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Abstract: The first portion of this paper contains an overview of recent progress in the development of
dynamical-systems-based methods for the computation of Lagrangian transport processes in physical
oceanography. We review the considerable progress made in the computation and interpretation of
key material features such as eddy boundaries, and stable and unstable manifolds (or their finite-time
approximations). Modern challenges to the Lagrangian approach include the need to deal with the
complexity of the ocean submesoscale and the difficulty in computing fluxes of properties other
than volume. We suggest a new approach that reduces complexity through time filtering and that
directly addresses non-material, residual scalar fluxes. The approach is “semi-Lagrangian” insofar as
it contemplates trajectories of a velocity field related to a residual scalar flux, usually not the fluid
velocity. Two examples are explored, the first coming from a canonical example of viscous adjustment
along a flat plate and the second from a numerical simulation of a turbulent Antarctic Circumpolar
Current in an idealized geometry. Each example concentrates on the transport of dynamically relevant
scalars, and the second illustrates how substantial material exchange across a baroclinically unstable
jet coexists with zero residual buoyancy flux.

Keywords: residual scalar fluxes; transport barriers; Lagrangian coherent structures; stable and
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1. Introduction

Kinematic analysis of geophysically relevant fluid flows has in the past several decades been
elevated by dynamical-systems-based methods that enable identification of key material contours or
surfaces central to transport and stirring processes. In some cases, the contours are touted as barriers
to material transport, and although any material contour is by definition a barrier, there are some that
are particularly significant. For example, a long-lived, coherent eddy is often surrounded by a closed
material contour that undergoes minimal material stretching [1–3]. The contour does not undergo
filamentation or roll-up and therefore can be used to objectively define a boundary that contains fluid
that is trapped by the eddy and perhaps transported over large distances [4]. Another set of significant
objects consists of the stable and unstable (attracting and repelling) material manifolds of hyperbolic
trajectories. Material manifolds provide a framework for lobe dynamics, perhaps the most beautiful
method of Lagrangian transport analysis. Apparently first applied to the problem of fluid transport
by [5,6] this approach provides for the visualization and quantification of material transport between
qualitatively different regions of a time-varying flow field.

We will present an overview of contributions made roughly over the past two decades, focusing
on those that have impacted the field of physical oceanography. The review is not intended to be
exhaustive or mathematically rigorous, and the reader should consult the references, particularly [7,8],
for more formal treatments. The intent of the review is to emphasize accomplishments and limitations,
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and the latter will lead us to consider an alternative approach that combines elements of Lagrangian
analysis with a desire to comprehend property fluxes other than fluid material.

Perhaps the most enduring example of Lagrangian transport analysis in physical oceanography
is the computation of exchange between two counter-rotating gyres, depicted in Figure 1a as the
cyclonic and anticyclonic members of a dipole or double-gyre system. In a steady configuration,
two hyperbolic stagnation points S1 and S2 are connected by a streamline that separates the two
members. If a moderately weak, time-periodic disturbance is added to the velocity field, S1 and S2

will survive in the form of moving hyperbolic trajectories H1 and H2, for which the surrounding
flow is, on average, convergent in one direction and divergent in another (Figure 1b). For example,
the flow surrounding H1 will tend to be convergent, on average, in the along-shore direction and
divergent in the offshore direction. The positions of H1 and H2 will generally vary with time, but if the
disturbance is not too large, both points will linger in the neighborhood of the original stagnations
points. If one were to continuously introduce dye into the vicinity of H1, it would be attracted to H1

in the along-shore direction, but would be repelled in the offshore direction forming a long streak.
This streak would be an approximation of the unstable manifold (also called the “outgoing” manifold)
consisting of material that diverges from H1 (approaches H1 in backward time). The unstable manifold
of H1 is depicted by red contour in Figure 1b. Similarly, stable and unstable manifolds can be defined
for H2 as material, time-dependent curves consisting of fluid elements that approach H2 asymptotically
in forward or backward time. All of the manifolds evolve over time and Figure 1b is just a snap shot,
but if the time-dependence is periodic the shapes will recur periodically.
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Figure 1. Schematic of exchange in a dipole circulation. (a) Here the flow is steady and there is no 
material exchange between the two cells; (b) The flow is time-dependent and the gyres are no longer 
separated by a material boundary. Instead blue lobes (L1, L2 etc.) of material move left to right and are 
transported from the anticyclone to the cyclone. The uncolored lobes L−1, L−2, etc. are transported to 
the anticyclone from the cyclone. The solid arrows show the general direction of circulation. Dashed 
contours schematically indicate the outermost material contour marking the extent of the regular 
region within each gyre. (From [9]  American Meteorlogical Society. Used with permission.). 
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Figure 1. Schematic of exchange in a dipole circulation. (a) Here the flow is steady and there is no
material exchange between the two cells; (b) The flow is time-dependent and the gyres are no longer
separated by a material boundary. Instead blue lobes (L1, L2, etc.) of material move left to right and are
transported from the anticyclone to the cyclone. The uncolored lobes L−1, L−2, etc. are transported to
the anticyclone from the cyclone. The solid arrows show the general direction of circulation. Dashed
contours schematically indicate the outermost material contour marking the extent of the regular region
within each gyre. (From [9] © American Meteorlogical Society. Used with permission.).
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In the steady case (Figure 1a) the unstable manifold of S1 is also a stable manifold of S2 and can
be thought of as a boundary separating the cyclonic and anticyclonic members of the dipole. In the
unsteady case, these manifolds are distinct, and it is common for the unstable manifold of H1 to
intersect the stable manifold of H2. One can identify lobes of fluid L1, L2 whose boundaries consist
of segments of the intersecting manifolds. As the flow evolves, the lobe L1 will move from right to
left, continuing to be bounded by the same sections of the material curves. If the time dependence is
periodic, the shapes of the curves will recur after a single period, and the fluid in L1 will have moved
into the space depicted as L2 in the figure. After another period the fluid will have moved to the
space occupied by L3 and so on, so there is clearly a transport from the cyclone to the anticyclone.
In the same manner, fluid in lobe L−1 evolves into L−2 and so on, defining a transport process from
the anticyclone to the cyclone. This mechanism leads to exchange between the two gyres, and the
lobes are therefore called turnstile lobes. As implied in Figure 1, the lobes themselves tend to be
continuously stretched and folded, so that property gradients within are amplified and irreversible
property exchange through diffusion is enhanced. In time-periodic systems, the motion of fluid parcels
is often described by a Poincare’ map, in which discrete parcel positions are plotted at the end of each
period. In this description, the manifolds in Figure 1b remain frozen, fluid parcels remain on the fixed
manifolds as they are mapped from one position to the next, and fluid blobs are mapped from one
lobe to another. We prefer to think about the manifolds as time-continuous objects since this picture is
relevant to the time aperiodic case, which can be similar in concept and geometry. An example from
a numerical simulation of a strongly aperiodic, surface dipole in the Philippine Seas [9] appears in
Figure 2.
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Lobe analysis has been applied to a number of oceanographically relevant flow fields including 
meandering jets [10], dipoles and counter rotating gyres [11–15], boundary-trapped recirculations [16], 
and breaking Rossby waves [17]. In most cases the velocity field is assumed to be two-dimensional and 
divergence free, which limits the zoology of stagnation points to just two types: hyperbolic and 
elliptic. The analysis has been applied [18] to a three-dimensional model of a Gulf of Mexico Loop 
Current eddy, but the weakness of the vertical velocity implies that the horizontal velocity field is 
approximately nondivergent at each depth, enabling the authors to construct a 3D picture by stacking 
a set of 2D analyses at different horizontal levels. The finite time material manifolds now consist of 
intersecting surfaces (Figure 3), with finite volume lobes of fluid trapped between. Due to the lengthy 
analysis involved in making just a single snapshot of the lobes, the authors did not attempt any 
transport calculations. 

