Fenton’s Equation (22). It appears that these studies
present models which do not account for the phreatic-surface curvature being different from the
bedrock curvature and are simplified to the DF model for groundwater flow over flat impermeable
bedrock. By coupling Fawer’s [17] theory with Darcy’s law, Castro-Orgaz [18] proposed a higher-order
flow equation. The equation was derived by taking the flow depth as the vertical projection of an
equipotential curve, rather than a true vertical distance between the phreatic surface and the curved
bedrock. For the case of phreatic flow over sharply-curved bedrock, the equation does not readily
lend itself to numerical solutions unless the complex geometry of the flow curvature is considerably
simplified. Using the Boussinesq [19] theory and Darcy’s law, Di Nucci [20] developed a second-order
differential equation for curved seepage flows over horizontal impermeable bedrock. Furthermore,
the approximate analytical solutions of this equation [20,21] for 2D flow across earth-fill dams were
investigated, and the results for the profile of the seepage surface showed satisfactory agreement
with the numerical test data. Recently, Longo and Di Federico [22] presented an approach based
on the first-order expansion of the velocity potential for analysing the axisymmetric propagation of
single-phase gravity currents in porous media. Their method allowed for a nonzero vertical velocity,
overcoming the drawback of the DF approach.
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It may be noted from the above review that the existing higher-order approaches yielded a number
of promising solutions to the problems of groundwater flow with a phreatic surface. Nonetheless,
little effort has been made to develop a general-purpose model which is capable of describing the 2D
structure of the flow by taking into consideration the effects of the phreatic-surface and the impermeable
bedrock curvatures separately. This study applies a sound theoretical basis to develop a higher-order
flow model which is able to simulate the unconfined groundwater flow over curved and sloped
bedrock. The proposed model is an extension of the DF approach and incorporates non-hydrostatic
terms that account for the effects of streamline vertical curvature and slope. Depending upon the nature
of the plane flow problems, simplifications may be introduced to the model by either considering a
constant bedrock slope or by applying a small-slope approximation that produce the simplified version
of the model. The simplified model is capable of simulating the actual flow situations accurately and
avoids the application of the full model equation. Since groundwater flow with a phreatic surface is a
special case of flow in open channels, relevant ideas from the theory of open-channel hydrodynamics
are applied to develop the mathematical and numerical models (see, e.g., [23] (p. 400)).

The objectives of this study are, thus, to (i) develop a general-purpose model for phreatic flow that
accounts for the complexity of the streamwise bedrock geometry; (ii) assess the effects of streamline
curvature and/or a steep bedrock slope on the performance of the model; and (iii) verify the validity
of the numerical model by comparing its solutions for steady-flow problems with the results of the
full 2D potential-flow methods and experimental data. The proposed higher-order one-dimensional
model is rather more convenient for developing methods of solution, thereby enabling us to carry
out a very accurate assessment of the effects of the streamwise geometric shape and slope of the
impermeable bedrock. The approach proposed hereafter is of practical importance as it is applicable to
many problems of seepage and groundwater flows with phreatic surfaces. Nonetheless, this approach
is not suitable to analyse such types of flows in heterogeneous aquifers made of layers with spatially
different conductivities. For these types of aquifers, the application of the upscaling procedures to
compute the equivalent hydraulic conductivities from point-scale conductivity distributions can result
in an upscaled conductivity tensor [24]. Consequently, the mathematical development of the model
equations becomes more difficult and cumbersome. It is also important to note that capillary fringe
effects are not considered in this study.

The paper is structured as follows: Section 2 presents the theoretical development of the
one-dimensional curvilinear flow model, while Section 3 describes the spatial discretisation of the
model equations, including the numerical solution procedures for the discretised nonlinear equations.
A brief discussion on the validation results of the unconfined seepage-flow problems is also presented.
In Sections 4 and 5, the model results for the problems of groundwater flow with a phreatic surface
are verified by using the solutions of the full 2D numerical models and laboratory experiments.
Throughout the analysis, a quantitative assessment of the performance of the proposed model is
presented. A set of conclusions closes the paper in Section 6.

