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Abstract: In this work, the fluid mechanics performance of four different contraction wall shapes has
been studied and compared side-by-side by computational simulation, and the effect of contraction
cross-sectional shape on the flow uniformity at the contraction exit has been included as well.
A different contraction wall shape could result in up to an extra 4% pressure drop of a closed-loop
wind tunnel, and the contraction wall shape has a stronger influence on the pressure loss than the
contraction cross-sectional shape. The first and the second derivatives from different wall shape
equations could provide a hint for qualitatively comparing the flow uniformity at the contraction
exits. A wind tunnel contraction with an octagonal shape provides not only better fluid mechanics
performance than that with a circular or a square cross-sectional shape, but also lower manufacturing
costs. Moreover, a smaller blockage ratio within the test section can be achieved by employing an
octagonal cross-sectional shape instead of a circular cross-sectional shape under the same hydraulic
diameter circumstance. A wind tunnel contraction with an octagonal cross-sectional shape is
recommended to be a design candidate.

Keywords: wind tunnel contraction; contraction wall shape; contraction cross-sectional shape;
computational fluid dynamics

1. Introduction

In the fields of fluid mechanics research, full/scaled model testing, and airspeed calibration,
wind tunnel has a critical role. For airspeed calibration, both ISO17713-1 [1] and ASTM D5096-02 [2]
documents recommend that a wind tunnel facility should be used to calibrate or to test the performance
of a rotating anemometer. Additionally, both ISO 17713-1 and ASTM D5096-02 request that the flow
uniformity and the turbulence intensity should be smaller than 1% difference in transversal velocity
profile and less than 1% within the test section of a wind tunnel, respectively. These two requirements
are intended to minimize the calibration or the measurement error due to the non-uniform flow profile
and the flow fluctuation. In the field of airspeed calibration or metrology, the testing environments are
commonly provided by wind tunnels, thus the homogeneity among wind tunnels makes people
confident that the world activities are sharing a common perception of quantity measurement.
In several national metrology institutes, such as the National Institute of Standards and Technology
(NIST), National Metrology Institute of Japan (NMIJ), Korea Research Institute of Standards and
Science (KRISS), and National Measurement Laboratory (NML), wind tunnels are adopted to establish
their airspeed measurement standards [3,4]. The validation of flow condition via experiment or
simulation is also quite essential for a new wind tunnel [5–7].
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The contraction is the most critical component of a wind tunnel to influence the flow quality
within the test section since it is located just upstream of the test section. The air flow is accelerated
through a contraction to the test section with reduced flow turbulence and flow velocity variation
within the test section. In general, the contraction ratio, the contraction length, and the contraction
wall curve are the three dominant design factors of a wind tunnel, and many studies about these
three parameters have been done to provide the design guidance for a contraction. Batchelor [8] has
derived the factors of reduction of mean velocity variation and turbulence intensity for axisymmetric
contractions by using the rapid distortion theory to state that a contraction is more effective in
suppressing velocity variation and turbulence intensity in the longitudinal direction than those in
the lateral direction. The contraction ratio is the most critical factor in determining the mean flow
uniformity at the contraction exit, which has been stated by Hussain and Ramjee [9]. Metha and
Bradshaw [10] have suggested that a contraction ratio between 6 and 9 are normally sufficient for
smaller wind tunnels to generate an acceptable flow quality. Wind tunnels adopted for airspeed
calibration are always designed by an even higher contraction ratio for obtaining an even better flow
quality. For example, the contraction ratio of NIST’s wind tunnel is up to 14.52 and 18.15 for the lower
speed and the higher speed test sections, respectively [11].