Figure 2. Philippine Seas dipole with the geometry resembling the idealized example shown in Figure 1.
Red and blue curves are finite-time analogs of the stable and unstable manifolds computed for a realistic
numerical simulation of the Philippine Seas. The red curves emanate from hyperbolic regions close
to the coastlines of a peninsula and 2 islands near x = 620. The blue curves emanate from an offshore
hyperbolic region not shown, and from hyperbolic regions near the coasts. (From [9] © American
Meteorlogical Society. Used with permission.).

Lobe analysis has been applied to a number of oceanographically relevant flow fields including
meandering jets [10], dipoles and counter rotating gyres [11–15], boundary-trapped recirculations [16],
and breaking Rossby waves [17]. In most cases the velocity field is assumed to be two-dimensional
and divergence free, which limits the zoology of stagnation points to just two types: hyperbolic and
elliptic. The analysis has been applied [18] to a three-dimensional model of a Gulf of Mexico Loop
Current eddy, but the weakness of the vertical velocity implies that the horizontal velocity field is
approximately nondivergent at each depth, enabling the authors to construct a 3D picture by stacking
a set of 2D analyses at different horizontal levels. The finite time material manifolds now consist
of intersecting surfaces (Figure 3), with finite volume lobes of fluid trapped between. Due to the
lengthy analysis involved in making just a single snapshot of the lobes, the authors did not attempt
any transport calculations.
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Even when hyperbolic-type LCS can reasonably be defined in finite time, it may or may not be 
advantageous to perform a lobe analysis. However, the finite-time LCS themselves still yield valuable 
information as to which regions of the flow field are being most rapidly stirred and whether barriers 
to chaotic transport exist. An example of success comes from Monterey Bay [22], where the circulation 
has a strong tidal component. Maps of LCS yield information about how the bay is flushed. Other 
successful applications include the Adriatic Sea [14], where the circulation is dominated by three 
coherent gyres, and the Phillipine Sea [9] where the transport of nutrients from Manila Bay into an 
offshore dipole can be tracked using manifold-type analysis. 
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Mexico eddy. (Reprinted from [18], Copyright 2010, with permission from Elsevier.).

When the velocity fields are known only over finite time, or when strong hyperbolicity is limited
to a finite time window, objects similar to stable and unstable material manifolds may still be found.
As pointed out in [19], persistent hyperbolicity can occur when the Eulerian time scale of the flow
is much longer than the Lagrangian time scale. This time scale separation can occur in the so-called
chaotic advection regime, when the flow field is dominated by long-lived coherent structures, often in
the form of eddies. For example, a concentrated hyperbolic region can form between eddies of
like sign and may persist over many eddy winding times (see point “1” in Figure 4). If a passive
tracer is introduced in this region, it will experience contraction in one direction and expulsion
in another direction, all in analogy to the stable and unstable directions of a hyperbolic trajectory.
Thin material streaks of tracer that emanate from the hyperbolic region in the unstable direction
in forward time (or in the stable direction in reverse time) exhibit behavior similar to that typical
for invariant manifolds. These objects are collectively known as hyperbolic Lagrangian Coherent
Structures [20], or LCS, that form a skeleton or template for stirring and transport processes due
to their attractive/repelling properties. In this paper, we will use the term “finite-time manifolds”
loosely to refer to the hyperbolic-type LCS that serve as finite-time analogs of infinite-time invariant
manifolds from classical dynamical systems theory. In addition to finite-time manifolds (hyperbolic
LCS), relevant finite-time analogs of infinite-time material objects from dynamical systems theory
include closed contours defining the boundaries of coherent eddies (elliptic LCS), which are or analogs
of KAM tori, and material barriers defined by minimal Lagrangian shear (parabolic LCS), which are
analogs of shearless trajectories (e.g., the central axis of a jet) and can exhibit strong stability under
perturbation in certain types of Hamiltonian systems [1]. An example of the latter can be found
in [21]. Even when hyperbolic-type LCS can reasonably be defined in finite time, it may or may
not be advantageous to perform a lobe analysis. However, the finite-time LCS themselves still yield
valuable information as to which regions of the flow field are being most rapidly stirred and whether
barriers to chaotic transport exist. An example of success comes from Monterey Bay [22], where the
circulation has a strong tidal component. Maps of LCS yield information about how the bay is flushed.
Other successful applications include the Adriatic Sea [14], where the circulation is dominated by
three coherent gyres, and the Phillipine Sea [9] where the transport of nutrients from Manila Bay into
an offshore dipole can be tracked using manifold-type analysis.