2. Governing Equations

Consider a non-hydrostatic groundwater flow with a phreatic surface over steeply sloped and
curved impermeable bedrock, as shown in Figure 1. A Cartesian coordinate system is chosen such
that x is horizontal in the streamwise direction, y is vertically upward, and z is horizontal in the
transverse direction. For simplicity, a homogeneous and isotropic aquifer is considered here. The
governing equations are derived based on a stepwise iterative approach where the first approximation
corresponds to the lowest-order equation of motion for unconfined groundwater flow in a sloping
aquifer. For such a gradually-varied flow situation, the expression for the piezometric or hydraulic
head can be written as

Hp =
(η − y)

ω1
+

(y − Y)
ω1

+ Y, (2)
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where η refers to the phreatic-surface elevation; y is the elevation of a point in the flow field; Y is the
bedrock elevation; Hp(= y + p/γ) is the piezometric head; p is the pressure; γ is the unit weight of the
fluid; and ω1 = 1 + (Yx)

2 + HxYx. Appendix A outlines the proof of Equation (2). Applying Darcy’s
law leads to

u = −K
∂Hp

∂x
= −K

(
Hx

ω1
+ Yx

)
, (3)

where u is the velocity in the streamwise x-direction; and H is the depth of flow measured vertically.
In the above equation, the subscript x denotes partial differentiation with respect to the horizontal axis.
Subsequent approximations are applied to Equation (3) using the continuity equation and Darcy’s law,
as described below. The first-order approximation for the vertical velocity component can be deduced
from the integration of the 2D continuity equation as follows:

y∫
Y

∂u
∂x

dy +

y∫
Y

∂w
∂y

dy =
∂

∂x

 y∫
Y

u(y)dy

+ u(Y)Yx − u(y)yx + w − wb = 0, (4)

where w is the velocity in the y-direction.
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Figure 1. Definition sketch, showing a Cartesian coordinate system for a non-hydrostatic
groundwater flow.

Inserting Equation (3) into Equation (4) and applying the kinematic boundary condition at the
bottom boundary, wb = Yxub, results for the vertical velocity distribution in

w = KH
(

Hxx

ω1
+ Yxx

)
ξ − KYx

(
Hx

ω1
+ Yx

)
, (5)

ξ =
y − Y
η − Y

, (6)

where ub and wb are the horizontal and vertical velocity components, respectively, at the bottom
boundary; and ξ is a non-dimensional vertical coordinate.
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A higher-order approximation for the vertical profile of the piezometric head is deduced from the
Darcy equation for the vertical velocity as

KHp =

η∫
y

w(y) dy + K
(

H
ω1

+ Y
)

, (7)

where (H/ω1 + Y) is the piezometric head at the phreatic surface.
Inserting Equation (5) into Equation (7) and then integrating the resulting equation vertically

yields the following higher-order expression that describes a quadratic variation of the piezometric
head across a vertical section:

Hp = H2
(

Hxx

ω1
+ Yxx

)(
1 − ξ2

2

)
− Yx H

(
Hx

ω1
+ Yx

)
(1 − ξ) +

(
H
ω1

+ Y
)

. (8)

Equation (8) implies that the deviation from the hydrostatic pressure distribution is due to the
combined effects of the vertical velocity of the groundwater flow and the appreciable slopes of the
phreatic surface and the bedrock. If the first and second terms on the right-hand side of this equation
are neglected, then the piezometric head corresponding to a hydrostatic pressure distribution is
recovered after setting ω1 = 1.0.

By making use of Equation (8) and Darcy’s law, a higher-order approximation for the distribution
of the horizontal velocity is obtained as follows:

u = −KH2
(

Hxxx

ω1
+ Yxxx

)(
1 − ξ2

2

)
− KH

(
Hxx

ω1
+ Yxx

)
(ηx − Yx(1 − ξ)) + KYxx H

(
Hx

ω1
+ Yx

)
(1 − ξ)

+KYx H
((

Hxx

ω1
+ Yxx

)
(1 − ξ)

)
− K

(
Hx

ω1
+ Yx

)
.

(9)

In contrast to the DF approach, the nature of the higher-order approximations can be clearly
identified in Equations (5), (8), and (9). For 2D unconfined groundwater flow in the vertical plane,
the depth-averaged mass-conservation equation reads as [15]

λ
∂H
∂t

+
∂

∂x

 η∫
Y

udy

 = λ
∂H
∂t

+
∂q
∂x

= P, (10)

where λ is the effective porosity of the aquifer; t is the time; and P is the rate of vertical recharge.
The variation of the phreatic-surface elevation for a non-hydrostatic groundwater-flow problem

can be described by combining the above depth-averaged continuity equation with Equation (9), i.e.,

λ

K
∂H
∂t

=
∂

∂x

(
H
ω1

Hx +
H2Hx

ω1
Hxx +

H3

3ω1
Hxxx + HYx

)
+

∂

∂x

((
H2Hx −

H2

2ω1
Hx −

H2

2
Yx

)
Yxx +

H3

3
Yxxx

)
+

P
K

.
(11)

The above equation implicitly incorporates the effects of nonuniform velocity and of
non-hydrostatic pressure distributions for modelling the problems of phreatic flow accurately.
For the case of 2D groundwater flow with an appreciable streamline curvature and slope over
horizontal bedrock (Yx = Yxx = Yxxx = 0 and ω1 = 1.0), Equation (11) simplifies to that given
by Dagan [25]. Thus,
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λ

