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Abstract: Reactive convection in a porous medium has received recent interest in the context of the
geological storage of carbon dioxide in saline formations. We study theoretically and numerically the
gravitational instability of a diffusive boundary layer in the presence of a first-order precipitation
reaction. We compare the predictions from normal mode, linear stability analysis, and nonlinear
numerical simulations, and discuss the relative deviations. The application of our findings to the
storage of carbon dioxide in a siliciclastic aquifer shows that while the reactive-diffusive layer can
become unstable within a timescale of 1 to 1.5 months after the injection of carbon dioxide, it can
take almost 10 months for sufficiently vigorous convection to produce a considerable increase in the
dissolution flux of carbon dioxide.

Keywords: dissolution-driven convection; porous medium; diffusive boundary layer; unstable
stratification; onset of convection; reactive-convective dissolution; precipitation reaction

1. Introduction

Motivated by the processes occurring during the geological storage of carbon dioxide in saline
aquifers, we theoretically investigated the gravitational instability of a diffusive boundary layer in
a porous medium in the presence of a precipitating chemical reaction. In the geological storage of
carbon dioxide in saline aquifers (800–1000 m below the Earth’s surface), carbon dioxide dissolves in
brine and drives dissolution-driven natural convection, which in turn can drive further convection
and thereby accelerate the storage procedure. Accelerated dissolution reduces the possibilities of
upward flow of free-phase CO2, potentially leaking through any high permeability zones or artificial
penetrations, such as abandoned wells [1]. Convection brings carbon dioxide-rich fluid downward and
fresh fluid upward, effectively enhancing the transport of carbon dioxide into the saline aquifer. It was
widely believed that these convection streams transport the dissolved and entrapped carbon dioxide
in brine efficiently to depth. Recent studies, however, have questioned this very basic assumption.
Preliminary results [2–5] strongly indicated that geochemical reactions between dissolved carbon
dioxide and the subsurface rock matrix may have a non-negligible effect on the convective mixing in
the boundary layer.

In this paper, we compare the results of a linear stability analysis using three different
methods, namely the dominant mode of a self-similar diffusion operator [6], an initial-value-problem
approach [7], and a quasi-steady state assumption (QSSA) method [8] for a reactive-diffusive boundary
layer in a porous medium where the product of a first-order reaction precipitates out from the system
(Figure 1). We also compare the time for onset of convection from these linear stability methods
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with that obtained from nonlinear numerical simulations [3]. The results from the dominant mode
analysis are new, while the results from the other methods were obtained from previous literature.
Finally, we discuss the implications of our results in the context of the geological storage of carbon
dioxide in a siliciclastic aquifer.
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Figure 1. Solute A dissolves in the underlying fluid, forming a diffusive boundary layer.
Dissolution enhances the local density difference between the solute-saturated fluid at the interface
and the underlying pure fluid, driving finger formation and convection. Dissolved solute A reacts with
reactant species B in the host rock, forming product C, which precipitates out from the fluid. Chemical
reaction alters the spatial distribution of the solute and thereby changes the density field.

2. Model

We present the governing equations and the scaling for a reactive-diffusive boundary layer in
a porous medium, along with the linear stability equations, in this section. The solution methodologies
of the stability equations are also discussed.

2.1. Governing Equations and Scaling

The transport of a solute A is considered as it dissolves at the top of a fluid-saturated porous
medium. A two-dimensional, homogeneous, isotropic porous medium is considered (Figure 1).
The solute dissolves in the underlying fluid, forming a diffusive boundary layer of higher density
than the underlying fluid. The solute remains unstably distributed in the fluid, causing gravitational
instability of the diffusive layer as it deepens. We consider the chemical reaction A(aq) + B(s)→ C(s)
between the solute A with chemical species B present in the host porous rock, resulting in an insoluble
product C. The product C, being precipitated out, does not contribute to the density of the solution.
As species B is in the solid phase, we assume its concentration to be constant, so that the reaction rate
depends only the concentration of species A and is taken to be first-order. The continuity equation for
the incompressible fluid, Darcy’s law with the Boussinesq assumption, and the conservation equation
of the dissolved species A are then given by:

∇·v = 0 (1)

v = −
kp

µ
(∇p− ρrβACAgj) (2)

ϕ
∂CA
∂t

+ v·∇CA = DA ϕ∇2CA − kraCA (3)

here, v = (u, v) is the Darcy velocity vector, µ is the viscosity of the fluid, p = P − ρrgz is the
reduced pressure field, obtained by eliminating hydrostatic pressure from the local pressure P, g is
the acceleration due to gravity, j is a vertical unit vector co-directional with the positive z axis, and
t is time. The isotropic permeability kp and the porosity ϕ of the porous medium are assumed to
remain unchanged by the chemical reaction. The local concentration of the diffusing solute is CA.
The local density of the fluid is assumed to be linearly dependent on the local concentration of the
solute: ρ = ρr(1 + βACA); the reference density ρr is that of the pure fluid and the solutal expansion
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coefficient is defined as βA = (1/ρr)∂ρ/∂CA. The reaction rate per unit concentration of fluid is kra,
and is assumed to be constant; here, the solid based kinetic rate constant is kr and the reactive surface
area per mole of the solid is a. The effective diffusivity of the dissolved species A in the porous medium
is taken as the product of the molecular diffusion coefficient DA and the porosity ϕ of the aquifer since
only the fluid-saturated void region of the porous medium participates in the diffusive mass transfer.
Tortuosity of the porous medium is assumed to be small and convective dispersion is neglected with
respect to the molecular diffusion.

The above equations are non-dimensionalized using the scales LC = µDA ϕ/kp∆ρ0g,
ts = LC

2/DA, vs = DA ϕ/LC, ps = µDA ϕ/kp, and the solubility concentration of solute A in
the fluid Cs, giving [3]:

∇′·v′ = 0 (4)

v′ = −∇′p′ + C′Aj (5)

∂C′A
∂t′

+ v′·∇′C′A = ∇′2C′A −
Da
Ra2 C′A (6)

here, Da = kraL2
z/DA ϕ is Damköhler number and Ra = kp∆ρ0gLz/µDA ϕ is the solutal Rayleigh

number; Lz is the vertical lengthscale of the reservoir. The Damköhler number is a measure of the ratio
of the diffusive timescale to the reactive timescale. The solutal Rayleigh number signifies the ratio
of the driving buoyancy force for convection to the viscous and diffusive dissipation, which inhibits
convection [9]. The maximum density contrast between the pure and solute-saturated fluid is
∆ρ0 = ρrβACs. The dynamics of such a reactive boundary layer is therefore fully determined
by only one dimensionless group, Da/Ra2, which measures the timescale for convection compared
to those for reaction and diffusion. The internal length scale LC is a measure of the thickness of the
boundary layer at instability.

The porous medium is considered to be infinite in the horizontal direction (x′) and semi-infinite
in the vertical direction (z′, taken as a positive downward). This simplification is valid while
the penetration depth is smaller than the domain depth, i.e., for a short time period. At time
t′ = 0, the entire domain is quiescent and solute-free, i.e., v′(x′, z′, 0) = 0 and C′A(x′, z′, 0) = 0.
The top boundary has the maximum concentration of solute and is impermeable to the fluid,
C′A(x′, 0, t′) = 1, v′(x′, 0, t′) = 0 and lim

z′→∞
CA
′ = 0, lim

z′→∞
v′ = 0 at the bottom boundary.

