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Abstract: A linear stability analysis of the parallel uniform flow in a horizontal channel with open
upper boundary is carried out. The lower boundary is considered as an impermeable isothermal
wall, while the open upper boundary is subject to a uniform heat flux and it is exposed to an
external horizontal fluid stream driving the flow. An eigenvalue problem is obtained for the
two-dimensional transverse modes of perturbation. The study of the analytical dispersion relation
leads to the conditions for the onset of convective instability as well as to the determination of the
parametric threshold for the transition to absolute instability. The results are generalised to the case
of three-dimensional perturbations.
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1. Introduction

Cellular convection patterns may develop in an underlying horizontal flow under appropriate
thermal boundary conditions. The classic setup for the thermal instability of a horizontal fluid flow is
heating from below, and the well-known type of instability is Rayleigh-Bénard [1]. Such a situation
can happen in a channel fluid flow or in the filtration of a fluid within a porous channel. Both cases are
widely documented in the literature [1,2]. A major issue is the possibility to observe the emergence of
cellular patterns superposed to the base horizontal flow in an actual laboratory experiment. Indeed, a
perturbation of the base flow may be amplified in time or be damped. In the latter case, the actually
observed behaviour in the experiment is a stable response from the system, and the absence of any
permanent cellular pattern superposed to the base flow. This effectively stable response may happen
even if specific Fourier modes of perturbation grow in time and, hence, it may be observed in a
supercritical regime [1]. This argument is the background for the so-called absolute/convective
stability dichotomy [3]. Starting from studies of plasma physics, the concept of absolute instability has
been extended to general fluid dynamics and to convection heat transfer. The traditional formalism
for the study of the transition from convective to absolute instability relies strongly on the pioneering
studies in the area of plasma physics. The traditional recipe for approaching this study is the double
Fourier-Laplace transform of the perturbations and the Briggs-Bers method to establish the relevant
pinching points in the complex wavenumber plane [4–7].

In a recent paper [8], the topic of absolute/convective instability has been reconsidered by relying
on a treatment of the perturbation dynamics based on the simple Fourier transform, instead of the
double Fourier-Laplace transform, and on the steepest-descent approximation for the large-time
behaviour of Fourier integrals. The proposed method has been illustrated starting from a toy model
based on Burgers’ equation, previously discussed also in Brevdo and Bridges [9], and then applying
the analysis to the horizontal flow in a porous channel with impermeable isothermal boundaries.
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The aim of this contribution is to provide a pedagogical introduction to the concept of absolute
instability having in mind applications to convective flows in porous media. We will further develop
the methodology presented by Barletta and Alves [8], by analysing the transition from convective to
absolute instability in a horizontal porous channel with open upper boundary. This analysis is an
opportunity to present more details on the steps to be followed for the evaluation of the threshold
values of absolute instability at different Péclet numbers, associated with the base horizontal flow.
The strategy followed in this contribution is to present the elements of an absolute instability analysis
in a straightforward manner, by avoiding mathematical complications wherever they are not necessary.
The peculiar flow system considered in this paper is, together with that examined by Barletta and
Alves [8], one where the stability dispersion relation is completely analytical. This characteristic allows
us to avoid all difficulties related to the numerical solution of a differential eigenvalue problem, and to
focus the presentation on the basic ideas behind the concept of absolute instability. The commitment
of being as clear as possible, especially for the newcomers of absolute instability, suggested us to deal
first with the analysis of absolute instability in a purely two-dimensional framework (Sections 2 and 3).
Section 3 contains two examples, relative to different Péclet numbers, where the evaluation of the
threshold value to absolute instability is presented in details. By relying on these examples, the results
are extended to the general case in Section 4. In Section 5, a simple argument is presented to show how
the analysis developed in Sections 2–4 can be applied to the well-known Horton-Rogers-Lapwood
instability. Section 6 shows how the two-dimensional study can be extended to a three-dimensional
formulation. In this section it is demonstrated that, despite the slightly heavier mathematical formulation,
the basic method of analysis is not much different from the two-dimensional version and the conclusions
are just the same.

Among the main results of the analysis developed in this paper, we mention the detailed
illustration of the choice of the appropriate saddle points for the evaluation of the threshold Rayleigh
number for the onset of absolute instability, carried out in a couple of examples. Another important
conclusion regards the identity of results for the transition to absolute instability, obtained with a
simple two-dimensional analysis, and with a general three-dimensional analysis.

2. Darcy’s Flow in a Horizontal Channel

We consider a fluid saturated porous channel with height H and infinite horizontal width in
the streamwise direction. On the other hand, the spanwise width is assumed to be very small, with
suitable adiabatic impermeable boundaries confining laterally the fluid flow. Thus, one can reasonably
carry out the whole analysis with a two-dimensional formulation. Cartesian coordinates (x, y) are
chosen so that x∈R is the streamwise horizontal coordinate, and y ∈ [0, H] is the vertical, upward
oriented, coordinate (see Figure 1). Symbols N, R and C denote the sets of natural, real and complex
numbers, respectively.
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∂T
∂y

= q0
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Figure 1. A sketch of the porous channel, of the flow geometry and of the boundary conditions.
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On assuming an isotropic homogeneous medium, as well as the validity of the Boussinesq
approximation and of Darcy’s law, the governing equations can be written as [2,10,11]

∂u
∂x

+
∂v
∂y

= 0, (1a)

µ

K
u = − ∂p

∂x
, (1b)

µ

K
v = − ∂p

∂y
+ ρgβ (T − T0) , (1c)

σ
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α

(
∂2T
∂x2 +

∂2T
∂y2

)
. (1d)

Equation (1a) is the local mass balance equation, Equation (1b) and (1c) are the local momentum
balance equations along the x and y directions, Equation (1d) is the local energy balance equation.
Here, t is time, (u, v) is the velocity, while p and T are the pressure and temperature; µ, ρ and β are
the dynamic viscosity, density and coefficient of thermal expansion of the fluid. The dimensionless
property σ is the ratio between the volumetric heat capacity of the saturated porous medium and that
of the fluid. Finally, g is the modulus of the gravitational acceleration, T0 is the reference temperature,
K is the permeability, and α is the average thermal diffusivity of the saturated porous medium.

The lower boundary is impermeable and isothermal, while the upper boundary is an isoflux free
boundary exposed to an external fluid stream in the x direction. The boundary conditions can then be
formulated as 

y = 0 : v = 0; T = T0,

y = H : u = u0; −χ
∂T
∂y

= q0,
(2)

where u0 is the uniform imposed horizontal velocity, χ is the average thermal conductivity of the
saturated porous medium, and q0 > 0 is the uniform heat flux outgoing from the upper boundary.
We mention that a similar combination of boundary conditions (it was indeed the special case u0 = 0)
is an instance reported in Table 6.1 of Nield and Bejan [2].