Although a very long contraction can be used for avoiding flow separation, it will also result in
higher material cost, larger occupied space, and thicker exit boundary layer. Actually, the contraction
length depends on the contraction angle determined by designers. Hernández et al. [12] have
recommended taking a contraction angle of 12◦ for a reasonable length and a good fluid dynamic
performance. Several studies about the contraction wall shape have been conducted in the last
several decades. A combination of two symmetric third-order polynomial curves with appropriate
conditions, such as the coordinate and the slope of the inflection point, the entrance of the wide end,
and the exit of the narrow end, has been recommended by Hernández [12]. Su [13] has proposed
matching a third-order polynomial curve at the contraction entrance and a higher-order polynomial
curve at the contraction exit. Bell and Mehta [14] have conducted a numerical analysis to conclude
that a fifth-order polynomial curve can perform optimally in terms of avoiding flow separation,
giving minimum boundary layer thickness, and providing better flow uniformity, as compared to a
third-order polynomial, a seventh-order polynomial, and a combination of two symmetric matched
cubic curves. The fifth-order polynomial curve proposed by Bell and Mehta [14] might be one of the
most popular contraction wall shape equations because it has been proved to deliver good aerodynamic
performances in many wind tunnels. A combination of two third-order polynomial curves has been
derived by Fang et al. [15] for the contraction having a square cross-sectional shape. A good agreement
between the numerical results and the experimental results has been shown at a contraction exit
velocity of 15 m/s. Bouriga et al. [16] have suggested that the details of the flow structure of a wind
tunnel depend on the actual contraction geometry. Therefore, the present work aims to establish
a benchmark for investigating the fluid mechanics performance in terms of pressure drop along a
contraction, exit flow uniformity, and boundary layer thickness from different contraction wall shapes
which have not been studied and compared side-by-side together.

Another unclear issue is the cross-sectional shape of a contraction. Ideally, an axisymmetric
contraction with circular cross-sectional shape is believed to be the optimal choice for achieving a
uniform flow. However, from the aspect of a manufacturing concern, a rectangular, square or octagonal
design is often considered as well. The possible occurrence of secondary flows near the corners forming
the intersection of the sidewalls in three-dimensional, non-circular contraction has been known for
a long time [17]. Although, Metha [18] has mentioned that the corner flow for a well-designed
contraction is localized and does not affect the flow quality over most of the span in the test section.
The published literature discussing the cross-sectional shape effect on the fluid mechanics performance
of a well-designed contraction is still very limited. Therefore, the fluid mechanics performance also will
be compared for three different common cross-sectional shapes, namely, circle, square, and octagon,
in the present work.
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2. Problem Formulation

2.1. Contraction Dimensions

In the present work, the contraction size is based on an ongoing project for upgrading the
wind tunnel for air speed standard at the National Measurement Laboratory (NML). Three different
cross-sectional shapes, i.e., circle, square, and octagon are investigated. The hydraulic diameters of
the entrance and the exit are 1100 mm and 350 mm, respectively, resulting in a contraction ratio of
9.88. The total length of computational domain is 2200 mm (−200 mm ≤ x ≤ 2000 mm), as shown
in Figure 1, including a leading portion of 200 mm (−200 mm ≤ x ≤ 0 mm), a contraction portion
of 1800 mm (0 mm ≤ x ≤ 1800 mm), and a trailing portion of 200 mm (2000 mm ≤ x ≤ 2200 mm).
The equations of four contraction wall shapes are tabulated in Table 1.

Table 1. Equations for four investigated contraction (CT) wall shapes.

Contraction Case Original Equation Adopted Equation

CT #1 [14]
y =

(
−6
( x

L
)5

+ 15 x
L

4 − 10
( x

L
)3
)

(Hi − Ho) + Hi

y =
(
−6
( x

1800
)5

+ 15
( x

1800
)4 − 10

( x
1800

)3
)

(175 − 550) + 175

CT #2 [15]
y = (Ho − Hi)

[
1 − 1

Xm
2

( x
L
)3
]
+ Hi, x < xm

y = (Ho−Hi)