K
∂H
∂t

=
∂

∂x

(
H
ω1

Hx +
H2Hx

ω1
Hxx +

H3

3ω1
Hxxx

)
+

P
K

. (12)

Equation (12) implies that, in contrast to the Chapman and Dressler [14] and Chapman and
Ong [16] equations, the proposed model includes a higher-order correction term that takes into account
the effects of the phreatic-surface and the bedrock curvatures separately. Nielsen et al. [26] investigated
the applicability of this equation to oscillatory plane flow in coastal aquifers of intermediate depths.
For the case of unconfined groundwater flows with negligible vertical curvature of the streamline
over sloping planar bedrock, Equation (11) degenerates to a Boussinesq-type equation, structurally
analogous to Childs’ [27] equation,

λ

K
∂H
∂t

=
∂

∂x

(
H
ω1

Hx + HYx

)
+

P
K

, (13)

which was adapted by Chapman [28] for analysing the phreatic-surface profile of such flows. In the
case where the impermeable bedrock is horizontal (Yx = 0 and ω1 = 1.0), this equation becomes

λ

K
∂H
∂t

=
∂

∂x
(HHx) +

P
K

. (14)

Equation (14) corresponds to the one-dimensional DF equation for hydrostatic flows. The above
analysis reveals that the proposed model is different from earlier models and incorporates a
correction factor for the effects of the vertical component of the gravity-flow system. Consequently,
it is a one-dimensional non-hydrostatic model for analysing the salient features of the curvilinear
groundwater-flow problems. The nonlinearity of the model equations imposes difficulty to obtain a
closed-form solution unless a simplifying or linearising method is applied. A numerical approach,
based on the finite-difference approximation of the derivative terms, is employed here to solve
the equation. This approach has been successfully applied to non-hydrostatic open-channel flow
problems with the implementation of the Newton–Raphson iteration method [29,30] and of the
standard optimisation method [31] as efficient solvers. Using such a numerical solution technique,
the applicability of the proposed model will be systematically examined for the test cases of
2D groundwater flow with a phreatic surface, where the effect of the vertical velocity plays a
significant role.

3. Seepage Flows with a Phreatic Surface

For steady accretion-free flow in an earth-fill dam resting on horizontal impermeable bedrock,
Equation (11) may be written in the form

∂

∂x

(
∂

∂x

(
H2

2ω1
+

H3

3ω1
Hxx

))
= 0. (15)

Using Equation (8) and a little manipulation based on the relationship between discharge and
velocity, the following result is obtained as in Fenton [15]:

∂

∂x

 η∫
Y

Hp(y)dy

+ Hp(Y)Yx − Hp(η)ηx =
∂

∂x

(
H2

2ω1
+

H3

3ω1
Hxx

)
= − q

K
, (16)
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where Hp(y) is the value of the piezometric head at a height y above the datum. Combining
Equations (15) and (16) and integrating the resulting expression twice with respect to x gives

H3

3ω1
Hxx +

H2

2ω1
= − q

K
x + ω3, (17)

where ω3 is an integration constant and can be determined from the known flow depth, which is
specified as a boundary condition at the inflow section (j = 0), as follows:

ω3 =
H3

0
3ω1,0

Hxx,0 +
H2

0
2ω1,0

. (18)

In the above equation, the subscript 0 indicates that the parameters are evaluated at the inflow
section. As described before, a numerical technique is the only means of attaining a solution to
Equation (17) for such a steady-state potential-flow problem. Thus, the spatial derivative term in this
equation is discretised by using the four-point finite-difference equation as [32] (p. 877)

Hxx,j =
1

(∆x)2

(
Hj−1 − 2Hj + Hj+1

)
, (19)

where ∆x is the size of the step. In order to minimise numerical error due to spatial discretisation,
the size of the step was kept between 2% and 4% of the horizontal length of the model domain.
The application of the discretised equation at the downstream end introduces unknown nodal values
external to the computational domain. This problem is avoided by using three-point backward
finite-difference approximation to the derivative term at this node. The resulting implicit set of
nonlinear algebraic equations is linearised using the Newton–Raphson method with a numerical
Jacobian matrix and then solved by the lower-upper (LU) decomposition method. The convergence of
the numerical solutions is assessed based on the relative change in solution criterion with a convergence
tolerance of 10−6. In the following sections, the numerical scheme will be applied to analyse the
flow pattern of a gravity-flow system in rectangular and trapezoidal dams. This will include the
determination of the location of the phreatic surface, the height of the discharge face, and the rate of
seepage flow.