2.1. Parallel Flow Regime

There exists a steady parallel flow solution of Equations (1) and (2), given by

u = u0, v = 0, T = T0 −
q0

χ
y,

∂p
∂x

= − µ

K
u0,

∂p
∂y

= −ρgβq0

χ
y. (3)

The heat transfer regime described by Equation (3) is one of purely vertical conduction. This steady
flow may develop an unstable behaviour when the heat flux q0 becomes sufficiently high.

2.2. Small Amplitude Perturbations

Perturbations (U, V, θ, P) acting on the parallel flow solution given by Equation (3) satisfy governing
equations that can be inferred from Equation (1). Here, (U, V, θ, P) denote the velocity, temperature and
pressure perturbations. Nonlinear contributions are dropped by assuming that the amplitude of the
perturbations is small. These governing equations can be written in a dimensionless form as

∂U
∂x

+
∂V
∂y

= 0, (4a)

U = − ∂P
∂x

, (4b)
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V = − ∂P
∂y

+ Ra θ, (4c)

∂θ

∂t
+ Pe

∂θ

∂x
−V =

∂2θ

∂x2 +
∂2θ

∂y2 . (4d)

Dimensionless Equations (4) have been obtained by means of the scaling

(x, y)
1
H
→ (x, y), t

α

H2σ
→ t, (U, V)

H
α
→ (U, V), θ

χ

q0H
→ θ, P

K
µα
→ P, (5)

while (Pe, Ra) are the Péclet and Rayleigh numbers, respectively, defined as

Pe =
u0H

α
, Ra =

ρgβq0KH2

µαχ
. (6)

The dimensionless boundary conditions for (U, V, θ, P) are written as
y = 0 : V = 0; θ = 0,

y = 1 : U = 0;
∂θ

∂y
= 0.

(7)

We can introduce a streamfunction ψ such that

U =
∂ψ

∂y
, V = −∂ψ

∂x
. (8)

Then, Equation (4) can be collapsed into a pair of partial differential equations involving only the
unknowns (ψ, θ), namely

∂2ψ

∂x2 +
∂2ψ

∂y2 + Ra
∂θ

∂x
= 0, (9a)

∂2θ

∂x2 +
∂2θ

∂y2 −
∂θ

∂t
− Pe

∂θ

∂x
− ∂ψ

∂x
= 0. (9b)

The boundary conditions (7) can be rewritten as
y = 0 : ψ = 0; θ = 0,

y = 1 :
∂ψ

∂y
= 0;

∂θ

∂y
= 0.

(10)

3. Stability Analysis

The basic mathematical tool for carrying out the stability analysis is the Fourier transform.
We define the Fourier transforms of (ψ, θ) as

ψ̂(k, y, t) =
1√
2π

∞∫
−∞

e−ikxψ(x, y, t) dx, θ̂(k, y, t) =
1√
2π

∞∫
−∞

e−ikxθ(x, y, t) dx. (11)

The perturbations (ψ, θ), that is the anti-transforms of (ψ̂, θ̂), can thus be expressed through the
inversion rule,

ψ(x, y, t) =
1√
2π

∞∫
−∞

eikxψ̂(k, y, t) dk, θ(x, y, t) =
1√
2π

∞∫
−∞

eikxθ̂(k, y, t) dk. (12)
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The boundary conditions (10) are satisfied by expressing (ψ̂, θ̂) as Fourier series with respect to
the y coordinate

ψ̂(k, y, t) =
∞

∑
n=1

ψ̃n,k(t) sin(γny), θ̂(k, y, t) =
∞

∑
n=1

θ̃n,k(t) sin(γny), (13)

where

γn =

(
n− 1

2

)
π. (14)

Substitution of Equation (13) into Equation (12) yields

ψ(x, y, t) =
1√
2π

∞

∑
n=1

sin(γny)
∞∫
−∞

eikxψ̃n,k(t) dk,

θ(x, y, t) =
1√
2π

∞

∑
n=1

sin(γny)
∞∫
−∞

eikxθ̃n,k(t) dk. (15)

Definition 1. The parallel flow given by Equation (3) is convectively unstable if there exist n ∈ N and k ∈ R
such that

lim
t→∞
|ψ̃n,k(t)| = ∞, lim

t→∞
|θ̃n,k(t)| = ∞.

Definition 2. The parallel flow given by Equation (3) is absolutely unstable if, for every x ∈ R, there exists
n ∈ N such that

lim
t→∞

∣∣∣∣∣∣
∞∫
−∞

eikxψ̃n,k(t) dk

∣∣∣∣∣∣ = ∞, lim
t→∞

∣∣∣∣∣∣
∞∫
−∞

eikxθ̃n,k(t) dk

∣∣∣∣∣∣ = ∞.

The condition expressed by Definition 2 cannot be satisfied if the condition expressed by
Definition 1 is not satisfied. On the other hand, the condition expressed by Definition 1 does not ensure
that the condition expressed by Definition 2 is satisfied. Thus, we can conclude that the criterion for
absolutely unstable flow is more restrictive than that for convectively unstable flow.

The physics behind the definitions of convective and absolute instability can be described as
follows. The unstable behaviour of a given steady flow can be tested by checking the time evolution
of the Fourier modes of perturbations superposed to the flow. These Fourier modes are in fact
monochromatic waves travelling in the direction of the flow. Hence, even if the amplitude of
a given monochromatic wave grows exponentially in time, this unbounded time-growth may be
concealed to an observer monitoring the disturbance behaviour at a given position x. In fact, the
actual disturbance is the linear combination of infinitely many different monochromatic waves with
all possible wavenumbers, and any single wave travels along the flow direction with a different phase
velocity. Then, the point is: “When does the actual disturbance display an unbounded growth in
time at a given position x”? In order to answer this question, we must determine not only when each
single Fourier mode is or is not growing in time, but when the Fourier integral expressing the actual
disturbance does grow in time. The existence of at least a monochromatic wave, viz. a Fourier mode,
whose amplitude grows in time is the condition of convective instability. Absolute instability occurs
when the actual disturbance, viz. the Fourier integral, grows unboundedly in time.

By Fourier transforming Equation (9), one obtains

(γ2
n + k2)ψ̃n,k − ikRa θ̃n,k = 0, (16a)

(γ2
n + k2)θ̃n,k +

dθ̃n,k

dt
+ ikPe θ̃n,k + ik ψ̃n,k = 0. (16b)



Fluids 2017, 2, 33 6 of 22

The solution of Equation (16) can be obtained by expressing

ψ̃n,k(t) = ψ̃n,k(0) eλn,kt, θ̃n,k(t) = −i
γ2

n + k2

kRa
ψ̃n,k(0) eλn,kt, (17)

where λn,k is determined from the dispersion relation,

γ2
n + k2 + λn,k + ikPe− k2Ra

γ2
n + k2 = 0. (18)

The dispersion relation is the basis for developing both the analysis of convective instability and
that of absolute instability.