2.2. Linear Stability Analysis

The concentration, velocity components, and pressure are decomposed into non-convective base
state and perturbation components such that:

C′A = CAb + ĈA (7a)

u′ = ub + û (7b)

v′ = vb + v̂ (7c)

p′ = pb + p̂ (7d)

here, subscript ‘b’ denotes the base state and caret (̂) denotes the perturbation components. The base
state velocity components are zero and the base state concentration profile is [5]:

CAb(t, z) = exp
(
− Da

Ra2 t
)

erfc
(

z
2
√

t

)
+

Da
Ra2

∫ t

0
exp

(
− Da

Ra2 s
)

erfc
(

z
2
√

s

)
ds (8)

The perturbation equations are linearized and the horizontal and the vertical components of the
momentum balance equation are cross-differentiated and added to eliminate pressure. The resulting
equations are again differentiated and rearranged to eliminate horizontal velocity component, resulting
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in the following equations involving the perturbation concentration and perturbation velocity in the
vertical direction:

∂2v̂
∂x2 +

∂2v̂
∂z2 =

∂2ĈA

∂x2 (9)

∂ĈA
∂t

+ v̂
∂CAb

∂z
=

∂2ĈA
∂x2 +

∂2ĈA

∂z2 −
Da
Ra2 ĈA (10)

All variables are in dimensionless form and the superscript “′” is dropped for simplicity.
The solutions of Equations (9) and (10) are decomposed into normal modes in the horizontal direction
with wave number k as:

v̂ = v0(z, t)eikx (11a)

ĈA = CA0(z, t)eikx (11b)

Using Equation (11) in Equations (9) and (10), we obtain:

∂2v0

∂z2 − k2v0 = −k2CA0 (12)

∂CA0

∂t
+ v0

∂CAb
∂z

= −k2CA0 +
∂2CA0

∂z2 − Da
Ra2 CA0 (13)

with the boundary conditions v0 = 0, CA0 = 0 for z = 0 and for z→ ∞.
After coordinate transformation η = z/2

√
t, Equations (12) and (13) become:

1
4t

∂2v0

∂η2 − k2v0 = −k2CA0 (14)

t
∂CA0

∂t
=

(
1
4

∂2

∂η2 +
η

2
∂

∂η

)
CA0 −

(
k2 +

Da
Ra2

)
CA0t− v0

2

√
t
∂CAb

∂η
(15)

with boundary conditions v0 = 0, CA0 = 0 for η = 0 and for η → ∞. The above transformation
enables us to obtain a self similar diffusion operator in the streamwise direction and leads to eigen
functions which are localized around the base concentration profile. Riaz et al. [10] and Rees et al. [11]
used this approach for an inert system and obtained considerable improvement in the accuracy of the
solutions. Here, we use a similar approach for a reactive system with a precipitating product.

The streamwise operator of the perturbation concentration in the transformed coordinate is:

L =

(
1
4

∂2

∂η2 +
η

2
∂

∂η

)
, (η ∈ (0, ∞)) (16)

The perturbation concentration is expanded as:

CA0 =
∞

∑
n=1

An(t)ψn(η) (17)

with
L ψn = λnψn(η) = λn exp

(
−η2

)
Hn(η), (n = 1, 2, 3, . . . .)

The eigen functions ψn are Hermite polynomials, Hn(η) in a semi-infinite domain with weight
functions exp

(
−η2) with the associated eigen values λn = −n for n = 1, 2, . . . [10]. These eigen

functions are localized around the base state.
Considering Equations (14) and (15) in the limit of zero wave number, and using Expression (17),

it can be shown that the first mode, ψ1 = η exp
(
−η2), decays at the slowest rate, compared to the

other modes, and is therefore considered the dominant mode, following Riaz et al. [10]. Considering
only the dominant mode, the perturbation concentration becomes:

CA0 = A1 η exp
(
−η2

)
(18)
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where A1 is a function of time. We use the dominant mode approximation for (11) in Equation (15)
to obtain:

ψ1

A1

dA1

dt
= −ψ1

t
− (k2 +

Da
Ra2 )ψ1 −

1
2
√

t
v0

A1

(
∂CAb

∂η

)
(19)