As an example of the type of information that can be gained, consider a plot of 7-day backward
and forward, finite-time Lyapunov exponents (FTLEs), computed using a model of the Philippine
Seas (Figure 4) and based on the surface velocity field. The ridges of the FTLE fields are often used to
approximate finite-time material manifolds [20,23]. (Though regions of strong shear can sometimes
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result in FTLE ridges that are not associated with hyperbolic-type LCSs, these cases are generally rare
in realistic oceanic flows. See [1] for a more rigorous approach to identifying LCS.) Areas that are
densely covered by intersecting curves indicate regions of rapid stretching and folding of material
whereas regions that are clear tend to be more slowly stirring, isolated and more regular. Examples of
the latter include the interiors of “Figure-eight” separatrix formed by two nearby anticyclonic eddies
(marked “1”) and two topographically constrained recirculations (marked “2” and “3”). A more
recent approach [24] to the identification of mixing zones, based on averages of hyperbolicity along
trajectories, has been applied to an oil spill in the Gulf of Mexico.
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Used with permission.).

Much of the current interest in Lagrangian dynamical systems analysis is focused on elliptic
LCS, closed material contours that exhibit uniform stretching and that can define the boundaries of
various types of vortices. The underlying idea is that a boundary that rolls up and develops filaments
would undergo non-uniform stretching. Variational methods for computing these objects have been
developed [1,2] and applied to features such as S. Atlantic surface eddies generated in the South African
“caldron” [4]. By defining and computing bounding elliptical contours, the authors have identified
eddies that can remain coherent over thousands of km (Figure 5). Other Lagrangian approaches for
the identification and tracking of coherent eddies include transfer operator methods [25], in which the
most coherent sets of trajectories starting from a grid of initial positions are computed. This approach
has been successfully used to track 3D Agulhas eddies in numerical simulations [26]. Koopman
mode analysis [27,28] also has the potential to identify features that are coherent in a Lagrangian
sense. Here, time averages of fixed scalar fields are taken along individual trajectories and clustering
algorithms are used to identify those trajectories most similar in terms of Lagrangian averages. Other
measures that potentially identify LCS include trajectory arclength [29,30] and other measures of
trajectory complexity [30]. There is always debate as to whether objects identified by various methods
are material following. If the approach is based on a frame-dependent measure such as Eulerian
vorticity, then there is an obligation to demonstrate that the computed object is, in fact, Lagrangian.



Fluids 2016, 1, 27 6 of 20

Fluids 2016, 1, 27 6 of 20 

 
(a)

 
(b)

 
(c)

Figure 5. The red filamented surface material in (a) coalesces to form an eddy in (b) that remains 
coherent as it travels westward across the middle portion of the S. Atlantic (c); The distance covered 
between frames (b) and (c) is approximately 4000 km. (Courtesy of F. J. Beron-Vera, also see [4]). 

Although elliptic LCS identify coherent structures in the flow field, there is no guarantee that 
these structure are eddies, at least not in the sense that they are identified with anomalously high 
vorticity. This has led to a search for boundaries that remain coherent and that are identified by high 
anomalous Lagrangian-averaged vorticity deviation [15] (and also see [31]). An example of a conical 
boundary surrounding a surface vortex a 3D simulation of the upper ocean is shown in Figure 6. 

Figure 5. The red filamented surface material in (a) coalesces to form an eddy in (b) that remains
coherent as it travels westward across the middle portion of the S. Atlantic (c); The distance covered
between frames (b) and (c) is approximately 4000 km. (Courtesy of F. J. Beron-Vera, also see [4]).

Although elliptic LCS identify coherent structures in the flow field, there is no guarantee that
these structure are eddies, at least not in the sense that they are identified with anomalously high
vorticity. This has led to a search for boundaries that remain coherent and that are identified by high
anomalous Lagrangian-averaged vorticity deviation [15] (and also see [31]). An example of a conical
boundary surrounding a surface vortex a 3D simulation of the upper ocean is shown in Figure 6.
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regions of fully 3D flows that have a vertical velocity (w) that is significant in the sense that vertical 
derivative of w is as large as the horizontal divergence of the horizontal velocity. This is not the case 
in quasigeostrophic motion, where the divergence of the horizontal velocity is zero to leading order. 
In this setting the zoology of stagnation points enlarges to include spiral structures [33]. 
Oceanographically relevant flow fields often involve divergent surface and bottom Ekman layers, 
sub-mesoscale filaments and fronts, and convection cells. Other studies [34,35] use idealized but 
dynamically consistent flow fields. A canonical example that has applications in physical 
oceanography and engineering, and whose Eulerian characteristics have been studied extensively, is 
the rotating cylinder flow [34]. In one of many possible configurations of this flow (Figure 7a), the 
circulation in the cylinder is driven by a differential stress distribution at the top surface, and this 
results in a flow field that has horizontal swirl and vertical overturning, with spiraling trajectories 
that recirculate on tori. When the axial symmetry of the flow is broken in some manner, some of the 
tori brake resulting in the formation of chaotic resonant layers, separated by material barriers. These 
barriers also take the form of tori, as shown by several examples (Figure 7b). Three dimensional ABC flow 
[15,27] and a kinematic model of neighboring convection cells [36] form the basis for other commonly-
considered 3d examples. 
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Figure 6. The yellow surface is the boundary of a mesoscale eddy computed using the technique
of [15] and based on the Southern Ocean state estimation model [32]. The boundary was found to
remain coherent over at least 120 days. (From [15], reproduced with permission from Cambridge
University Press.).