3.1. Convective Instability

An immediate consequence of Equation (18) is the equality Im(λn,k) = −kPe, whose physical
meaning is that all Fourier modes are travelling in the x direction with a dimensionless phase velocity
−Im(λn,k)/k = Pe, namely a dimensionless phase velocity equal to that of the uniform parallel
horizontal flow.

On account of Equation (17), Definition 1 implies that convective instability happens when
Re(λn,k) is positive. Hence, Equation (18) allows one to formulate the condition for convective
instability in terms of the inequality,

Ra >
(γ2

n + k2)2

k2 . (19)

If n = 1, we detect the lowest threshold value of Ra for convective instability, namely the neutral
stability condition,

Ra =
(π2 + 4k2)2

16k2 . (20)

Equation (19) defines an upward concave curve in the parametric plane (k, Ra) whose point of
minimum Ra defines the critical values (kc, Rac),

kc =
π

2
, Rac = π2. (21)

Equation (21) is in agreement with the data reported in Table 6.1 of Nield and Bejan [2]. It implies
that no linear instability, namely no instability triggered by small-amplitude perturbations, is possible
when Ra < π2.

3.2. Absolute Instability

The study of absolute instability is more complicated as, on account of Definition 2 and of
Equation (17), we need to test the large-t behaviour of the integrals

In(x, t) =
∞∫
−∞

eikxψ̃n,k(0) eλn,kt dk, Jn(x, t) = − i
Ra

∞∫
−∞

eikx γ2
n + k2

k
ψ̃n,k(0) eλn,kt dk. (22)

The large-t behaviour of such integrals can be established by invoking the steepest descent
approximation [12,13]. The basis for this approximation is the following theorem.
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Theorem 1. Let us consider a function F(t) given by

F(t) =

∣∣∣∣∣∣
∞∫
−∞

φ(k) eλ(k) t dk

∣∣∣∣∣∣ ,
where φ(k) and λ(k) are complex-valued functions of k. An approximation of F(t) at large-t can be expressed as

F(t) ≈ 2
p

Γ
(

1
p

)
|φ(k0)|

(
p!

|λ(p)(k0)| t

) 1
p

eRe(λ(k0)) t.

Here, k0 ∈ C is a saddle point of λ(k), namely a point such that the first derivative λ′(k0) is zero; p ∈ N is
such that all m-th order derivatives λ(m)(k0) are zero for m < p; Γ is Euler’s gamma function.

The approximation is allowed if:

1. There exists a unique saddle point of λ(k), namely k0 ∈ C;
2. There exists a path C in the complex k plane that crosses k0 along a line of steepest descent of Re(λ(k));
3. The region of the complex plane between path C and the real axis, namely the line Im(k) = 0, does not

contain any singularity or branch cut of λ(k) (see Figure 2).

Re{k}

Im{k}

0

C

k0

−1 0
1

2 −1

0

1−2

0

2

4

x
y

x2 − y2 − x

Figure 2. A sketch of the saddle point k0 of Re(λ(k)) in the complex k plane and of the line of
steepest descent.

A proof of Theorem 1 can be found in many textbooks in applied mathematics, such as Bender
and Orszag [12], or Ablowitz and Fokas [13], as well as in the recent paper by Barletta and Alves [8].
We point out that, in the neighbourhood of the saddle point k0, a line of steepest descent of Re(λ(k)) is
one where Im(λ(k)) remains constant [8,12,13].

When function λ(k) admits more than one saddle point, then the steepest descent approximation
involves the sum of the contributions of different saddle points. In this case, there will be a leading
contribution which comes from the term, or terms, with the highest value of Re(λ(k0)).

On account of Theorem 1, the time dependence in the asymptotic expression of F(t) is given by
the factor

eRe(λ(k0)) t

t1/p .
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Hence, if Re(λ(k0)) > 0, we have

lim
t→∞
|F(t)| = ∞,

while, if Re(λ(k0)) ≤ 0, we have
lim
t→∞
|F(t)| = 0.

If we apply Theorem 1 to detect the large-t asymptotic behaviour of functions In(x, t) and Jn(x, t)
defined by Equation (22), we immediately conclude that function λ(k) is identified with the coefficient
λn,k and, on account of Equation (18), it is given by

λ(k) =
k2Ra

γ2
n + k2 − γ2

n − k2 − ikPe. (23)

We note that, for every n ∈ N and for every (Pe, Ra), λ(k) is meromorphic with two simple poles
at k = ±iγn.

We are now ready to establish a criterion for detecting the onset of absolute instability, according
to Definition 2 and Theorem 1:

• We find the saddle points k0 ∈ C by employing Equation (23) and by solving the algebraic
equation λ′(k0) = 0.

• We check that the requirements stated in the thesis of Theorem 1 are satisfied by k0.
• We determine the threshold condition between an unbounded time growth of |In(x, t)| and
|Jn(x, t)| and an exponential decay to zero, expressed by the algebraic equation Re(λ(k0)) = 0.

Since λ(k) is complex-valued, equation λ′(k) = 0 is in fact a pair of algebraic equations relative to
the real and to the imaginary parts, respectively

2Ra krγ2
n

[
2k2

i
(
γ2

n − k2
r
)
− 3k4

i +
(
k2

r + γ2
n
)2
]

[
2k2

i (k
2
r − γ2

n) + k4
i + (k2

r + γ2
n)

2
]2 − 2kr = 0, (24a)

2Ra kiγ
2
n
[
k4

i − 2k2
i
(
k2

r + γ2
n
)
− 2k2

r γ2
n − 3k4

r + γ4
n
][

2k2
i (k

2
r − γ2

n) + k4
i + (k2

r + γ2
n)

2
]2 − 2ki − Pe = 0, (24b)

where we used the shorthand kr = Re(k) and ki = Im(k). For fixed (n, Pe, Ra), Equation (24) contains
two unknowns, (kr, ki). Thus, solving these equations yields the saddle points k0. If, on the other hand,
one aims to determine the saddle points and the corresponding value of Ra, for prescribed (n, Pe),
then one has to solve Equation (24) together with the algebraic equation Re(λ(k0)) = 0. The latter can
be written as

Ra
[
γ2

n
(
k2

r − k2
i
)
+
(
k2

i + k2
r
)2
]

2k2
i (k

2
r − γ2

n) + k4
i + (k2

r + γ2
n)

2 + ki (ki + Pe)− k2
r − γ2

n = 0. (25)

Equations (24) and (25) are the basis for a first screening of the saddle points k0. In fact, we can
exclude those k0 that yield a negative Ra or a positive Ra < Rac. These saddle points are not good
candidates to the evaluation of the threshold Ra = Raa of absolute instability. Among the remaining
roots of Equations (24) and (25) one has to select the saddle point, or the saddle points, k0, such that
the corresponding Ra ≥ Rac, given by Equation (25), is at its smallest and satisfies the requirements
specified in the thesis of Theorem 1. By requiring that Ra is at its smallest, we allow one to identify the
least threshold to absolute instability, which is the physically meaningful one.