(1−Xm)
2

(
1 − x

L
)3

+ Hi, x ≥ xm

y = (175 − 550)
[
1 − 4

( x
1800

)3
]
+ 550, x < 900

y = (175−550)
(1−0.5)2

(
1 − x

1800
)3

+ 550, x ≥ 900

where, xm = 0.5L = 900

CT #3

y = a + bx + cx2 + dx3

y(x = 0) = 175
y(x = 1800) = 550
dy
dx (x = 0) = 0
dy
dx (x = 1800) = 0

y = 175 + 3.4722 × 10−4x2 − 1.2860 × 10−7x2

CT #4 [12]

y = a1 + b1x + c1x2 + d1x3,
0 ≤ x ≤ 900
y = a2 + b2x + c2x2 + d2x3,
900 ≤ x ≤ 1800
y(x = 0) = 175
y(x = 900) = 362.5
y(x = 1800) = 550
dy
dx (x = 0) = 0
dy
dx (x = 900) = 0.35
dy
dx (x = 1800) = 0

y = 175 + 3.0556 × 10−4x2 + 8.2305 × 10−8x3,
0 ≤ x ≤ 900
y = 40 + 0.3x + 1.3889 × 10−4x2 + 8.2305 × 10−8x3,
900 ≤ x ≤ 1800
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2.2. Computational Fluid Dynamics Model

The flow field is assumed to be steady, three-dimensional, incompressible and turbulent.
The working fluid is air and assumed as an ideal gas. The computational work is meshed and calculated
via ANSYS FLUENT R14.5. Menter’s shear stress transportation (SST) k-ω model with double precision
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option is adopted as the turbulent model. SST k-ω model is a combination of the standard k-ε model
in the free stream region and Wilcox k-ω model in the wall regions. This model is capable of predicting
the flow near the wall more accurately [19]. Also, the study from Bouriga et al. [20] has shown that
SST k-ω model is proper to be used for the investigation of the flow in the contraction. The SIMPLE
algorithm is utilized for pressure-velocity coupling correction and the second-order upwind scheme
is applied for the equations of momentum, turbulent kinetic energy and specific dissipation rate.
The residuals for continuity, momentum, and turbulent equations are aimed to be less than 1 × 10−7.

2.3. Boundary Conditions

In the present work, two different cases with contraction exit velocities of 6 m/s and 60 m/s are
studied as outlet boundary conditions, because the target operating velocity of NML’s standard wind
tunnel is up to 60 m/s. As the studied contraction ratio is 9.88, thus the uniform flow profiles with
contraction entrance velocities of 0.608 m/s and 6.075 m/s are designated as inlet boundary conditions.
According to Batchelor [8], a contraction ratio of 9.88 can reduce the axial velocity fluctuation by a
factor of 0.24. Therefore, the turbulence intensity of axial velocity at the contraction exit will become
around 40 times smaller than that at the contraction entrance. The turbulence intensity is defined as a
ratio of the root-mean-square of the turbulent velocity fluctuations to the mean velocity. The turbulence
intensities at the contraction entrance and exit for the case with contraction exit velocity of 6 m/s
are designated as 40% and 1%, respectively, in order to be consistent with the turbulence intensity
less than 1% suggested by both ISO and ASTM documents [1,2]. For the case with the contraction
exit velocity of 60 m/s, the turbulence intensities of the contraction entrance and exit are designated
as 20% and 0.5%, respectively, because turbulence intensity usually decreases with increasing the
mean velocity. Furthermore, a sensitivity study has been conducted with different values of turbulent
intensity at the contraction entrance and exit to show that the turbulence intensity does not have a
strong influence on the simulation results. The boundary conditions for the two cases are summarized
in Table 2. No-slip conditions for the velocity are imposed on the contraction walls.

Table 2. Designations of boundary conditions.

Case Entrance Exit

Vex = 6 m/s
uniform velocity profile = 0.608 m/s gauge pressure = 0

turbulent intensity = 40% turbulent intensity = 1%
hydraulic diameter = 1100 mm hydraulic diameter = 350 mm

Vex = 60 m/s
uniform velocity profile = 6.075 m/s gauge pressure = 0

turbulent intensity = 20% turbulent intensity = 0.5%
hydraulic diameter = 1100 mm hydraulic diameter = 350 mm