We integrate Equation (19) in the space domain and define the growth rate of perturbation
concentration as:

σ1p =
1

A1

dA1

dt
= −1

t
− (k2 +

Da
Ra2 )−

1
2
√

t

∫ ∞
0

v0
A1

(
∂CAb

∂η

)
dη∫ ∞

0 η exp(−η2)dη
(20)

following Riaz et al. [10]. Expression (18) is used in Equation (14) and an analytical solution for the
velocity is obtained:

v0
A1

=
√

π
8 exp

(
−
√

4k2tη
)
[(exp

(
2
√

4k2tη
)
− 1) 4k2t exp

(
4k2t

4

)
−4k2t exp

(
4k2t

4

)
erf
(√

4k2t
2 − η

)
+4k2t exp

(
4k2t

4 + 2
√

4k2tη
)

erf
(√

4k2t
2 + η

) (21)

The growth rate of perturbation σ1p in Equation (20) was obtained semi-analytically. Suffix ‘p’ in
σ1p denotes precipitating reaction. Also, suffix ‘1’ in σ1p denotes the dominant mode.

In the initial-value problem approach [7], Equations (14) and (15) were solved using the
finite-element method in partial-differential equation solver Fastflo [12]. Test simulations were
conducted to ensure that the results became independent of particular initial conditions well below
the times for onset of instability, and agreed with previously published solutions for the inert system.
The concentration perturbation was measured using the norm:

CA0(t) =

Lη∫
0

CA0(η, t)dη/Lη (22)

where Lη is the extent of the computational domain. Although this norm depends on the domain
length scale Lη , we only use it to measure the non-dimensional growth rate of this perturbation,
defined as:

σ2 = lim
∆t→∞

{
ln

[
CA0(t)

CA0(t− ∆t)

]
/∆t

}
(23)

Beside the above dominant mode method and the initial value problem approach, we solved the
above stability equations using the quasi-steady state assumption (QSSA). Under the QSSA, we assume
that the perturbations CA0(η, t) and v0(η, t) can be expressed as:

CA0(η, t) = CA0
∗(η) exp(σ3t) and v0(η, t) = v0

∗(η) exp(σ3t) (24)

Then, Equation (15) can be rephrased as:

σ3tCA0
∗ =

(
1
4

d2

dη2 +
1
2

d
dη

)
CA0

∗ −
(

kt +
Da
Ra2 t

)
CA0

∗ − v0

2

√
t
dCAb

dη
(25)

In the present study, we solved the eigenvalue problem of Equations (14) and (25) using the
outward shooting method explained by Kim and Choi [13,14]. Kim and Choi [14] showed that for the
non-reactive case, i.e., Da/Ra2 = 0, the present QSSA represents the exact solution quite well. We note
there are many methods to solve numerical eigenvalue problems. Other researchers used spectral
methods such as Chebyshev tau and Chebyshev collocation methods rather than the present method.
However, as far as we know, the results are independent of the solution method.

3. Results

In this section we discuss the effect of a first-order precipitation reaction on the growth rate of
perturbations considering the dominant mode of a self-similar diffusion operator. We then compare
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the neutral stability criteria, the time for onset of convection, and the most unstable wave number at
the onset of instability compared to those obtained previously using different methods of analysis.