In particular, among the requirements specified in Theorem 1, one has to test whether there exists
a path C in the complex k plane that crosses the saddle point(s) along a direction of steepest descent,
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and such that the region of the plane between C and the real axis, Im(k) = 0, does not contain any
pole of λ(k). For the sake of brevity, this requirement is called analyticity requirement.

Example 1. Let us test the whole procedure in the case Pe = 10. We first set n = 1 and determine all
the solutions of Equations (24) and (25). We obtain in fact six solutions,

(k0 = −i5.45252, Ra = 25), (k0 = i0.452525, Ra = 25),
(k0 = ±1.62238− i1.34154, Ra = 22.9882),
(k0 = ±1.06797 + i1.69304, Ra = −18.6997).

The last pair of solutions is excluded because Ra is negative. The first four solutions are acceptable
because they satisfy the condition Ra > Rac = π2. Among them, we select the pair of solutions with the
smallest Ra, namely

(k0 = ±1.62238− i1.34154, Ra = 22.9882).

We have to check if one can draw a path C in the k plane that satisfies the analyticity requirement.
This requirement can be tested by drawing the contour plots of Re(λ(k)) and Im(λ(k)) in the k plane,
for Pe = 10, n = 1 and Ra = 22.9882. This allows a straightforward visualisation of the saddle points
k0 = ±1.62238− i1.34154. Figure 3 reveals that the analyticity requirement is satisfied. The saddle
points k0 = ±1.62238− i1.34154 are evidenced as red points, while the yellow points are the poles
k = ±iπ/2. The qualitative line C shows that it is possible satisfying the analiticity requirement, as
this line can be continuously deformed to the real k axis without crossing any poles of λ(k). Thus, we
conclude that k0 = ±1.62238− i1.34154 are the relevant saddle points for the assessment of the onset
of absolute instability, and that the threshold for absolute instability with Pe = 10 is Raa = 22.9882.
A further note is for the qualitative sketch of path C. Having drawn the contours of Im(λ(k)), it is
very easy to detect the directions of steepest descent of Re(λ(k)). In fact, these directions are locally
coincident with the contour line of Im(λ(k)) which crosses the saddle point and connects the contour
Re(λ(k)) = 0 to the neighbouring contours with Re(λ(k)) < 0 [8,12,13]. The extent to which path C
overlaps the contours Im(λ(k)) = ±20.1460, which cross the saddle points, can be expanded arbitrarily,
thus matching the approximation defined by Theorem 1.

One may wonder whether inclusion of modes with n = 2 or higher may yield saddle points k0

corresponding to values of Ra lower than Raa = 22.9882. In fact, if we solve Equations (24) and (25) with
Pe = 10 and n = 2, we get

(k0 = −i7.83447, Ra = 25), (k0 = i2.83447, Ra = 25),
(k0 = ±5.01806− i2.11957, Ra = 109.652),
(k0 = ±2.48149+ i5.06623, Ra = −52.9224).

We don’t find any new candidates for the evaluation of Raa, as all these solutions yield values of
Ra which are either negative or larger than Raa = 22.9882. The same happens with n = 3, namely

(k0 = −i10.7423, Ra = 25), (k0 = i5.74227, Ra = 25),
(k0 = ±8.13514− i2.31293, Ra = 269.753),
(k0 = ±3.51591+ i8.36075, Ra = −85.7761).

We observe that modes with n = 1 are sufficient to assess the correct value of Raa. In fact, the
general scaling behaviour of Equations (24) and (25) suggests that Ra increases with n for large n,
and thus enforces that one only needs to consider smaller values of n to determine the threshold of
absolute instability.



Fluids 2017, 2, 33 10 of 22

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

(a)

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

(b)

C

C

I
m

(k
)

I
m

(k
)

Re(k)

Re(k)

(a)

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

(a)

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

(b)

C

C

I
m

(k
)

I
m

(k
)

Re(k)

Re(k)
(b)

Figure 3. Threshold of absolute instability, Ra = Raa = 22.9882, with Pe = 10, n = 1: (a) contours of
Re(λ(k)) in the complex k plane; (b) contours of Im(λ(k)) in the complex k plane. The red dots denote
the saddle points k0 = ±1.62238− i1.34154; the yellow dots denote the singularities k = ±iπ/2; the
black dashed contours are relative to λ(k) = λ(k0) = ±i20.1460; the blue solid line is a possible path
C that crosses the saddle points along a direction of steepest descent; the dotted blue line is the real
axis, Im(k) = 0.

Example 2. Things go much in the same manner if one considers Pe = 50. By setting n = 1, we get
the solutions of Equations (24) and (25),

(k0 = −i25.0983, Ra = 625), (k0 = i0.0983095, Ra = 625),
(k0 = ±1.37471− i1.60524, Ra = 101.785),
(k0 = ±1.25027 + i1.65825, Ra = −98.0906).

By the same reasoning employed in Example 1, we select the pair of solutions

(k0 = ±1.37471− i1.60524, Ra = 101.785).

Indeed, the saddle points k0 = ±1.37471− i1.60524 satisfy the analyticity requirement and they
can be used for the steepest descent approximation. This is readily inferred by inspecting Figure 4.
We don’t catch any serious qualitative difference between Figures 3 and 4. We mention that, once
again, no role in assessing the threshold of absolute instability is played by modes with n = 2 or higher.
Thus, the conclusion is that the threshold of absolute instability, for Pe = 50, is Raa = 101.785.
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Figure 4. Threshold of absolute instability, Ra = Raa = 101.785, with Pe = 50, n = 1: (a) contours of
Re(λ(k)) in the complex k plane; (b) contours of Im(λ(k)) in the complex k plane. The red dots denote
the saddle points k0 = ±1.37471− i1.60524; the yellow dots denote the singularities k = ±iπ/2; the
black dashed contours are relative to λ(k) = λ(k0) = ±i113.262; the blue solid line is a possible path
C that crosses the saddle points along a direction of steepest descent; the dotted blue line is the real
axis, Im(k) = 0.

4. Results

Examples 1 and 2 discussed in the preceding section lead us to the conclusion that the analysis of
the transition from convective to absolute instability can be based on the solutions of the system of
algebraic Equations (24) and (25).