2.4. Model Validation, Mesh Setting, and Mesh Independent Test

A model validation study is conducted by duplicating the contraction geometry and comparing
the experiment and numerical results provided by Ref. [15]. The mean velocity profiles at the selected
cross-sections are shown in Figure 2. The results for model validation show an agreement with the
results provided by Ref. [15] at x/L = 0.5 and carry out a more reasonable prediction, as compared
to the numerical results in Ref. [15] at x/L = 1. The velocity profile at the contraction exit should
show a core region with higher velocity surrounding by a low-velocity region due to friction effect,
as displayed by the experimental results and the simulation results conducted in this work. However,
the computational fluid dynamics (CFD) results from Ref. [15] fail to predict that.
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density settings. The relative differences for pressure profile along the centerline, velocity profile 
along the centerline, and transversal velocity profile at contraction exit are around 0.09%, 0.02%, and 
0.11%, respectively, when the case of 1.2 × 106 cells is used as the reference. From the analysis of 
variance (ANOVA), the p-values of pressure profile along the centerline, velocity profile along the 
centerline and velocity profile at contraction exit between these two mesh settings are all much less 
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performance of a contraction. For the mesh setting around 1.2 × 106 cells, the dimensionless wall 
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Around 1.2 × 106 structured hexahedral cells are used for all the investigated cases in this study.
An example mesh setting for the case with CT #1 is shown in Figure 3. A mesh independent test has
been performed for the case with CT #1 by comparing the calculated results with about 1.2 × 106 and
2.2 × 106 cells. Figure 4 shows the calculated pressure and velocity profiles which almost overlap
each other, in particular, within the highly concerned boundary layer region, from two different mesh
density settings. The relative differences for pressure profile along the centerline, velocity profile along
the centerline, and transversal velocity profile at contraction exit are around 0.09%, 0.02%, and 0.11%,
respectively, when the case of 1.2 × 106 cells is used as the reference. From the analysis of variance
(ANOVA), the p-values of pressure profile along the centerline, velocity profile along the centerline
and velocity profile at contraction exit between these two mesh settings are all much less than 10−10,
when the significant level is assumed as 0.01. It means that the mesh setting around 1.2 × 106 cells is
sufficiently dense to capture the flow physics and to evaluate the fluid mechanics performance of a
contraction. For the mesh setting around 1.2 × 106 cells, the dimensionless wall distances (y+) within
the boundary layer region are around 40 and 280 for the cases with contraction exit velocity of 6 m/s
and 60 m/s, respectively. It means that the wall-adjacent cell’s centroid is located within the log-law
layer to justify the enhanced wall treatment.
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Figure 4. Pressure and velocity profiles along centerline and velocity profiles from two different
mesh density settings, (a) pressure profile along centerline; (b) velocity profile along centerline;
(c) velocity profile at contraction exit.

3. Results and Discussion

3.1. Effect of Contraction Wall Shape

This section will focus on the effect of contraction wall shape, considering the axisymmetric,
circular cross-sectional contractions.

Figure 5 exemplifies the calculated velocity contour for the case of CT #1 at an exit velocity of
60 m/s. In fact, all four investigated contractions deliver barely distinguishable velocity contours.
However, CT #2 needs a higher static upstream pressure to accelerate the flow up to 60 m/s at the
contraction exit. The 80 Pa pressure loss of the CT #2 is higher than the other contractions: 72 Pa, 63 Pa,
and 64 Pa for CT #1, CT #3, and CT #4, respectively, as listed in Table 3. Taking a closed-loop wind
tunnel with the operating velocity of 60 m/s for example, the difference in pressure loss between CT #2
and CT #3 is around 17 Pa, which amounts to about 4% of the total pressure loss, as shown in Table 4.
The pressure loss of a contraction might be a concern about the long-term operating cost and a fan
selection when the operating velocity of a wind tunnel is up to 60 m/s or even up to 100 m/s.
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circle cross-sectional shape and Vex = 60 m/s.

Table 3. Pressure drops along investigated contractions (Vex = 60 m/s).

Case
Cross-Sectional Shape

Circle Square Octagon

CT #1 72 Pa 71 Pa 65 Pa
CT #2 80 Pa 78 Pa 70 Pa
CT #3 63 Pa 58 Pa 58 Pa
CT #4 64 Pa 65 Pa 59 Pa

Table 4. Estimated pressure drops on components of investigated closed-loop wind tunnel (Vex = 60 m/s).