3.1. Growth Rate of the Perturbation

The growth rates of the perturbations are investigated as a function of time (t) and wave numbers
(k) for an inert, weak reaction and a strong reaction, as shown in Figures 2 and 3. For the inert system
(Da/Ra2 = 0), at small times the growth rate is negative for all wave numbers, suggesting that the
layer is unconditionally stable for all possible disturbance modes. As time progresses, the growth rate
increases and eventually becomes positive when a sufficient amount of heavy solute has accumulated
in the layer and overcomes the stabilizing effect of viscosity, resulting in gravitational instability.
Following this, the layer continues to remain unstable. The growth rate is also dependent on the
perturbation modes, measured by wave numbers, and there are small and large wave number cut-offs
beyond which the layer remains stable. Below the small wave number cut-off, the accumulated dense
material is insufficient to drive convection. Above the large wave number cut-off, horizontal diffusion
stabilizes the system. In the presence of a weak reaction, Da/Ra2 = 0.5× 10−3, the nature of the plot
remains similar; however, the growth rate significantly decreases, confirming a stabilization effect in
the presence of a chemical reaction (Figure 3a). Chemical reaction enhances the stability by removing
the solute in the form of an insoluble product, which would otherwise dissolve in the fluid and increase
the density contrast, resulting in instability. The precipitating reaction causes an increase in the time
for onset of instability and a decrease in the range of unstable wave numbers, as elaborated in the
subsequent sections. For higher reaction strength (Da/Ra2 = 2.09× 10−3), the growth rate becomes
even smaller and remains positive for only a very short period of time (Figure 3b), suggesting the
termination of convection after a certain time. Above Da/Ra2 of 2.1× 10−3, the growth rate remains
negative for all possible disturbance modes, the layer becomes stable and mass transfer occurs only
through diffusion and chemical reaction, as discussed in the subsequent sections. The growth rates of
the perturbations as a function of wave numbers for Da/Ra2 = 0, 1× 10−3, 1.5× 10−3, 2× 10−3 are
shown in the two-dimensional plots at non-dimensional time t = 500 in Figure 4.
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3.2. Maximum Growth Rate and Corresponding Wave Number

Since the growth rate is a function of the wave number (or horizontal perturbation mode) at each
time point, it is necessary to obtain the maximum growth rate at each time point and the corresponding
wave number. The maximum growth rate and the corresponding most dangerous wave number
was investigated as a function of time for three different values of Da/Ra2, as shown in Figure 5.
The maximum growth rate increases rapidly at early times, as the solute diffuses and accumulates in
the layer, and decreases slowly over a long period of time. As Da/Ra2 increases, the maximum growth
rate decreases, as the density of the layer decreases owing to the removal of the solute in the form of
a precipitating product from the system. The most dangerous wave number decreases from 0.075 to
0.03 as time varies between 100 and 2000. The most dangerous wave number is weakly dependent on
Da/Ra2, decreasing slightly for higher Da/Ra2.
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Figure 5. The maximum growth rate of perturbations (σ1pmax) and the corresponding most
unstable wave number (kmax) as a function of time, for three different Da/Ra2, using the dominant
mode analysis.

3.3. Marginal Stability Curves

The effects of a precipitating reaction on the marginal stability curves are investigated in Figure 6,
using an initial value problem approach, the dominant mode analysis, and a quasi-steady state
assumption. Each U-shaped curve indicates the neutral state when the boundary layer is marginally
stable and the growth rate of perturbation becomes zero. The time for onset of instability is a function
of the horizontal perturbation mode (wave number) for a given Da/Ra2. The black solid line represents
an inert system (Da/Ra2 = 0). Below this line, the growth rates of perturbations are negative and the
system remains stable. Above this line, the growth rates are positive and the layer is gravitationally
unstable. As Da/Ra2 increases (Da/Ra2 = 1× 10−3 in Figure 6b), the curves shift upward, indicating
a delay in the onset of instability. The region of instability also shrinks from both sides, signifying
a reduction in the range of unstable wave numbers. As the reaction strength increases further
(Da/Ra2 = 2× 10−3), the curves close at the top, suggesting a brief period of convection beyond
which motion ceases and the layer again stabilizes. Thus, for sufficiently large Da/Ra2, convection
develops over a finite period of time only. A further increase in reaction strength leads to significant
shrinkage of the unstable zone. Above a critical value of 103 Da/Ra2 ~ 2.1, using a dominant mode
analysis, the reaction stabilizes the system completely.
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Figure 6. Effect of a precipitating reaction on the marginal stability boundary using (a) an initial-value
problem approach [7]; (b) the dominant mode analysis; and (c) the quasi-steady state assumption
(QSSA) method.