Recent attention has been directed towards a better understand of the barriers and chaotic
regions of fully 3D flows that have a vertical velocity (w) that is significant in the sense that vertical
derivative of w is as large as the horizontal divergence of the horizontal velocity. This is not the case in
quasigeostrophic motion, where the divergence of the horizontal velocity is zero to leading order. In this
setting the zoology of stagnation points enlarges to include spiral structures [33]. Oceanographically
relevant flow fields often involve divergent surface and bottom Ekman layers, sub-mesoscale filaments
and fronts, and convection cells. Other studies [34,35] use idealized but dynamically consistent
flow fields. A canonical example that has applications in physical oceanography and engineering,
and whose Eulerian characteristics have been studied extensively, is the rotating cylinder flow [34].
In one of many possible configurations of this flow (Figure 7a), the circulation in the cylinder is driven
by a differential stress distribution at the top surface, and this results in a flow field that has horizontal
swirl and vertical overturning, with spiraling trajectories that recirculate on tori. When the axial
symmetry of the flow is broken in some manner, some of the tori brake resulting in the formation
of chaotic resonant layers, separated by material barriers. These barriers also take the form of tori,
as shown by several examples (Figure 7b). Three dimensional ABC flow [15,27] and a kinematic model
of neighboring convection cells [36] form the basis for other commonly-considered 3d examples.
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In this setting the zoology of stagnation points enlarges to include spiral structures [33]. 
Oceanographically relevant flow fields often involve divergent surface and bottom Ekman layers, 
sub-mesoscale filaments and fronts, and convection cells. Other studies [34,35] use idealized but 
dynamically consistent flow fields. A canonical example that has applications in physical 
oceanography and engineering, and whose Eulerian characteristics have been studied extensively, is 
the rotating cylinder flow [34]. In one of many possible configurations of this flow (Figure 7a), the 
circulation in the cylinder is driven by a differential stress distribution at the top surface, and this 
results in a flow field that has horizontal swirl and vertical overturning, with spiraling trajectories 
that recirculate on tori. When the axial symmetry of the flow is broken in some manner, some of the 
tori brake resulting in the formation of chaotic resonant layers, separated by material barriers. These 
barriers also take the form of tori, as shown by several examples (Figure 7b). Three dimensional ABC flow 
[15,27] and a kinematic model of neighboring convection cells [36] form the basis for other commonly-
considered 3d examples. 
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Figure 7. Cont.
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Figure 7. (a) Schematic of the rotating cylinder flow, with the homogeneous fluid in the cylinder 
driven by a positive differential rotation of the lid. This forcing results in upwelling into a surface 
Ekman Layer, downwelling in sidewall layers, and collection and expulsion of trajectories in a bottom 
Ekman layer. Hypebolic stagnation points exist at the center of the bottom and top lids; (b) A chaotic 
trajectory (red) and two material barriers (green and blue, both tori) that arise when the lid stress is 
moved slightly off center. (All from [34], reproduced with permission from Cambridge University 
Press.). 
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flux in 2D), and while this may be of significance, one is typically more interested in the transports 
of other scalar properties such as heat, salt, momentum, vorticity, energy, contaminants or chemical 
and biological tracers. If the scalar is approximately conserved following the fluid, then LCS analysis 
has direct implications for the scalar flux. However oxygen, momentum components, and other 
dynamical and biological tracers can be highly non-conservative. An attempt was made [16] to 
confront this challenge in the context of an unstable, boundary trapped gyre in a model of wind-
driven, barotropic ocean circulation (Figure 8). At issue are the dynamical mechanisms for driving 
the circulation in the gyre, which include the wind but also potential vorticity advection into and out 
of the gyre by eddies. The dynamics can be summarized by writing down the circulation integral for 
the barotropic flow on a beta plane: 
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Figure 7. (a) Schematic of the rotating cylinder flow, with the homogeneous fluid in the cylinder driven
by a positive differential rotation of the lid. This forcing results in upwelling into a surface Ekman
Layer, downwelling in sidewall layers, and collection and expulsion of trajectories in a bottom Ekman
layer. Hypebolic stagnation points exist at the center of the bottom and top lids; (b) A chaotic trajectory
(red) and two material barriers (green and blue, both tori) that arise when the lid stress is moved
slightly off center. (All from [34], reproduced with permission from Cambridge University Press.).

Despite considerable theoretical and computational advances in the identification of important
material objects, the field of LCS analysis faces a number of limitations in its application to mainstream
physical oceanography. One is that the transport calculations, whether they follow from lobe analysis
or from the tracking of elliptic contours or surfaces, give only a volume flux (or area flux in 2D),
and while this may be of significance, one is typically more interested in the transports of other scalar
properties such as heat, salt, momentum, vorticity, energy, contaminants or chemical and biological
tracers. If the scalar is approximately conserved following the fluid, then LCS analysis has direct
implications for the scalar flux. However oxygen, momentum components, and other dynamical
and biological tracers can be highly non-conservative. An attempt was made [16] to confront this
challenge in the context of an unstable, boundary trapped gyre in a model of wind-driven, barotropic
ocean circulation (Figure 8). At issue are the dynamical mechanisms for driving the circulation in the
gyre, which include the wind but also potential vorticity advection into and out of the gyre by eddies.
The dynamics can be summarized by writing down the circulation integral for the barotropic flow on
a beta plane:

d
dt

z

∂R

u · lds +
d
dt

x

R(t)

βydxdy = −
z

∂R

qu · nds +
z

∂R

τ · l
ρH

ds + AH

z

∂R

∇2u · lds (1)

where q = ζ + βy is the potential vorticity, ζ is the relative vorticity, β is the rate of change of Coriolis
parameter with latitude, τ is the surface wind stress, ρ is the (uniform) density, AH is the horizontal
eddy viscosity, H is the constant ocean depth, and u is the horizontal velocity. The contour integrals
are taken about the boundary ∂R of a region R that contains the gyre. The integrals on the right-hand
side of Equation (1) measure the advection of potential vorticity across ∂R, the tangential component
of stress on ∂R, and the horizontal frictional stress acting along ∂R. The sum of these terms can
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cause the gyre to spin up or down, as measured by the rate of change of circulation (first term in the
left-hand side), and/or cause the mean latitude y of the gyre to increase or decrease (second term
in the left-hand side). By constructing a time-dependent boundary ∂R(t) using pieces of stable and
unstable manifolds, the authors were able to quantify the advection of q into and out of the gyre as
a lobe exchange processes. The approach requires that one first computes the manifolds and lobes,
then separately calculates the amount of area-integrated q for each lobe entering or leaving the gyre at
irregular intervals.
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The method is formulated based on perturbation theory and hence requires variations (i.e., 
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as a diagnostic tool for Lagrangian transport and is applied by the authors to the problem of exchange 
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evident, for example, in a study of transport between the Atlantic Ocean subtropical and subpolar 
gyres ([39] and Figure 9). There the intersecting finite-time stable and unstable manifolds 
(approximated by FTLE ridges) are extremely complex and spring from numerous hyperbolic 
trajectories. In another study [40], manifold proxies are computed in models of increasing resolution 
and it is shown that the presence of submesoscale motions causes otherwise smooth LCS to rapidly 
filament and acquire a level of complexity that would surely undermine the type of mesoscale lobe 
computations presented in [18]. Of course, these findings are dependent on the model’s 
representation of submesoscales, a feature that is difficult to validate. In fact, some studies [41,42] 
have found good agreement between observed surface drifter motion and LCS computed from 
altimeter-based velocities. 

Figure 8. Turnstile lobe exchange of fluid in and out of a boundary trapped gyre in a single-layer,
wind-driven gyre on a β-plane. The blue lobe contains fluid transported from the interior to the exterior
of the gyre, while the red lobe contains fluid that is being transported into the gyre. Both are responsible
for carrying potential vorticity into and out of the gyre, which can cause the gyre to spin up or spin
down. (From [16] © American Meteorlogical Society. Used with permission.).