3.1. Rectangular Profile Dam

Figure 2 illustrates the steady-state seepage-flow problem involving a rectangular profile dam
having an impervious foundation and different free-surface levels across its width. Since the upstream
and downstream faces of the dam are subjected to hydrostatic pressure, the boundary conditions for
the problem are: (i) H = Hu and Hx = 0 at j = 0; and (ii) H = Hd at j = m. For this unconfined
flow problem, the phreatic-surface position is the only unknown and must be determined iteratively
from its initial position by using a numerical solution method. Initially, it is assumed that the phreatic
surface is horizontal throughout the computational domain with a height equal to the flow depth at
the inflow section (η/Hu = 1).
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Figure 2. Definition sketch for seepage flow through a dam with vertical upstream and
downstream faces.

Using Darcy’s law, the general expression for the rate of seepage flow across an earth-fill dam can
be obtained as follows:

q =

η∫
Y

u(y) dy = −K

η∫
Y

∂Hp

∂x
dy = −K

∂

∂x

 η∫
Y

Hp(y) dy − H2

2ω1

. (20)

For a rectangular profile dam, integration of Equation (20) with respect to x between the vertical
upstream and downstream end faces yields the following equation after applying the boundary
conditions at j = 0 and j = m:

q = K

(
H2

u − H2
d

2L

)
, (21)

where Hu and Hd are the headwater and tailwater depths, respectively; hs is the height of the seepage
surface; and L is the bottom width of the dam in the streamwise direction or the horizontal length of
the aquifer. The DF theory also gives a result similar to Equation (21). It was shown by Charnyi [33]
that the value of the seepage flux given by the result of this theory is exact [34] (p. 281). For the
prescribed boundary conditions at the inflow section, this equation and Equation (17) are numerically
coupled to simulate the profile of the phreatic surface. In this study, all computational results are
presented graphically and are expressed in non-dimensional forms such as x/L or x/Hu, η/L or η/Hu,
and Hp/H.

The experimental data, consisting of phreatic-surface elevation and seepage surface height for this
test problem, were obtained from Billstein [35]. The experiments were performed using the Hele-Shaw
model based on the analogy between a viscous flow and flow through a porous media. He constructed
a vertical model made of two parallel transparent plates with a horizontal impervious boundary at the
bottom end. The plates had a length of 300 mm and an interspace width ranging from 2 mm to 16 mm.
Glycerine was used as the model fluid.

The computation of the phreatic-surface elevation requires a prior knowledge of the hydraulic
conductivity of the Hele-Shaw model. The magnitude of this conductivity parameter was determined
by using the following equation [36] (p. 366):

K =
b2g
12ν

, (22)
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where b is the width of the interspace; g is acceleration due to gravity; and ν is the kinematic viscosity
of the fluid. Figure 3 depicts the comparison of the numerical result with experimental data for
q/KHu = 0.36. It can be seen from this figure that the computed result for the phreatic-surface level
showed a good correlation to the experimental data.
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Figure 3. Unconfined seepage flow through a homogeneous rectangular cross-section dam.

3.2. Trapezoidal Profile Dam

The preceding seepage flow analysis of the rectangular profile dam took no account of the effects
of either the upstream or downstream side slope on the position of the seepage phreatic surface. In
this section, seepage flow through a trapezoidal profile dam is simulated to take the side slope factor
into account. For this test case, both the phreatic-surface position and the seepage discharge are
unknown and are determined iteratively during the numerical computation process. As an initial
guess, the height of the seepage surface is estimated by using the following approximate equation:

hs = 2

(
H2

u − H2
d

5L

)
. (23)

Figure 4 displays a typical cross-section of a homogenous trapezoidal dam resting on impervious
bedrock. The phreatic surface of the dam enters the porous media at right angles to the upstream
face, and it meets the surface of seepage on the downstream face, tangentially at B [37] (p. 291).
This qualitative characteristic of the profile of the unconfined flow was employed here to compute
the horizontal component of the surface velocities at A and B using Darcy’s law. Using the resulting
expressions of equating Equation (9) to these known velocity values, Equation (20) was integrated
between the vertical sections at j = 0 and j = m to give an approximate expression for the seepage
flux through the trapezoidal profile dam. This equation for the horizontal seepage discharge per unit
width is given by

q = K

(
H2

uΓ1 − (Hd + hs)
2Γ2

2(L − Hu cot ϕ − (Hd + hs) cot β)

)
, (24)

Γ1 =

(
1 − 2

3
cos2 ϕ

)
, (25)

Γ2 =

(
1 − 2

3
sin2 β

)
, (26)
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where ϕ and β are the slopes of the upstream and downstream faces of the dam, respectively.
By analysing the hydrodynamic forces within the flow region, a similar result was also presented by
Kashef [38]. The above equation was directly coupled with Equation (17) to give a numerical solution
for the seepage-flow problem.
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Figure 4. Definition sketch for seepage flow through a trapezoidal profile dam.