The marginal stability curves obtained using the initial value problem approach, the dominant
mode analysis, and the quasi-steady state assumption differ quantitatively, as shown in Figure 6a–c.
Figure 7 focuses on the comparison for Da/Ra2 = 0, 1.5× 10−3, 2× 10−3. Among the three methods of
analysis, the initial value problem approach predicts the lower bound for the critical time of instability
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and the upper bound for the large wave number cut-off for the inert, moderate, and strong reactive
cases. The small wave number cut-off was found to be fairly insensitive to the method employed,
for inert and moderately strong reactions. At high reaction strength, the finite domain of instability,
as indicated by the closed curves, was found to vary with the method used: the initial value approach
predicts the shortest period of convection while the quasi-steady state assumption predicts the longest.
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3.4. Time for Onset of Convection

The impact of a precipitating reaction on the time for onset of instability predicted using the
different methods is shown in Figure 8. The critical time for onset of instability corresponds to the
time at which the maximum growth rate of perturbation, with respect to all wave numbers, becomes
positive. This is the minimum time for onset of instability under all possible disturbance modes. It is
evident in the figure that all the methods predict that as Da/Ra2 increases, the critical time for onset
of instability increases as the layer stabilizes owing to the removal of the solute in the form of an
insoluble product. For rapid chemical reaction, the dotted line indicates the time at which convection
ceases following temporary convection. As mentioned in the previous section, beyond a critical value
(Da/Ra2 = 2.1 × 10−3 from dominant mode analysis, Da/Ra2 = 2.69 × 10−3 using initial value
problem approach), convection does not occur as the reaction stabilizes the diffusive layer. The time
for onset of convection from the nonlinear numerical simulation, the time at which the dissolution flux
transitions from diffusive to the convective regime [3], is substantially higher than the time for onset of
instability obtained from the linear stability analysis.
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Figure 8. Non-dimensional time for onset and cessation of convection (dimensionless) as a function of
Da/Ra2 for a precipitating reaction, predicted using the dominant mode analysis (DM), initial-value
problem approach (IVP), and nonlinear numerical simulations (NNS).

3.5. Critical Wave Number at the Onset of Instability

The effect of a precipitating reaction on the most unstable wave number at the onset of instability
was investigated using the dominant mode analysis, initial value problem approach, and the
quasi-steady state assumption (Figure 9). The most unstable wave number at the onset of instability
slowly decreases with Da/Ra2 for all three methods. This gradual reduction in wave number arises
from the increase in the time for onset of instability with reaction strength and a decrease in most
unstable wave number with time. The reduction in the most unstable wave number as time progresses
originates from a weakening of the stabilization by vertical diffusion compared to that by transverse
diffusion. It is evident from the plot that the critical wave number at the onset of instability predicted
by the dominant mode analysis and using the quasi-steady state assumption are in excellent agreement
for all reaction strengths. The initial value problem approach predicts a slightly larger wave number.
For an inert system, the most unstable wave number at the onset of instability is in agreement with
previously published results [10,11], thus validating our methodology.
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4. Discussion and Conclusions

In the recent past, various methods [3,5,7,8,15] have been employed to investigate the stability of
a diffusive layer undergoing a first-order precipitating reaction in a porous medium. In this paper we
examine the linear stability of such a diffusive layer using the dominant mode of a self-similar diffusion
operator [6] and compare the marginal stability curves, the time for onset of convection, and the most
critical wave number at the onset of instability to those previously predicted using different methods.