Among the possible saddle points, we mention those with Re(k) = 0. These points are obtained
for Ra = Pe2/4 with Pe 6= 0, and they are given by

k0 = − i
4

(
Pe±

√
16γ2

n + Pe2
)

. (26)

These saddle points are such that λ(k0) = 0 and thus they are, a priori, to be considered among
the candidates for the evaluation of the threshold to absolute instability, Ra = Raa. In fact, they
appeared among the solutions discussed in Examples 1 and 2, with Ra = 25 and 625, respectively.
However, in both these examples, the saddle points expressed by Equation (26) did not contribute to
the evaluation of Raa. This conclusion is easily generalised by exploring other positive values of Pe.
We will further discuss these special saddle points later on.
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Another remarkable class of saddle points is encountered in the special case Pe = 0. In this case,
the solutions of λ′(k) = 0 are five,

k0 = 0 =⇒ λ(k0) = −γ2
n,

k0 = ±i
√

γn
√

Ra + γ2
n =⇒ λ(k0) = Ra + 2γn

√
Ra,

k0 = ±
√

γn
√

Ra− γ2
n =⇒ λ(k0) = Ra− 2γn

√
Ra.

(27)

In order to determine the threshold of absolute instability, only the last line of Equation(27)
deserves attention, as the first and second lines express saddle points k0 such that λ(k0) is real and
either negative or positive, for every Ra > 0. Thus, only the last line is relevant to determine the
threshold of absolute instability, that is the value of Ra such that Re(λ(k)) = 0. By imposing the latter
condition, one easily determines Ra = 4γ2

n which, in turn, means k0 = ±γn. This result immediately
leads us to the conclusion that, when Pe = 0, we have

Raa = Rac = π2. (28)

Equation (28) means that, in the absence of a steady horizontal flow in the channel (Pe = 0),
the onset of convective instability means also the onset of absolute instability, and this happens
when Ra ≥ π2. This conclusion is completely obvious by relying on the physical meaning of the
convective/absolute instability dichotomy.

The set S of all saddle points of λ(k) which satisfy the condition Re(λ(k)) = 0, for every
(n, Ra, Pe), includes the whole imaginary axis, Re(k) = 0, with the exclusion of the origin and of the
singularities k = ±iγn. The imaginary axis, in fact, includes all saddle points defined by Equation (26)
for all Pe > 0 and Ra = Pe2/4. Moreover, S is dense over closed curves in the complex k plane,
defined implicitly by the polar equation,

r6 + r4 cos(4ϕ)− r2 = 1, r > 0, ϕ ∈ [0, 2π], (29)

where k/γn = r eiϕ. A convenient visualization of the set S is displayed in Figure 5a. The closed curve
defined by Equation (29), represented in this figure, includes all saddle points in S , with six exclusions
denoted by yellow dots. These points are given by k = ±iγn, where λ(k) is singular, and by

k
γn

= ±1
4

√√
17 + 7± i

4

√
3
√

17 + 5. (30)

The points defined by Equation (30) do not belong to S because they do not satisfy the saddle
point condition, λ′(k) = 0, for any real values of (Ra, Pe). The blue dots in Figure 5a denote special
elements of S , namely the saddle points corresponding to Pe = 0 and Ra = 4γ2

n, that is k0 = ±γn.
Figure 5b displays red curves joining all saddle points employed for the evaluation of Raa at different
Péclet numbers. The saddle points lying in the upper half of the k plane correspond to Pe < 0, while
those in the lower plane are for Pe > 0. Up to this point, we just considered positive values of Pe.
Indeed, there is a perfect symmetry between the cases Pe < 0 and Pe > 0, because whether the parallel
flow is in the positive or negative x direction obviously cannot change the threshold of absolute
instability. This means that, for a given |Pe|, the value of Raa is uniquely determined. The symmetry
under a change of sign of Pe is completely evident from Equation (23). In fact, a change of sign of Pe is
compensated by a change of sign of k, and this explains why the saddle points for Pe < 0 and Pe > 0
lie in two different halves of the k plane. Thus, in the following, we will always assume Pe ≥ 0.
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Figure 5. (a) Curve in the complex k/γn plane representing all possible saddle points of λ(k), with
Re(λ(k)) = 0, for all real values of (Ra, Pe), and for all natural numbers n. Yellow dots denote
exclusions from the set of saddle points, while blue dots denote the saddle points with Pe = 0;
(b) Curve in the complex k plane including all saddle points employed to evaluate Raa with either
Pe > 0 (lower plane) or Pe < 0 (upper plane). The dashed blue line denotes the real axis, with blue
dots denoting the case Pe = 0, and yellow dots denoting the limiting cases Pe→ ±∞.

The same procedure described in Examples 1 and 2, with reference to Pe = 10 and 50, can be
extended to any Pe > 0. This allows one to evaluate the threshold for the onset of absolute instability,
Raa, for every given Pe. A list of values of Raa and of the corresponding saddle points k0 are given in
Table 1, with increasing values of Pe. By extrapolating the data to the limit Pe→ ∞, one registers an
unbounded, approximately linear, growth of Raa with Pe. The saddle points k0, with either a positive
or a negative real part, change weakly when Pe is very large. In fact, these k0 tend to finite limits when
Pe→ +∞, given by two of the four exclusions defined by Equation (30), with n = 1, namely

k0 =
π

8

(
±
√√

17 + 7− i
√

3
√

17 + 5
)
∼= ±1.30970− i1.63663. (31)

In the asymptotic regime where Pe is very large, Table 1 suggests that Raa tends to become a
linear function of Pe. The slope of this function, viz. ξa = Raa/Pe, can be easily determined from
Equation (23). In fact, if we write Ra = ξPe and we assume Pe � 1, then Equation (23) can be
approximated as

λ(k)
Pe
∼= k2ξ

γ2
n + k2 − ik. (32)

The threshold value of absolute instability, ξa, can be obtained by solving the saddle point
condition, λ′(k) = 0, with the constraint Re(λ(k)) = 0. We infer that the pertinent saddle points are
those given by Equation (31), and that the value of ξa is

ξa =
Raa

Pe
=

π

16

√
51
√

17− 107 = 1.99542. (33)

Figure 6 illustrates the transition from convective to absolute instability. In particular,
Figure 6a shows the threshold of absolute instability Raa versus Pe (black line). The lines with
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Re(λ(k0)) < 0 describe perturbations exponentially decaying in time. These lines lie below the
threshold of absolute instability, and hence they correspond to Ra < Raa. The reverse happens when
Re(λ(k0)) > 0, namely when the disturbance exponentially grows in time. In this case, the condition
of absolute instability is satisfied and Ra > Raa. Figure 6a also shows that, as Pe increases, the
transition from negative to positive values of Re(λ(k0)) becomes very steep, meaning that the change
from Re(λ(k0)) = −2 to Re(λ(k0)) = 2 takes place, for a given Pe, over a narrow interval of Ra.
Figure 6b displays the regions of stability, Ra < Rac, convective instability, Rac < Ra < Raa, and
absolute instability, Ra > Raa. This figure provides a clear indication of the increasing width of the
convective instability region as Pe increases, a feature quite evident also from the data reported in
Table 1. The dashed line displayed in Figure 6b illustrates the good agreement, in a regime where
Pe is sufficiently large, between the numerical data for the threshold of absolute instability and the
asymptotic behaviour defined by Equation (33).
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Figure 6. (a) Transition to absolute instability: values of Ra versus Pe obtained for the saddle points
k0 with increasing values of Re(λ(k0)), from negative to positive. The black line yields the threshold
of absolute instability, namely Re(λ(k0)) = 0; (b) Map of the regions in the parametric plane (Pe, Ra)
relative to stability, convective instability, and absolute instability; the dashed line shows the asymptotic
behaviour described by Equation (33).