In a more recent attempt [37,38] to calculate scalar property fluxes using lobe analysis, the velocity
and scalar tracer fields are partitioned into a time mean and a time-varying perturbation. The boundary
across which the tracer transport is computed is chosen as a mean streamline and the flux is associated
with “psuedo lobes” formed by a material contour that initially coincides with a mean streamline
but that begins to meander back and forth across it as the result of transverse motion. The method
is formulated based on perturbation theory and hence requires variations (i.e., perturbations) about
the means of the velocity and tracer field to be small. The method can be used as a diagnostic tool for
Lagrangian transport and is applied by the authors to the problem of exchange of a passive tracer
between two gyres.

The second limitation is that eddy resolving flow fields are often so complex that computation of
Lagrangian material transport would require a prohibitively intricate level of bookkeeping. This is
evident, for example, in a study of transport between the Atlantic Ocean subtropical and subpolar gyres
([39] and Figure 9). There the intersecting finite-time stable and unstable manifolds (approximated by
FTLE ridges) are extremely complex and spring from numerous hyperbolic trajectories. In another
study [40], manifold proxies are computed in models of increasing resolution and it is shown that the
presence of submesoscale motions causes otherwise smooth LCS to rapidly filament and acquire a level
of complexity that would surely undermine the type of mesoscale lobe computations presented in [18].
Of course, these findings are dependent on the model’s representation of submesoscales, a feature that
is difficult to validate. In fact, some studies [41,42] have found good agreement between observed
surface drifter motion and LCS computed from altimeter-based velocities.
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with permission.). 
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Figure 9. Snapshot of forward-time FTLEs on 6 January 1993 based on surface velocities from the
time-dependent AVISO satellite altimetry superposed on the drifter-based mean flow. The ridges
ostensibly approximate finite-time unstable manifolds or hyperbolic-type LCS. Backward-time FTLEs
(not shown) exhibit the same level of complexity. (From [39] © American Meteorlogical Society.
Used with permission.).

This all begs the question of whether it is possible to develop an approach that retains some of the
flavor and intuition afforded by LCS analysis, that yields direct information about fluxes of specific
physical properties, and that can somehow avoid bookkeeping difficulties that can arise in intricate
flow fields. To accomplish the latter, the method must treat some smoothed version of the flow and
yield fluxes that are meaningful. The approach developed below is a possible step in that direction
and our purpose here is to describe it and point out some strengths and weaknesses. As with most
other types of Lagrangian analysis, it is completely diagnostic and requires that the fluid velocity
and tracer fields are known in advance. In the case of a dynamically active tracer such as buoyancy
or vorticity, the flux is determined by the velocity and thermodynamic variables (pressure, density,
temperature, etc.), all of which are part of the model output. If the tracer is passive, then a separate
calculation is required, perhaps with an advection-diffusion equation, in order to establish the tracer
fields, with different distributions following from different initial conditions.

2. Results

2.1. Kinematics of a Residual Scalar Flux

Consider a scalar property C that is governed by the conservation law

∂C
∂t

= −∇ · F + S (2)

where S represents all the sources and sinks of C and F represents the flux of C. This form is quite
general and, in fact, not unique, for one may have a choice whether to include specific terms in ∇ · F
or assign them to S. For our purposes it will be advantageous to include in ∇ · F as many terms as
possible. The flux vector F will generally contain contributions from advection by the fluid velocity u
and from molecular or sub-grid scale diffusion. As we shall show, it may also contain certain types
of forcing. It is not uniquely defined, as one can add to it any non-divergent vector. In many cases,
the best choice of F is determined by boundary conditions and/or by the considered formulation of
the specific budget or science question that one wishes to address. Further discussion on this point
follows below.
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Any particular F can be nonuniquely represented as the product of an arbitrary scalar quantity
γ(x,t), with the same units as C, and a corresponding velocity u*(x,t), so that u* = F/γ. For a given
choice of γ, consider the trajectories x*(t; xo*,to) of the velocity field u*, as determined from

dx∗

dt
= u∗(x∗, t), x∗(to; xo

∗, to) = xo
∗ (3)

In most of the applications explored later on u* is divergent, however we will assume that u* is
sufficiently well behaved that the mapping of the initial condition x∗(to; xo

∗, to) = xo
∗ to its destination

x∗(t; xo
∗, to) at time t is unique and invertible.

Under these conditions, we may then define a volume Vγ(t) enclosed in surface Aγ(t) that is
obtained by evolving a surface Aγ(0) of initial conditions forward under Equation (3). Integration of
Equation (2) over this volume then yields

w

Vr

∂C
∂t

dV =
d
dt

w

Vr
CdV −

w

Ar
Cu∗ · ndA =−

w

Ar
γu∗ · ndA+

w

Vr
SdV (4)

where n is the outward normal to Aγ(t) and where Leibnitz’s rule is used in the first step. With the
choice γ = C, this relation simplifies to

d
dt

w

VC
CdV =

w

Vc
SdV (5)

Thus, the total amount of tracer in VC(t) remains conserved if its boundary AC(t) is advected
with the velocity u∗ = F/C and if S (or its integral over VC(t)) is zero. In this sense, the boundary
acts as a “barrier” for the tracer in the same way that material contours act as barriers to material
transport. However, u∗ will generally be divergent and may be infinite (as in our first example below)
so that finite-time invariant manifolds, hyperbolic and elliptic LCS and the like may not exist in the
established sense.

As a simple example, consider the advection/diffusion equation for temperature T of the fluid in
the presence of an incompressible fluid velocity u:

∂T
∂t

= −∇ · (uT) + κT∇2T (6)

The molecular diffusivity κT is considered constant. We have the choice of writing the right hand
side as −∇ · (F), where F = uT − κ∇T, or as −∇ · (F) + S, where F = uT and S = κT∇2T. In first
case u∗ = u− κ∇T/T whereas in the second u* = u. The advantage of the fist choice is that a closed
volume advected with the velocity u* will conserve total heat.