The linear stability analysis using the dominant mode of the self-similar diffusion operator and
considering a quasi-steady state approximation have previously been applied for dissolution-driven
convection in inert systems [10,11]. One important characteristic of the dissolution-driven convection
problem is the time-varying concentration base profile. The dominant mode solution is advantageous
in this case since it does not require the quasi-steady state approximation. The dominant mode
solution has been found to accurately predict the instability of the diffusive layer for inert systems [10].
However, for an inert system the dominant mode solution has been reported to be less accurate
for longer periods of time and solutions based on the quasi-steady state approximation have been
suggested. These two methods are therefore mutually complementary since the quasi-steady condition
is applicable to long time periods when the base state concentration changes slowly. We therefore
compare the results using these two methods for the situation where the dissolved solute undergoes
a precipitating reaction and alters the base state concentration profile and thereby the density field.
Our comparison suggests that for a reactive system, the critical wave numbers at the onset of instability
predicted using these methods are in good agreement.

At low and moderate reaction strengths, the time for onset of convection predicted by the
dominant mode analysis and the initial-value problem approach are in reasonable agreement.
The deviations between the results are comparable with those observed for the inert system.
The deviations in the marginal stability curves obtained using the three methods are also in agreement,
with discrepancies observed for the inert system. The difference between the results from the dominant
mode analysis and the initial value problem approach arises from the fact that the initial-value problem
approach is the full solution of the linear stability equation, while the dominant mode analysis
considers only the dominant mode of the self-similar diffusion operator. In contrast to the complete
nonlinear simulations, linear stability solutions are valid for short time periods and small perturbations
since the linearized equations are considered.

The general variation of the onset time with reaction strength predicted from nonlinear numerical
simulations is in agreement with that obtained from the linear stability analysis. For inert systems,
Hassanzadeh et al. [1] reported the time for onset of convection from numerical simulation to be almost
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an order of magnitude higher than that obtained from linear stability analysis. For the reactive system
studied here, the ratio of time for onset of convection obtained from nonlinear simulations, tdc, to that
from linear stability, toc, is of this order and is therefore acceptable. The reason for this discrepancy
between the linear and non-linear results has been explained by previous researchers for inert systems.
For inert systems, it was shown that following the onset of motion, the Fickian diffusion continues to
dominate for a substantial period of time, with convective fingers being almost imperceptible until the
perturbations are considerably large to cause a significant increase in the rate of solute dissolution at
the top interface [16,17]. This time corresponds to the onset time of non-linear instability [18]. Here,
we confirm a similar behavior in the reactive system.

The above variations in the time for onset of reactive convection can have substantial implications
in the geological storage of carbon dioxide in saline aquifers, where the carbon dioxide dissolved
in brine reacts with the porous rock matrix. An important example of this type of reaction is
a precipitation reaction between carbon dioxide-rich brine and a rock formation rich in calcium
feldspar; here, the dissolved carbon dioxide is removed from solution in precipitate products
calcite and kaolinite [7,19]. Considering typical reservoir permeability, kp = 3.15 × 10−13 m2,
and porosity, ϕ = 0.12, we estimate that Da/Ra2 = 2 × 10−3. In this situation, considering
µ = 4.8 × 10−4 kg/(m·s), DA = 3.7 × 10−9 m2/s, ∆ρ0 = 10.6 kg/m3, we predict the time
for onset of instability to be ∼1.5 month and ∼1 month using the dominant mode analysis and initial
value problem analysis, respectively. The time for onset of convection based on nonlinear simulation is
estimated to be ∼10 months. This means that although the reactive-diffusive layer becomes unstable
~1–1.5 months after the injection of carbon dioxide into the saline formation, substantial convective
motion starts only ~10 months after injection. Only at this time does the dissolution flux of carbon
dioxide into the brine increase significantly.

As a final remark, we note that the present study focused on a two-dimensional spatial model.
This is certainly a good starting system given that two-dimensional flow in a porous medium is
easily investigated in the laboratory with a Hele-Shaw cell. The modeling results can therefore be
compared and validated with laboratory measurements. Of course, it would be interesting to explore
a three-dimensional spatial system in the future.
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