A final comment is devoted to the class of saddle points defined by Equation (26) with Ra = Pe2/4
and Pe 6= 0. There exists, in fact, a small interval where 2π < Pe < 9.32915. In this interval, Pe2/4 is
larger than Rac = π2 and lower than the threshold Raa drawn in Figure 6. One may question if we
have mistaken the evaluation of the threshold value of Ra in this interval of Pe. The answer is no, and
the reason is as follows. For every Péclet number such that 2π < Pe < 9.32915 and for n = 1, there
are two saddle points corresponding to Ra = Pe2/4. Both of them lie on the imaginary k axis: one is
between the two singularities k = ±iπ/2, while the other is below k = −iπ/2. Trying to draw a path C,
locally of steepest descent, that crosses both these saddle points is not possible without trapping the
singularity k = −iπ/2 within the region of space between C and the real k axis. This feature precludes
the application of the analyticity requirement prescribed by Theorem 1 or, stated differently, the saddle
points defined by Equation (26) do not alter the evaluation of Raa as reported in Figure 6. We refer the
reader to Juniper et al. [14] for other examples where saddle points are to be excluded for violations of
the analyticity requirement.
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Table 1. Threshold values of Ra for the onset of absolute instability with increasing values of Pe.
The relevant saddle points k0 for the evaluation of Raa are reported.

Pe k0 Raa

0 ±π/2 π2

5 ±1.69649− i0.94650 14.4509
10 ±1.62238− i1.34154 22.9882
15 ±1.53303− i1.47783 32.4868
20 ±1.47785− i1.53301 42.2506
25 ±1.44337− i1.56088 52.1103
30 ±1.42029− i1.57729 62.0136
35 ±1.40388− i1.58799 71.9402
40 ±1.39166− i1.59548 81.8806
45 ±1.38222− i1.60101 91.8298
50 ±1.37471− i1.60524 101.7851
55 ±1.36861− i1.60858 111.7446
60 ±1.36355− i1.61129 121.7072
65 ±1.35928− i1.61352 131.6722
70 ±1.35565− i1.61539 141.6391
75 ±1.35250− i1.61699 151.6074
80 ±1.34976− i1.61836 161.5768
85 ±1.34735− i1.61955 171.5472
90 ±1.34521− i1.62060 181.5183
95 ±1.34330− i1.62153 191.4901

100 ±1.34159− i1.62236 201.4625
+∞ ±1.30970− i1.63663 +∞

5. A Matter of Scaling

The analysis carried out so far is relative to a porous channel with an open upper boundary
subjected to a uniform heat flux. A much more classic setup is one where both the lower and the
upper boundaries are impermeable and isothermal. This setup is so classic that there is a name to
denote it: the Horton-Rogers-Lapwood problem, also abbreviated with HRL problem [2]. The different
boundary conditions considered in the HRL problem do not have any significant influence on the basic
stationary flow across the channel. On the other hand, a sensible change emerges when expressing
the Fourier modes of the perturbations, Equations (12)–(14). In fact, having an impermeable upper
boundary with a uniform temperature implies that both ψ̂ and θ̂ are zero at y = 1, so that Equation (14)
is to be replaced by γn = nπ. This is the consequence of Neumann boundary conditions for ψ̂ and θ̂

having been replaced by Dirichlet boundary conditions. If we limit our discussion to the n = 1 modes,
the only modes important for both the onset of convective and absolute instability, then we can reach
a neat conclusion. With Dirichlet boundary conditions at y = 1 we will have n = 1 contour lines of
ψ̂ with a sequence of rotating and counter-rotating cells, while Neumann boundary conditions have
the effect that these cells are cut in the middle by the boundary y = 1: full cells in the former case
and half cells in the latter (see Figure 7). Mathematically, the cells are exactly the same as they result
from a product of sine functions in x and y. Therefore, it is not strange that the dispersion relation is
exactly the same as in the HRL problem, and that the neutral stability condition (20) matches that for
the HRL problem provided that k and Ra are suitably scaled. Since the onset of convective instability
comes about with half-cells, then the neutrally stable k for the HRL problem must be the double of that
employed in Equation (20). Since Equation (6) shows that Ra is proportional to H2, then doubling the
channel thickness, to include the whole cells, implies that Ra is turned into 4Ra. Thus, Equation (21)
immediately provides the critical values of k and Ra for the HRL problem,

kc = π, Rac = 4π2. (34)
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How does this scaling argument affect the data about the transition to absolute instability?
We expect that we must multiply by 4 the numerical data of Raa obtained in Section 4 to obtain those
for the HRL problem. However, one must be careful with the value of Pe. In fact, if Ra is proportional
to H2, Pe is proportional to H as one may check on inspecting Equation (6). Thus, moving from
our open boundary problem to the HRL problem, that is moving from the half cells to the full cells,
or doubling the value of H, means multiplying the values of Pe by a factor 2. To conclude, we can
formulate the scaling as follows:

Raa,HRL(Pe) = 4 Raa(Pe/2), (35)

where we denoted with Raa(Pe) the threshold of absolute instability for our open boundary problem
(data reported in Table 1), and with Raa,HRL(Pe) the threshold relative to the HRL problem.

That the scaling law (35) actually works can be easily checked by comparing the data obtained from
Table 1, by applying Equation (35), with those reported in Barletta and Alves [8]. This comparison is done
in Table 2, for a few sample values of Pe. The agreement is complete within six significant figures.

Table 2. Check of the scaling law (35): data of Raa for the HRL problem.

Pe Raa,HRL
? Raa,HRL

†

10 57.8036 57.8036
20 91.9528 91.9528
50 208.441 208.441

100 407.140 407.140
? Data evaluated from Table 1 and Equation (35); † Ref. [8].

(a)

(b)

(a)
(a)

(b)
(b)

Figure 7. Scaled convection streamlines of the perturbations for: (a) the open upper boundary problem;
(b) the HRL problem.