At the inflow section, the slope of the phreatic surface (Hx = − cot ϕ) and the flow depth were
prescribed as boundary conditions. The numerical technique applied to this test case was similar to
that used for the solution of seepage flow through a rectangular cross-section dam. Unlike the previous
test case, the seepage discharge was determined by using Equation (24) with an iterative solution
procedure based on the estimated height of the seepage surface, hs. If the difference between the hs

used to compute q and the computed hs was significant, the iteration steps were repeated until the
difference became negligible (less than 5 mm).

Figure 5a compares the computational result of the present method with the result of the
finite-element numerical model obtained by Lacy and Prevost [39]. It is obvious from this figure
that the computed result for the phreatic-surface level indicated a good agreement with the reported
numerical result (mean relative error = 2.7%). The computational result was further compared in
Figure 5b with the result of the electrical-model experiments [37] (p. 323), resulting in satisfactory
agreement. The results for both test cases, i.e., rectangular and trapezoidal dams, revealed that the
present model is capable of predicting the existence of a seepage surface on the downstream face of
the dam. Nonetheless, the presence of such a surface is not recognised by the DF model [37] (p. 362).
The overall qualities of the model results for both cases were satisfactory, with mean relative errors of
1.6% and 3.2% for rectangular and trapezoidal dams, respectively.



Fluids 2018, 3, 42 11 of 20
Fluids 2018, 3, x FOR PEER REVIEW  11 of 11 

 

 

Figure 5. Unconfined seepage flows through homogeneous trapezoidal profile dams: (a) an 

asymmetrical dam with a vertical upstream face and a 45° downstream face slope ( 47.0/ uKHq ); 

and (b) a symmetrical dam with faces sloping at 45° ( 20.0/ uKHq ). 

4. Recharge-Induced Curvilinear Groundwater Flows 

In practice, it is common to have a phreatic-flow problem with vertical curvatures of the 

streamline, for instance, steady unconfined flow over a curved bedrock profile with a uniform 

accretion rate. For such a type of groundwater flow, Equation (11) becomes  

.0

3223

32

1

2
2

1

3

1

2

1

































K

P

Y
H

YY
H

H
H

HHHYH
H

H
HH

H
H

x
xxxxxxxxxxxxxx

x
x

  (27) 

Integrating Equation (27) with respect to x  and then simplifying the resulting expression 

using the no-flow boundary condition ( 0q ) at the hydraulic divide ( 0j ) results in a third-order 

nonlinear differential equation, i.e., 

  .0
33

2

3

2

3333

3

1

2

1

1
1

1

2













xj
KH

P
Y

H

Y
H

Y
YH

H

Y

H

Y

H
H

H

H
H

x

xx
x

xxxx
xxxx

xx
x

xxx








 (28) 

A numerical solution for the above equation was obtained by discretising the spatial derivative 

terms using Equation (19) and the following finite-difference approximations [32] (p. 877): 

Figure 5. Unconfined seepage flows through homogeneous trapezoidal profile dams: (a) an
asymmetrical dam with a vertical upstream face and a 45◦ downstream face slope (q/KHu = 0.47);
and (b) a symmetrical dam with faces sloping at 45◦ (q/KHu = 0.20).

4. Recharge-Induced Curvilinear Groundwater Flows

In practice, it is common to have a phreatic-flow problem with vertical curvatures of the streamline,
for instance, steady unconfined flow over a curved bedrock profile with a uniform accretion rate.
For such a type of groundwater flow, Equation (11) becomes

∂

∂x

(
H
ω1

Hx +
H2Hx

ω1
Hxx +

H3

3ω1
Hxxx + HYx +

(
H2Hx −

H2

2ω1
Hx −

H2

2
Yx

)
Yxx +

H3

3
Yxxx

)
+ P

K = 0.
(27)

Integrating Equation (27) with respect to x and then simplifying the resulting expression using the
no-flow boundary condition (q = 0) at the hydraulic divide (j = 0) results in a third-order nonlinear
differential equation, i.e.,

Hxxx +
3Hx

H
Hxx +

(
3

H2 +
3ω1Yxx

H
− 3Yxx

2H

)
Hx + ω1Yxxx −

3ω1Yx

2H
Yxx

+
3ω1

H2 Yx +
3ω1P
H3K

(j∆x) = 0.
(28)
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A numerical solution for the above equation was obtained by discretising the spatial derivative
terms using Equation (19) and the following finite-difference approximations [32] (p. 877):

Hx,j =
1

6∆x
(
−2Hj−1 − 3Hj + 6Hj+1 − Hj+2

)
, (29)

Hxxx,j =
1

(∆x)3

(
−Hj−1 + 3Hj − 3Hj+1 + Hj+2

)
, (30)

where Hx,j, Hxx,j, and Hxxx,j are the first, second, and third derivatives, respectively, evaluated at
node j. For computational nodes near the downstream extreme section, these terms were estimated
with the three-point backward finite differences. The discretised nonlinear equations, together with
the prescribed boundary conditions at the upstream and downstream ends, were solved using the
numerical method described in Section 3. Further discussion on the implementation of the boundary
conditions with reference to the test problems will be presented in the following sections.