As a second example illustrating the flexibility one may have in assigning terms normally regarded
as sources or sinks to ∇ · F, consider the potential vorticity equation for a single-layer model of
wind-driven, homogeneous ocean circulation on a β-plane:

∂q
∂t

+ J(ψ, q) =
τ0

ρ f0UDε
k× curl(τ)− r

2
∇2ψ+

1
Re
∇4ψ (7)

Here q = ∇2ψ− Fψ+ ηB +βy is the potential vorticity, ψ is the stream function, ηB is the bottom
elevation, τ is the wind stress, r is a bottom drag coefficient and 1/Re is the horizontal eddy viscosity.
The nondimensionalization and definition of the other scales can be found in [43]. Equation (7)
attributes the rate of change of q to advection of q (second term on the left), vortex stretching due to
Ekman pumping (first term on right) and bottom and lateral friction (final two terms). The equation
may be rewritten in the form

∂q
∂t

= −∇ · F (8)
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where
F = −uq +

τ0

ρ f0UDε
k× τ+ r

2
∇ψ− 1

Re
∇2ζ, (9)

where ζ = ∇2ψ. Thus, the wind forcing and dissipation terms, normally regarded as belonging to the
source and sink term S, may all be absorbed into F. The total amount of potential vorticity carried by
a volume advected by the velocity field u* = F/q is thus conserved.

The previous examples illustrate how patches or volumes containing fixed amounts of heat
and potential vorticity can be identified and tracked in time. It remains to be seen how useful
this construction is in particular problems, but since heat and potential vorticity transport are of
fundamental importance in processes such as baroclinic and barotropic instability, wave-mean flow
interactions, and general circulation and climate, the prospects are intriguing.

The distribution of a scalar in a turbulent flow can be quite complex, with fine filaments, even
if the advecting velocity field is smooth, so u* may be considerably more complex than the fluid
velocity field. It then becomes desirable to consider smoothed versions of the velocity and tracer fields.
We therefore consider a low-pass filter, taken over a window of length T:

C(x, t) =
1
T

w t+T/2

t−T/2
s(t′ − t)C(x, t′)dt′ (10)

Again, the choice of T is guided by the particular problem at hand. For our purposes,
interpretation of the filter is most obvious when the smoothing function s(t′ − t) is unity, for then the
filter is just a running average in time of the scalar quantity over T.

The time average of Equation (2) is then,

∂C
∂t

= −∇ · F + S (11)

(using the fact that ∂C/∂t can be shown to equal ∂C/∂t). The foregoing arguments then lead to

d
dt

w

VC
CdV =

w

VC
SdV (12)

where the surface SC enclosing the volume VC is now advected by the velocity u∗ = F/C.
If we partition the velocity and tracer field between the slowly varying mean and departures

from it (denoted by a prime), then F will commonly take the form uC + u′C′ + u′C + uC′ − κ∇C but
may include other terms as well. Note that the ‘Leonard’ flux terms u′C and uC′ arise due to the fact
that the “average” terms vary slowly in time [44]. They shrink to zero in the limit T→∞. The full
expression uC + u′C′ + u′C + uC′ − κ∇C describes a residual flux that includes contributions from
eddies and from sub-grid diffusion. We will refer to u∗ as the residual velocity. It has some similarity
to the transformed Eulerian mean (TEM) velocity ([45], Section 7.3) insofar as it measures a residual.
It also differs in several respects, one being that the TEM residual is usually composed of an Eulerian
mean and an eddy contribution, whereas the flux vector on which u∗ may contain diabatic terms such
as κ∇C and even external forcing terms, as shown earlier.

Of course the integral of C over VC does not give the total amount of C in this volume. That amount
would be w

VC
CdV =

w

VC
CdV +

w

VC
C′dV (13)

and Equation (12) must be interpreted accordingly. Even though C′ itself has no temporal average,
it may have a finite average over VC. Nevertheless, one is often most interested in slow changes in the
mean value of a tracer and this problem is directly addressed by Equation (12).

We note that traditional LCS analysis is a special case of our approach. The relevant version of the
conservation law Equation (2) is the continuity equation
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∂ρ/∂t = −∇ · (uρ) (14)

where ρ is the fluid density. The velocity u∗ is just the fluid velocity u, usually assumed to be divergence
free. Time averaging can be performed as above, resulting in the flux vector F = uρ+ u′ρ′ + u′ρ+ uρ′

for the average mass flux (mean plus eddy), the residual velocity u∗ = F/ρ and statement
d
dt

r
Vρ
ρdV = 0 indicating conservation of the total mean mass within a closed volume whose boundary

is advected by u∗. (The time-average version has apparently not been used within the LCS community).
Finally, as noted by Prof. George Haller (personal communication), the nonlocal conservation law

Equation (12) can be made point wise by shrinking VC to zero. In this limit d
dt

r
VcCdV → d

dt (CVC) ,r
VVc

SdV → SVc and thus

d
dt

C = − C
VC

d
dt
(VC) + S = −C∇ · u∗ + S (15)

showing that in the absence of sources and sinks, the change in the mean concentration of the scalar is
proportional to the divergence of u∗ following the trajectory. The tracer is diluted or concentrated in
response to the expansion or contraction of the small volume VC. The same naturally follows for the
non-averaged version.

2.2. Diffusive Transport of Momentum, Vorticity, Energy and Enstrophy in Viscous, Laminar Flow

As a first example, we consider the classical initial-value problem of viscous adjustment of
an impulsively started uniform flow u = U and v = 0 in the upper (x, y) plane, bounded by a no-slip,
flat plate at y = 0. The x-velocity u is determined entirely by the x-momentum equation, which takes
the form of a heat equation:

∂u
∂t

= ν
∂2u
∂y2 (16)

with initial and boundary conditions

u(y, 0) = U; u(0, t) = 0, and u(y, t)→ 0 as y→ ∞ (17)

For t > 0 the fluid at y = 0 is immediately brought to a halt and the fluid above the boundary is
decelerated towards rest by a viscous layer of increasing thickness. The solution is given by

u(y, t) =
U√
π

w y
2
√

vt

0
e−θ

2
dθ (18)

and the corresponding vorticity and its derivative are

ζ = −∂u
∂y

= − U
2
√
πvt

e−y2/4vt and
∂ζ

∂y
= −∂2u

∂y2 = − Uy
4vt
√
πvt

e−y2/4vt. (19)

Now suppose that one is interested in the scalar flux of vorticity, which is introduced into the
initially irrotational fluid at the boundary at y = 0. The flow is laminar and there is no need to perform
the time averaging over turbulent scales, so we seek a conservation law of the form of Equation (2).
This is easily obtained through differentiation of Equation (16) with respect to y, resulting in