6. Going Three-Dimensional

A question arises about the behaviour of the flow when the assumption of a very small spanwise
width, L, is relaxed. In this case, a value of L comparable with H or larger implies a significant
functional dependence on z of the velocity, pressure and temperature fields. One may envisage a
lateral confinement along the spanwise z direction with adiabatic impermeable sidewalls. The basic
solution (3) still holds, except that one must also specify that the z component of velocity is zero and, as
a consequence, also the z component of the pressure gradient is zero. The analysis of small-amplitude
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perturbations is to be carried out on three-dimensional grounds. Hence, a streamfunction formulation
is out of the question, while a pressure formulation is possible,

∂2P
∂x2 +

∂2P
∂y2 +

∂2P
∂z2 − Ra

∂θ

∂y
= 0, (36a)

∂θ

∂t
+ Pe

∂θ

∂x
+

∂P
∂y
− Ra θ =

∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2 . (36b)

Here, the dimensionless coordinate z is defined coherently with (x, y), by adopting the same scale
H. We have z ∈ [0, τ], where τ = L/H. Instead of Equation (10), the boundary conditions are now
written as 

y = 0 :
∂P
∂y

= 0; θ = 0,

y = 1 : P = 0;
∂θ

∂y
= 0,

z = 0, τ :
∂P
∂z

= 0;
∂θ

∂z
= 0.

(37)

We now introduce the Fourier transforms,

P̂(k, y, z, t) =
1√
2π

∞∫
−∞

e−ikxP(x, y, z, t) dx, θ̂(k, y, z, t) =
1√
2π

∞∫
−∞

e−ikxθ(x, y, z, t) dx, (38)

with the inverse transforms given by

P(x, y, z, t) =
1√
2π

∞∫
−∞

eikx P̂(k, y, z, t) dk, θ(x, y, z, t) =
1√
2π

∞∫
−∞

eikx θ̂(k, y, z, t) dk. (39)

We can now separate the dependence on y and z, in analogy with Equation (13),

P̂(k, y, z, t) =
∞

∑
n=1

∞

∑
l=1

P̃n,l,k(t) cos(γny) cos(ηlz),

θ̂(k, y, z, t) =
∞

∑
n=1

∞

∑
l=1

θ̃n,l,k(t) sin(γny) cos(ηlz), (40)

where γn is still given by Equation (14), while ηl = (l − 1)π/τ. Definitions 1 and 2 are easily
generalised to

Definition 3. The parallel flow given by Equation (3) is convectively unstable if there exist (n, l) ∈ N2 and
k ∈ R such that

lim
t→∞
|P̃n,l,k(t)| = ∞, lim

t→∞
|θ̃n,l,k(t)| = ∞.

Definition 4. The parallel flow given by Equation (3) is absolutely unstable if, for every x ∈ R, there exists
(n, l) ∈ N2 such that

lim
t→∞

∣∣∣∣∣∣
∞∫
−∞

eikx P̃n,l,k(t) dk

∣∣∣∣∣∣ = ∞, lim
t→∞

∣∣∣∣∣∣
∞∫
−∞

eikx θ̃n,l,k(t) dk

∣∣∣∣∣∣ = ∞.
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By applying the Fourier transform to Equation (36), one obtains

(γ2
n + η2

l + k2)P̃n,l,k + γnRa θ̃n,l,k = 0, (41a)

(γ2
n + η2

l + k2)θ̃n,l,k +
dθ̃n,l,k

dt
+ ikPe θ̃n,l,k − γn P̃n,l,k − Ra θ̃n,l,k = 0. (41b)

Equation (41) can be solved by writing

P̃n,l,k(t) = P̃n,l,k(0) eλn,l,kt, θ̃n,l,k(t) = −
γ2

n + η2
l + k2

γnRa
P̃n,l,k(0) eλn,l,kt, (42)

with the dispersion relation now given by

γ2
n + η2

l + k2 + λn,l,k + ikPe− (η2
l + k2)Ra

γ2
n + η2

l + k2
= 0. (43)

The condition for the onset of convective instability is formulated by setting Im(λn,l,k) = −kPe
and Re(λn,k) > 0, so that Equation (43) yields

Ra >
(γ2

n + η2
l + k2)2

η2
l + k2

. (44)

The lowest value of Ra leading to convective instability is obtained with n = 1,

Ra =
(π2 + 4η2

l + 4k2)2

16(η2
l + k2)

, (45)

which replaces the neutral stability condition (20). By minimising Ra, one obtains the critical value
Rac = π2 when

η2
l + k2 =

π2

4
. (46)

There are several solutions of Equation (46), depending on the value of the aspect ratio τ.
For instance, if τ < 2, there is just one possible solution: l = 1 with k = π/2. This means that,
with τ < 2, the onset of convective instability happens when z-independent Fourier modes are
activated, namely modes having l = 1 and k = π/2, in agreement with the two-dimensional analysis,
Equation (21). Things get more and more complicated when τ ≥ 2. If 2 ≤ τ < 4, then two Fourier
modes become convectively unstable when Ra exceeds the critical value Rac = π2. One is the
z-independent mode (l = 1, k = π/2) and the other one is(

l = 2, k = π

√
1
4
− 1

τ2

)
.

The l = 2 mode is three-dimensional, that is, z-dependent. Further three-dimensional Fourier
modes become convectively unstable at the critical condition Rac = π2, if τ ≥ 4.

The three-dimensional analysis of the transition to absolute instability is not to be based on
Equation (23), but on its generalisation implied by Equation (43), namely

λ(k) =
(η2

l + k2)Ra
γ2

n + η2
l + k2

− γ2
n − η2

l − k2 − ikPe. (47)

By relying on Definition 4, the transition to absolute instability has just the same features described
with the two-dimensional analysis if the Fourier integrals calculated with l = 1 become time-growing at
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Rayleigh numbers lower than those for the integrals calculated with l > 1. If this is the case, the transition
to absolute instability happens with purely two-dimensional modes, and the analysis carried out in
the preceding sections does not need to be modified. In order to illustrate how things go when modes
with l > 1 are included in the analysis, we will reconsider the cases examined in Examples 1 and 2.

Example 3. We assume Pe = 10 and n = 1, since n > 1 modes do not contribute to the two-dimensional
analysis. By considering either l = 1 and a finite τ, or l > 1 and τ → ∞, we have ηl = 0. In this
case, the saddle points of λ(k) such that Re(λ(k)) = 0 are just the same as those gathered in the
two-dimensional analysis, namely

(k0 = −i5.45252, Ra = 25), (k0 = i0.452525, Ra = 25),
(k0 = ±1.62238− i1.34154, Ra = 22.9882),
(k0 = ±1.06797+ i1.69304, Ra = −18.6997),

with (k0 = ±1.62238 − i1.34154, Ra = 22.9882) yielding the lowest Ra greater or equal than
Rac = π2, and thus leading to the result Raa = 22.9882.

If we now consider three-dimensional modes with l = 2, our solutions will depend on τ.
If we set τ = 0.2 then the saddle points of λ(k) such that Re(λ(k)) = 0 are

(k0 = −i16.4479, Ra = 128.308), (k0 = −i14.9127, Ra = 193.774),
(k0 = −i5.06942, Ra = 277.264),
(k0 = ±0.544764+ i15.7934, Ra = −157.957),

not providing any candidate for the evaluation of Raa.
If we set τ = 0.4 then the saddle points of λ(k) such that Re(λ(k)) = 0 are

(k0 = −i9.10248, Ra = 63.8929), (k0 = ±0.689276+ i8.02783, Ra = −80.3907),
(k0 = ±0.972718− i5.82986, Ra = 96.1403).