4.1. Unconfined Flow over Sloping Planar Bedrock

In this section, the feasibility of the proposed model was examined by considering a practical
and challenging problem such as a recharge-induced subsurface flow over sloping planar bedrock
(Yxx = Yxxx = 0). For this test problem, a no-flow boundary condition at the upstream end (Hx = −Yx) and
atmospheric pressure at the downstream seepage surface (

∫
p (y) dy = 0) were imposed. Additionally,

the flow depth at the upstream end (j = 0) was specified as a boundary condition and was used to
approximate the initial position of the phreatic surface. The numerical results for the profile of the
phreatic surface were validated using the steady-state experimental data of Saha [40]. He performed
the experiments under laminar flow conditions using a specially designed flow tank apparatus
(2.5 × 60 × 115 cm) filled with uniform-size glass beads (mean diameter of 1.1 mm). An impermeable
vertical wall was installed at the upstream end of the tank to mimic the drainage divide of a natural
aquifer. Water was supplied from the constant head reservoir to the flow tank through a recharge
generator. During the experiments, the porous media was recharged in such a way that there was no
standing water in the tank. By using the Darcy column experiment, the hydraulic conductivity of the
porous media was estimated (K ∼= 15 mm/s).

Figure 6 shows the comparison of the numerical results with experimental data for the normalised
phreatic-surface profiles. As can be seen from this figure, the numerical results correctly reproduced
the phreatic-surface level throughout the computational domain, with a mean relative error of less than
2%. For this weakly non-hydrostatic flow over mild-slope planar bedrock, the effects of the vertical
component of the flow are insignificant. As in the previous test problems, the results of the model
showed the presence of seepage surface at the downstream end.

The predictions of the present model are also compared in Figure 7 with previous numerical
results obtained by Youngs and Rushton [41] using the Laplace equation. The results of the present
model agreed well with the 2D model results, and no appreciable differences were seen between
the numerical results of the two models, except near the seepage surface at the downstream end.
In this region, the maximum absolute difference did not exceed 4.5% of the horizontal length of the
computational domain, L. For the considered ratios of rate of recharge to hydraulic conductivity,
the overall performance of the current model was satisfactory for groundwater flow over planar
bedrock with a moderate slope.
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Figure 7. Recharge-induced unconfined groundwater flows in a sloping aquifer (bedrock slope = 21.8◦).

4.2. Unconfined Flow over Curved Bedrock

The results of the experiments conducted by Chapman and Ong [16] were selected to evaluate
the performance of the model. These experiments were conducted using the Hele-Shaw viscous-flow
model made of two parallel plates 13 mm thick, 127.5 cm long, and 60 cm high, separated by a gap
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of 1.5 mm. The bottom end of the plates was sealed by an acrylic sheet 1.5 mm thick, shaped to
provide the required impermeable bedrock profile. The shape of the bedrock was designed to mimic
the geometrical form of hillslope profiles. The designed bottom profile is defined by

Y
Ym

=
α1

Ym

(
(L − x)α2

α2Lα2−1 − (L − x)α3

α3Lα3−1

)
, (31)

where α1 = 3.7; α2 = 2.8; α3 = 3.3; and Ym is the maximum height of the impermeable bedrock profile
at x = 0. The vertical recharge was simulated by the flow of glycerine from 16 hypodermic syringes
connected to a manifold. The measurements of the phreatic-surface level under steady-state conditions
were used to validate the numerical model results.

For this test problem, the profiles of the phreatic surface were simulated by specifying boundary
conditions similar to the case of unconfined flow in a sloping aquifer. As shown in Figure 8,
the numerical model results for the normalised phreatic-surface profile showed a good agreement
with experimental data (maximum relative error less than 3%). The variation of the relative curvature
of the bedrock profile, Ψ

(
= Yxx H/ω3/2

2 , ω2 = 1 + Y2
x

)
, in the streamwise horizontal direction, which

was computed by using numerically simulated flow depths, is also depicted in Figure 9. It is clear
from this figure that, for this moderately curved groundwater-flow problem, the effects of streamline
vertical curvature are likely to be significant for the test scenario with P/K = 0.0740. As expected,
such effects play a minor role throughout the flow region, except near the outflow section (x/L > 0.8)
for the test case with a low rate of infiltration (see Figure 8b).
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and (b) P/K = 0.0274.