∂ζ

∂t
= −∇H · (0,−v∂ζ/∂y). (20)

In terms of Equation (2) we have C = ζ, F = (0,−νζ∂ζ/∂y), and therefore, u∗ = (0, v∗) =

F/ζ with

v∗ = −v
∂ζ/∂y

ζ
= −v

∂2u/∂y2

∂u/∂y
=

y
2t

,
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the final step following from substitution of the solution Equation (18).
The trajectories of u∗ are obtained from

dx∗

dt
= 0 and

dy∗

dt
=

y∗

2t
(21)

or x* = const. and y* = at1/2. One may now trace any contour y* = y*(x*,t) that evolves under
Equation (21), an obvious first choice being the parallel contours y* = at1/2 parameterized by a,
with 0 < α < ∞. Note that the movement of the contours is independent of viscosity. All such
contours initially lie at boundary (y = 0), but they explode into the fluid at t = 0+ and migrate towards
positive y thereafter (Figure 10). The infinite speed of the leading contour is simply a reflection of
the property of solutions to the parabolic equation, in which a sudden change at a boundary has
an immediate impact at all finite distances from the boundary. The distance between any two contours
a1 and a2 grows in proportion to t1/2 while the total amount of vorticity between the two remains
constant. Thus, the vorticity moves away from the boundary and is diluted as it does so. Alternatively,
one could have chosen a more complex contour, perhaps a circle, and seen that it becomes elongated
in the y-direction as t increases.
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Figure 10. Contours corresponding to different values of a, and at two different times. The total
vorticity between two contours of different a remains fixed. As time progresses, the contours move
away from the lower boundary, the distance between contours increases, and the vorticity is diluted.

It is also instructive to compute the rate at which enstrophy V = ζ2/2 moves into the fluid.
Multiplication of Equation (20) by ζ results, after some rearrangement, in

∂V
∂t

=
∂

∂y

(
νζ

∂ζ

∂y

)
− ν

(
∂ζ

∂y

)2
, (22)

so that now C = V, F = (0,−νζ∂ζ/∂y), S = −ν
(

∂ζ
∂y

)2
and

ν∗ =
2νζ∂ζ/∂y

ζ2 =
y
t

. (23)

Therefore, enstrophy moves into the domain at twice the speed of vorticity, but is dissipated as it
does so.

Similar calculations can be done with momentum u and kinetic energy u2/2, resulting in the
observation that energy moves twice as fast as momentum but is subject to a dissipation that
momentum does not feel. In addition, v* < 0 for both scalars, so that the contours of zero flux
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move towards the boundary (which acts both as a sink of momentum and energy, but a source of
vorticity and enstrophy).

2.3. A Turbulent Model of the Antarctic Circumpolar Current

We now consider the turbulent flow captured in an f-plane, continuously stratified model of wind
driven flow in a channel ([46] and Figure 11). The model is motivated by the Antarctic Circumpolar
Current but is implemented for Northern Hemisphere rotation, so that f > 0 and the surface Ekman
transport is to the right of the wind stress. The channel is periodic in x and has rigid walls at
y = 0, Ly. The flow is spun up from rest through the application of a wind stress in the positive
x-direction proportional to sin2(πy/Ly). There is no buoyancy forcing and a linear drag is imposed at
the bottom. The westerly surface winds create southward Ekman transport, leading to downwelling
near the south wall (and upwelling at the north wall). The resulting isothermal tilt gives rise to
a geostrophically balanced jet that becomes baroclinically unstable. In the simulation shown in
Figure 11, the instability has equilibrated, and a statistically steady state is reached in which the
dominant features are an eastward propagating meander and an accompanying anticyclonic eddy
(lower left). Smaller coherent eddies can also be seen in both the southern and northern parts of
the channel.
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in [46]).

There are a number of dynamically relevant and interesting fluxes that one would like to measure
in this strongly 3D flow. The authors in [46] draw particular attention to the generation of internal
waves by larger scale motions. Here the flow field will be used to produce a simple example of
methodology, in particular the time filtering and the properties of the residual velocity field. In order
to maintain simplicity we will continue to work in 2D by considering only depth-averaged fields,
leaving the more complex 3D fluxes for consideration in later work. Since there is no thermodynamic
forcing in the simulation, a natural scalar quantity to examine is buoyancy: b =−g(ρ− ρo)/ρ. Note that
buoyancy flux is essentially mass flux, so we are close in some sense to the volume flux calculations
that are traditionally considered in lobe analysis.

In the model, the thermodynamic equation takes the form

∂b
∂t

+ u · ∇b = κ∇2b + κ(8)(b8x + b8y) + κ
(4)(b4z), (24)

where κ(8) and κ(4) are the horizontal and vertical hyper-diffusivities, respectively.
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With the condition of incompressibility ∇ · u = 0 we obtain the flux form

∂b
∂t

= −∇ ·
[
ub− κbx − κ(8)b7x, vb− κby − κ(8)b7y, wb− κbz − κ(4)bzzz

]
(25)

The normal component of the buoyancy flux vector is set to zero on the sidewalls, and total
volume integral of b is conserved to a high degree of accuracy. The low pass filtered version is

∂b
∂t

= −∇ ·
[
ub− κbx − κ(8)b7x, vb− κby − κ(8)b7y, wb− κbz − κ(4)bzzz

]
, (26)

and its vertical average, denoted by 〈 〉 is

∂
〈

b
〉

∂t
= −∇H ·

〈
F
〉

(27)

with 〈
F
〉
=
[〈

ub− κbx − κ(8)b7x

〉
,
〈

vb− κby − κ(8)b7y

〉]
(28)

We first consider a comparison between the unfiltered, depth-average horizontal velocity field
〈u〉 = 〈u〉i + 〈v〉j and the residual velocity field 〈u∗〉 =