The conclusion is just the same as for τ = 0.2. If we now trace the behaviour of the saddle points
by gradually increasing τ up to 50, we obtain that there is no saddle point yielding a value of Ra larger
than π2, but lower than 22.9882. Interestingly enough, we note that with τ = 50 our saddle points are

(k0 = −i5.45267, Ra = 25.0033), (k0 = i0.446806, Ra = 25.4971),
(k0 = i0.00814689, Ra = 1521.56),
(k0 = ±1.62210− i1.34251, Ra = 22.9964),
(k0 = ±1.06771+ i1.69414, Ra = −18.7093).

These saddle points are not much different from those obtained with the two-dimensional analysis,
namely with either l = 1 or l > 1 and τ → ∞. We note that there is one extra saddle point with a very
large Rayleigh number. This point disappears when the limit τ → ∞ is taken.

The conclusion to be drawn by inspecting the behaviour of the saddle points with l = 2 and
gradually increasing τ is that the evaluation of the threshold value of Ra for the transition to absolute
instability coincides with that relative to the two-dimensional analysis, namely Raa = 22.9882. No
difference is made if one considers l = 3 or larger. In fact, due to the definition of ηl = (l − 1)π/τ,
modes with l > 2 and a given τ yield the same ηl , and hence the same saddle points, as modes with
l = 2 and a suitably smaller τ.
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Example 4. A behaviour much similar to that described in Example 3 is observed for Pe = 50. By
setting n = 1 and l = 1, the saddle points for the two-dimensional analysis are (see also Example 2),

(k0 = −i25.0983, Ra = 625), (k0 = i0.0983095, Ra = 625),
(k0 = ±1.37471− i1.60524, Ra = 101.785),
(k0 = ±1.25027+ i1.65825, Ra = −98.0906).

From these saddle points, the conclusion drawn in Example 2 is that the threshold for absolute
instability is Raa = 101.785. If three-dimensional modes with l = 2 are now included in our analysis,
we can keep track of the saddle points obtained by starting with τ = 0.2 and gradually increasing τ up
to 50. We do not find any saddle points of λ(k) such that Re(λ(k)) = 0 whose corresponding value of
Ra is both larger than Rac = π2 and lower than Raa = 101.785. In particular, for τ = 50 we obtain

(k0 = −i25.0983, Ra = 625.004),
(k0 = ±1.37445− i1.60632, Ra = 101.829),
(k0 = ±1.25001+ i1.65935, Ra = −98.1361).

A set of saddle points not much different from those obtained with the two-dimensional analysis.
We note that the second saddle point with a value of Ra around 625 appears only for larger values of τ.
However, we know that this solution does not influence the evaluation of Raa.

Exactly as in Example 3, we can conclude that the three-dimensional analysis does not modify in
any way our evaluation of Raa = 101.785.

The features of the three-dimensional analysis, described in Examples 3 and 4, can be easily generalised
to other Péclet numbers. The general rule is that the three-dimensional analysis does not change the
threshold values of absolute instability, Raa, evaluated through a purely two-dimensional analysis.

Obviously, a remarkable situation is Pe = 0, already discussed within the two-dimensional
analysis. In this case, the solutions of λ′(k) = 0 are five,

k0 = 0 =⇒ λ(k0) = η2
l

(
Ra

γ2
n + η2

l
− 1

)
− γ2

n,

k0 = ±i
√

γn
√

Ra + γ2
n + η2

l =⇒ λ(k0) = Ra + 2γn
√

Ra,

k0 = ±
√

γn
√

Ra− γ2
n − η2

l =⇒ λ(k0) = Ra− 2γn
√

Ra.

(48)

The second line of Equation (48) can be skipped as it never gives raise to a vanishing Re(λ(k0)).
For every n, both the first and the third line of Equation (48) yield Re(λ(k0)) = 0 for Ra = 4γ2

n,
provided that τ is an integer multiple of 2 and l is suitably chosen. For other values of τ, the lowest
value of Ra leading to Re(λ(k0)) = 0 is given by the third line of Equation (48). Thus, whatever is the
value of τ, the threshold of absolute instability is Raa = Rac = π2. This means that, also for Pe=0, the
three-dimensional analysis leads exactly to the same results obtained by the two-dimensional analysis.
Just the same behaviour was reported, with reference to a similar flow regime, by Delache et al. [15].

7. Conclusions

The analysis of convective and absolute instability has been carried out for the stationary flow in
a porous horizontal channel. The lower boundary of the channel has been considered as impermeable
and isothermal, while the upper boundary has been modelled as open to an external tangential flow
and uniformly cooled. The setup is one of heating from below, so that the kind of instability is
Rayleigh-Bénard. The concepts of convective and absolute instability have been reviewed and the
detailed procedure to assess the conditions for both types of instability has been described.



Fluids 2017, 2, 33 21 of 22

The analysis of instability has been initially formulated by a two-dimensional scheme, in
order to keep the mathematical difficulties at their lowest. Then, the study has been extended to
three-dimensional perturbations thus assessing the validity of the two-dimensional formulation.

The main results of the analysis performed in this paper are the following:

• The concepts of convective and absolute instability can be rigorously defined by applying the
Fourier transform method to solve the perturbation equations. The Fourier transformed variable
is the coordinate along the streamwise direction.

• The assessment of convective instability just deals with the time-growth, or time-decay, of the
Fourier transformed perturbations. The study of the absolute instability, on the other hand, is
focussed on the large-time behaviour of the perturbations themselves.

• The need to track the large-time behaviour of the perturbations, mathematically of the inverse
Fourier transforms, leads to the central role played by the steepest-descent approximation.

• The two-dimensional analysis of convective instability does not yield a condition of convective
instability different from that obtained with a three-dimensional analysis. The only difference
is in the modes leading to the critical value of the Rayleigh number for the onset of convective
instability, Rac. The number of unstable Fourier modes at Ra = Rac gradually increases as the
spanwise-to-vertical aspect ratio of the channel cross-section, τ, increases.

• The onset of absolute instability occurs at a Rayleigh number Raa ≥ Rac, where the equality
Raa = Rac holds if and only if the Péclet number, Pe, is zero. The threshold of absolute instability,
Raa, is a monotonic increasing function of Pe. When Pe� 1, Raa becomes approximately a linear
function of Pe.

• For a given Pe, the threshold value of absolute instability, Raa, obtained by a two-dimensional
analysis coincides with that obtained by a three-dimensional analysis.

• A suitable scaling of the parameters turned out to map the study carried out in this paper to
the analogous study of the Horton-Rogers-Lapwood problem, not only for the results of the
convective instability study, but also for the analysis of the transition to absolute instability.
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