Fluids 2018, 3, 42 15 of 20
Fluids 2018, 3, x FOR PEER REVIEW  15 of 15 

 

Figure 9. Variation of the relative curvature of the bedrock profile in the streamwise direction. 

5. Unconfined Flow to Drains  

Figure 10 illustrates a section of the saturated unconfined aquifer with a toe drain at the 

impermeable layer. For the flow problem considered here to be amenable to a 2D treatment, it is 

assumed that uniform flow conditions prevail along the direction parallel to the longitudinal axis of 

the drains. The problem is further simplified by assuming the drains to be equidistant, and steady 

flow conditions are reached. For this spatially-varied groundwater flow, Equation (11) may be 

rewritten in the form 

.0
32 1

3

1

2




































K

P
H

HH

xx
xx


 (32) 

 

Figure 10. Section of a saturated aquifer drained by a toe drain overlying horizontal impermeable 

bedrock at the downstream end ( mj  ). 

Integrating Equation (32) with respect to x  gives  

,
32

4
1

3

1

2



















x

K

P
H

HH

x
xx  (33) 

where 4  is a constant of integration. Its value can be determined from the existing plane of 

symmetry at 0j . By imposing 0q  at the axis of symmetry [23] (p. 421), 4  becomes 

Figure 9. Variation of the relative curvature of the bedrock profile in the streamwise direction.

5. Unconfined Flow to Drains

Figure 10 illustrates a section of the saturated unconfined aquifer with a toe drain at the
impermeable layer. For the flow problem considered here to be amenable to a 2D treatment, it is
assumed that uniform flow conditions prevail along the direction parallel to the longitudinal axis of
the drains. The problem is further simplified by assuming the drains to be equidistant, and steady flow
conditions are reached. For this spatially-varied groundwater flow, Equation (11) may be rewritten in
the form

∂

∂x

(
∂

∂x

(
H2

2ω1
+

H3

3ω1
Hxx

))
+

P
K

= 0. (32)
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Figure 10. Section of a saturated aquifer drained by a toe drain overlying horizontal impermeable
bedrock at the downstream end (j = m).

Integrating Equation (32) with respect to x gives

∂

∂x

(
H2

2ω1
+

H3

3ω1
Hxx

)
+

P
K

x = ω4, (33)
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where ω4 is a constant of integration. Its value can be determined from the existing plane of symmetry
at j = 0. By imposing q = 0 at the axis of symmetry [23] (p. 421), ω4 becomes

ω4 =
∂

∂x

(
H2

2ω1
+

H3

3ω1
Hxx

)
= − q

K
= 0. (34)

Further integration of Equation (33) with respect to x yields a second-order ordinary differential
equation for the phreatic-surface elevation as follows:

H3

3ω1
Hxx +

H2

2ω1
+

P
2K

x2 = ω5, (35)

where ω5 is a constant of integration. An expression for this constant can be found by using the
boundary condition at the downstream end, H = 0 at j = m, which results in

ω5 =
PL2

2K
. (36)

Using the numerical method described in Section 3, Equation (35) was solved numerically to
simulate the recharge-induced unconfined flow to a toe drain resting on horizontal impermeable
bedrock. As before, the flow depth and the phreatic-surface slope at the upstream end were specified
as boundary conditions. The results of the computation were compared with the analytical solutions
of Engelund [42], who employed the velocity hodograph method to analyse the problem of flow to a
wide flat drain. Engelund’s solutions for the phreatic-surface elevation and the piezometric head are

η(x) =
(

P
K

(
L2 − x2

))1/2
+ Y, (37)

H4
p +

P
K

(
x2 − y2 −

(
1 − P

K

)
L2
)

H2
p −

(
P
K

)2
x2y2 = 0, (38)

where L is the streamwise horizontal distance from the axis of symmetry to the toe drain in which the
flow depth vanishes. As pointed out by Youngs [43], the 2D solution given by Equation (37) coincides
with the result of the DF approach under different simplifying assumptions. This implies that the DF
approach yields accurate results for this specific plane flow problem despite the pronounced curvature
of the phreatic surface in the vicinity of the toe drain.

Figure 11 compares the present model results for phreatic-surface profile and piezometric head
distributions at vertical sections x/L = 0.25, x/L = 0.50, and x/L = 0.75 with the solutions
of Equations (37) and (38), respectively, for P/K = 0.15. For the profile of the phreatic surface,
the agreement between the numerical result and the analytical solution was remarkable throughout the
computational domain. As shown in Figure 11b–d, the predicted piezometric head profiles showed a
good correlation with Engelund’s solutions. Nonetheless, a minor discrepancy between the numerical
and analytical results can be seen from this figure near the impermeable bedrock. The differences in the
piezometric head values did not exceed 2% (absolute percentage value) of the flow depth at the section.
In general, the trend of the piezometric head profile was satisfactorily simulated by the proposed
model. Unfortunately, the conventional DF theory, which is based on an equivalent approximation
of hydrostatic pressure [44] (p. 362), overestimated the vertical distribution of the piezometric head
within the flow region (Hp/H = 1.0), as illustrated in Figure 11b–d.
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bedrock. The corresponding vertical distributions of the piezometric head of the flow at various
locations: (b) x/L = 0.25; (c) x/L = 0.50; and (d) x/L = 0.75.