Component Pressure Drop (Pa) Percentage

honeycomb 12 2.9%
5 screen meshes 160 39.3%

contraction 64 15.6%
test section 79 19.3%

diffuser 37 9.0%
4 turning corners 57 13.9%

total 409 100%

The velocity profiles at the contraction exits are shown in Figure 6. The velocity profile from
CT #4 shows a thinner boundary layer at the exit in the case of either Vex = 6 m/s or Vex = 60 m/s.
The boundary layer thicknesses developed at the contraction exit by the CT #1, CT #2 and CT #3
are almost identical. The core regions, covering 90% and 88% of the central cross-section span are
not influenced by the boundary layer in the case of Vex = 60 m/s and Vex = 6 m/s, respectively.
The slight difference should be attributed to the higher velocity effect, i.e., higher Reynolds number,
for suppressing the growth of boundary layer in the case of Vex = 60 m/s. The axial velocity standard
deviations within the core region of the four investigated contractions are listed in Table 5. The axial
velocity standard deviation of CT #2 is higher than those of the other three contractions, while the
other three contractions have very similar results. This might result from the higher first and second
derivatives, i.e., the slope and the change of slope, of CT #2 than those of the other three contractions
at the inflection point (x = 900 mm), as shown in Figure 7. It means that the contraction wall outline of
CT #2 changes more rapidly than the others near the inflection point and results in a higher turbulence
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kinetic energy ratio at the downstream of the inflection point (x < 900 mm) when the turbulence
kinetic energy at the contraction inlet is used as the reference, as shown in Figure 8. The higher
turbulent kinetic energy within CT #2 accounts for the higher axial velocity standard deviation at the
exit. Although the non-zero second-derivative values are observed at both ends of the contraction
portions of CT #3 and CT #4, the long enough parallel leading and trailing portions might be able to
compensate the non-zero second derivatives at both ends. The first and the second derivatives from
different contraction wall shape equations might provide a hint for qualitatively comparing the exit
flow quality from the different contractions.

Table 5. Axial velocity standard deviations within core region of investigated contractions.

Case
Cross-Sectional Shape

Circle Square Octagon

Vex = 6 m/s

CT #1 0.014 m/s 0.014 m/s 0.012 m/s
CT #2 0.018 m/s 0.016 m/s 0.012 m/s
CT #3 0.013 m/s 0.012 m/s 0.010 m/s
CT #4 0.012 m/s 0.012 m/s 0.010 m/s

Vex = 60 m/s

CT #1 0.072 m/s 0.064 m/s 0.051 m/s
CT #2 0.097 m/s 0.073 m/s 0.052 m/s
CT #3 0.064 m/s 0.052 m/s 0.042 m/s
CT #4 0.059 m/s 0.054 m/s 0.045 m/s
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with CT #2 having the highest pressure loss. The octagonal cross-sectional shape shows the overall 
lower pressure loss, as compared to the other cross-sectional shape among four different contraction 
wall shapes. For the same contraction wall shape, the differences in pressure loss among the three 
different cross-sectional shapes are less than 10 Pa. As afore-mentioned for the circular 
cross-sectional shape, the differences in pressure loss could be up to 17 Pa. It means that the wall 
shape is a more dominant factor for the pressure loss along a contraction than the cross-sectional 
shape regarding the pressure loss. 

The axial velocity profiles at the contraction exits from the square and octagonal cross-sectional 
shapes are shown in Figures 9 and 10, respectively. All four investigated contraction wall shapes 
have almost identical boundary layer thickness at the contraction exit for a square cross-sectional 
shape. For the octagonal cross-sectional shape, CT #2 shows the slightly thicker boundary layer and 
the highest axial velocity standard deviations at the contraction exit (Table 5), as compared to the 
other three contraction wall shapes. This is consistent with the observation from the circular 
cross-sectional shapes.  