〈
F
〉

/
〈

b
〉

computed using a Gaussian, low
pass filter with a window T = 3.7 days. Snapshots of the forward FTLE fields for 〈u∗〉 and for
〈u〉 are shown in Figure 12a,b. The maximizing FTLE ridges are suggestive of barriers associated
with the hyperbolic-type LCSs or finite-time manifolds, whereas troughs in the FTLE fields at
mid-jet (Figure 12a,c) are suggestive of barriers associated with the parabolic-type LCSs or shearless
trajectories. These properties are backed up by independent calculations discussed below. Figure 12a
contains information about the depth-averaged transport of mean (time-average) buoyancy whereas
Figure 12b contains information about the depth-averaged transport of material. Note that although
the anticyclonic eddy is apparent in the lower left corner of each panel (and more prominently in the
〈u〉 fields) the meandering jet is clear only in the panels showing 〈u∗〉. Cross jet material transport
is therefore clearly indicated in the 〈u〉 fields, but the 〈u∗〉 fields suggest that the jet is a barrier to
mean buoyancy transport. Thus, if Lagrangian drifters were released on one side of the jet, some
would cross to the other side. However, the FTLE troughs of the depth–integrated time-averaged
residual velocity 〈u∗〉 suggest that this parcel dispersion does not result in any residual transport of
mean depth-averaged buoyancy: the associated “eddy” flux is balanced by the other terms in the
residual flux vector, including the contribution from the mean cross-channel circulation and the explicit
diffusion and hyper-diffusion terms. This cancellation is an expected consequence of the channel walls.
It is also believed to take place in the Antarctic Circumpolar Current, where the wind and buoyancy
forcing give rise to a mean meridional circulation that tends to steepen isopycnals, whereas baroclinic
instability generates an eddy flux that tends to flatten isopycnals.

Further insight into the transport of mean buoyancy and the role of lobes can be found in
Figure 12c in which the forward and backward FTLE fields for the residual velocity 〈u∗〉 are overlain,
giving the viewer an indication of regions of hyperbolicity and the expected geometry of intersecting
finite-time stable and unstable manifolds of the hyperbolic trajectories within those regions. Note the
region of strong hyperbolicity near x = 1.5 × 105 and y = 0.5 × 105 and the suggestion of a heteroclinic
structure surrounding the anticyclonic gyre. In addition to looking at FTLE ridges, the finite-time
manifolds emanating from the hyperbolic region have also been computed using a direct method,
where they were “grown” from sets of initial conditions surrounding the hyperbolic core region. These
are shown as color curves in Figure 12d, with blue/red representing stable/unstable directions. The red
and blue curves fall right on top of FTLE ridges if the two images are superimposed. This calculation
insures the attractive property of the FTLE ridges and confirms that ridges are hyperbolic in nature
rather than associated with shear. The lobes formed by the intersections of the curves carry mean
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buoyancy into and out of the anticyclonic eddy. The exchange appears to be confined to the outer
edges, and there is no evidence of penetration into the eddy center.

As a further confirmation that the meandering jet core acts as a barrier to mean buoyancy flux,
we consider the advection by 〈u∗〉 of the green and pink contours (Figure 13), initially aligned along
the channel and lying to the north and south of the jet core. By definition of 〈u∗〉, the contours are
barriers to average buoyancy flux, as are the channel side walls, so that the total buoyancy in any
region bounded by a contour and a wall, or between the two contours, remains fixed as the contours
evolve. The movement of a contour across the jet core would indicate a cross-jet buoyancy flux, but the
contour positions after 71 days (dotted sets in Figure 13) indicates that this does not happen. This result
is consistent with the behavior suggested by the troughs in the FTLE fields at mid-jet and by failure of
the direct manifolds (Figure 12) to penetrate into the jet region, namely that the jet acts as a barrier to
mean buoyancy flux.

Naturally, it would be of great interest to extend this analysis to 3D in order to pin down the depths
at which exchange is taking place and to examine fluxes of other dynamically relevant quantities.
This is well beyond the present scope.
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Figure 12. (a) Forward FTLE fields for 〈u∗〉; (b) Forward FTLE fields for 〈u〉; (c) Forward and backward
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near x = 1.5 × 105 for 〈u∗〉 .
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3. Materials and Methods

Readers may consult [46] for a description of the numerical model used to produce the results in
Section 3.3.

4. Discussion and Conclusions

The above examples are just an introduction to what may be a fruitful diagnostic that could
help one understand scalar fluxes in complex flows through extension of the concept of a Lagrangian
barrier to non-Lagrangian trajectories, and through the use of filtering in time. Though promising,
the approach raises significant technical and interpretative challenges. For one thing, the residual
velocity field u∗ is generally divergent/convergent (or “non-divergence free”, as one colleague likes to
say) and, for simulations that resolve the ocean submesoscale, substantially 3D. The zoology of fixed
points is thus considerably richer than in two-dimensional, incompressible flows and the assumptions
that underpin the concepts of manifolds and Lagrangian coherent structures may have to be rethought.
There is hope that this aspect might attract the attention of talented mathematicians.

A question that always arises in connection with the methodology is how to resolve the
nonuniqueness of the flux vector. In some cases, boundary or initial conditions may be informative.
For example, we could have added a nondivergent buoyancy flux in the cross-channel direction to
the flux vector

〈
F
〉

in Equation (27), but this would have violated the condition of zero buoyancy flux
through the channel sidewalls. In cases where uncertainty remains, one may find it helpful to carefully
consider the scientific question that led to consideration of the property flux in the first place. In our
example with buoyancy flux, our primary interest is in cross-channel (y) transport. Alternatively,
we could have added to our

〈
F
〉

a y-dependent flux in the x-direction without altering Equation (27)
and without violating any boundary conditions. This would have augmented the along-channel
component of 〈u∗〉, which would have changed the way that contours are advected but it wouldn’t
alter the conclusions about cross-channel transport. In fact, there may be instances in which such
augmentation may be used to computational advantage. If the x-component of the original 〈u∗〉 is
highly sheared, for example, advected contours will rapidly stretch and filament. It may be desirable
to remove this feature by subtracting a non-divergent flux vector that removes much of the shear.

In some applications the source/sink term (S in Equation (2)) may be sufficiently large that it
dominates the evolution of the tracer. This situation could occur, for example, for nutrient limited
biological scalars. In this case, the tracking of the transport barriers for the scalar flux may not be
particularly helpful. Fortunately, there are cases in which S may be written as the divergence of a flux
and absorbed in to the scalar flux vector F.

Our approach also attempts to achieve simplification through time filtering. (One could further
smooth by filtering in space, but we have not gone this route.) The result is a relation (Equation (12))
guaranteeing that in the absence of sources and sinks, the total amount of time filtered scalar
concentration will be conserved within moving barriers computed from the residual velocity field.
(A similar assumption holds for any system that involves Reynolds time averaging over turbulent
scales.) The interpretation of the results of time filtering may depend on the width T of the filter
window: in our study T was chosen to be large enough to smooth the finest scales but not so large that
the gyre and jet meanders were smoothed.
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