6. Concluding Remarks

In this study, the classical Dupuit–Forchheimer model was extended by taking into consideration
the vertical velocity of the unconfined groundwater flow. The proposed model incorporates
non-hydrostatic terms that account for the effects of streamline vertical curvature and slope, and
overcomes the accuracy problem of the Dupuit–Forchheimer model when simulating curvilinear
groundwater flows. Thus, it differs from earlier models (e.g., [8,14,16]) in that these terms take into
account the effects of the phreatic-surface and the bedrock curvatures separately. A numerical approach,
based on the finite-difference approximation of the derivative terms, was employed for the solutions of
the model equations. The validity of the model was demonstrated by simulating various unconfined
seepage- and groundwater-flow problems with moderate curvilinear effects. The computational
results for steady-state flows were compared with the results of the full two-dimensional potential-flow
methods and experimental data. In order to maintain a consistent framework of comparison, the
setup and discretisation of the test problems and the imposition of the boundary conditions were
carefully implemented.

For the unconfined seepage-flow problems, the model accurately reproduced the profiles of the
phreatic surface for flows through rectangular- and trapezoidal-profile dams. Furthermore, the seepage
surface phenomenon on the downstream faces of these dams was simulated with acceptable accuracy.
For the case of groundwater flow over sloping planar bedrock, the comparison results attested
the capability of the model for mimicking the salient features of such types of weakly-curved
unconfined flows.

Considering that a one-dimensional non-hydrostatic model was proposed to deal with complex
unconfined flow processes, a good agreement between the numerical results and experimental
data was attained for a recharge-induced groundwater flow over curved impermeable bedrock.
This comparison result revealed the importance of the non-hydrostatic terms of the equation for
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modelling such a type of groundwater-flow problem. The present model overcame the limitations of
the conventional Dupuit–Forchheimer approach, which is mostly applicable to groundwater flows
with nearly horizontal streamlines and a mild phreatic-surface slope. Furthermore, it satisfactorily
emulated the two-dimensional characteristics of the curvilinear flow field of the problem of tile
drainage. Finally, the proposed numerical model could have a wide range of practical applications
in connection with the stability analysis of highway and railway embankments and the design of
subsurface drainage structures.

Acknowledgments: The author would like to thank the anonymous reviewers for their insightful review and
constructive suggestions.
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Appendix A

As shown in Figure A1, the depth normal to the bottom boundary can be expressed in terms of
the vertical flow depth as

N = H(x + ε) cos θ, (A1)

where ε = N sin θ. Using the first-order Taylor series expansion with respect to x, Equation (A1) can be
written as

N = H(x + N sin θ) cos θ = H(x) cos θ + Hx(x)N sin θ cos θ. (A2)

For the case of nonuniform unconfined flow, the following explicit expression for N is obtained
from Equation (A2):

N =
H(x) cos θ

1 − Hx(x) sin θ cos θ
. (A3)

For a special case of groundwater flow with a phreatic surface parallel to the planar bedrock
(Hx(x) ∼= 0), Equation (A3) reduces to

N = H(x) cos θ. (A4)

By applying the energy equation, the piezometric head at a point in the gradually-varied flow
field [45] (p. 22) can be written as

Hp = (N − n) cos θ + n cos θ + Y, (A5)

where n is the normal distance between the point and the bottom boundary. Using Equation (A3), the
above equation can be rewritten in horizontal and vertical coordinates as follows:

Hp =
(η − y) cos2 θ

1 − Hx sin θ cos θ
+

(y − Y) cos2 θ

1 − Hx sin θ cos θ
+ Y. (A6)

Replacing the trigonometric functions of θ by the expressions in terms of the slope of the planar
bedrock Yx,

cos(−θ) =
1√

1 + (Yx)
2

, (A7)

sin(−θ) = − Yx√
1 + (Yx)

2
, (A8)

the piezometric head equation becomes

Hp =
(η − y)

1 + (Yx)
2 + HxYx

+
(y − Y)

1 + (Yx)
2 + HxYx

+ Y =
(η − y)

ω1
+

(y − Y)
ω1

+ Y. (A9)
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Figure A1. Schematic diagram for a gradually-varied groundwater flow over sloping planar 

bedrock. 
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