In Figure 11, presented for CT #1 as an example, the corner flow is localized and does not result 
in a separation flow to significantly affect most of the test section span. The present results are 
consistent with the statement of Metha [17]. However, the cross-sectional shape still influences the 
boundary layer thickness and the axial velocity standard deviation within the core region at the 
contraction exit. The case with an octagonal cross-sectional shape shows a better performance in 
fluid mechanics in terms of the thinner boundary layer (Figure 12), the lower axial velocity standard 
deviation (Table 5), and the lower pressure loss (Table 3) than the other cases with a circular or a 
square cross-sectional shape. Moreover, our experience shows that the octagonal one also has the 
lower difficulty of manufacturing and cost.  
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3.2. Effect of Contraction Cross-Sectional Shape

The pressure losses along the contractions with the cross-sectional shapes of square and octagon
are listed in Table 3 as well. The general observation from the square and the octagonal cross-sectional
contractions is consistent with that from the circular cross-sectional contractions, with CT #2 having
the highest pressure loss. The octagonal cross-sectional shape shows the overall lower pressure loss,
as compared to the other cross-sectional shape among four different contraction wall shapes. For the
same contraction wall shape, the differences in pressure loss among the three different cross-sectional
shapes are less than 10 Pa. As afore-mentioned for the circular cross-sectional shape, the differences
in pressure loss could be up to 17 Pa. It means that the wall shape is a more dominant factor for the
pressure loss along a contraction than the cross-sectional shape regarding the pressure loss.

The axial velocity profiles at the contraction exits from the square and octagonal cross-sectional
shapes are shown in Figures 9 and 10, respectively. All four investigated contraction wall shapes
have almost identical boundary layer thickness at the contraction exit for a square cross-sectional
shape. For the octagonal cross-sectional shape, CT #2 shows the slightly thicker boundary layer
and the highest axial velocity standard deviations at the contraction exit (Table 5), as compared to
the other three contraction wall shapes. This is consistent with the observation from the circular
cross-sectional shapes.

In Figure 11, presented for CT #1 as an example, the corner flow is localized and does not
result in a separation flow to significantly affect most of the test section span. The present results
are consistent with the statement of Metha [17]. However, the cross-sectional shape still influences
the boundary layer thickness and the axial velocity standard deviation within the core region at the
contraction exit. The case with an octagonal cross-sectional shape shows a better performance in
fluid mechanics in terms of the thinner boundary layer (Figure 12), the lower axial velocity standard
deviation (Table 5), and the lower pressure loss (Table 3) than the other cases with a circular or a
square cross-sectional shape. Moreover, our experience shows that the octagonal one also has the
lower difficulty of manufacturing and cost.
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4. Conclusions

In this work, computational simulations on the fluid mechanics of wind tunnel contractions have
been conducted. Four different contraction wall shapes and three common cross-sectional shapes,
namely, circle, square and octagon, are studied. The main conclusions of this work are highlighted as
follows:

1. Different contraction wall shapes investigated in this study result in pressure loss difference up to
17 Pa, contributing about 4% in the pressure loss of the entire wind tunnel system. The effect of
cross-sectional shape would only lead to pressure loss differences less than 10 Pa. Thus, the wall
shape is more critical than the cross-sectional shape of a wind tunnel.

2. The first and the second derivatives of different contraction wall shape equations could provide a
hint for qualitatively comparing the flow characteristics at the contraction exits.

3. The octagonal cross-sectional shape of a wind tunnel shows a better fluid mechanics performance
in terms of the thinner boundary layer, a lower axial velocity standard deviation within the core
region at the contraction exit, and a lower pressure drop along the contraction.

4. From the aspect of an engineering application, a wind tunnel contraction with an octagonal
cross-sectional shape has not only better flow performance than that with a circular or square
cross-sectional shape but also the lower difficulty of manufacturing and cost according to
our experience. Moreover, as compared to the circular cross-sectional shape, the octagonal
cross-sectional shape has a larger cross-sectional area to result in a smaller blockage ratio within
the test section under the same hydraulic diameter circumstance. An octagonal cross-sectional
shape is recommended as a design candidate of wind tunnel contraction.
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