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Abstract: This work continues development of the framework for dynamically consistent
parameterization of mesoscale eddy effects in non-eddy-resolving ocean circulation models.
Here, we refine and extend the previous results obtained for the double gyres and aim to account
for the eddy backscatter mechanism that maintains eastward jet extension of the western boundary
currents. We start by overcoming the local homogeneity assumption and by taking into account full
large-scale circulation. We achieve this by considering linearized-dynamic responses to finite-time
transient impulses. Feedback from these impulses on the large-scale circulation are referred to
as footprints. We find that the local homogeneity assumption yields only quantitative errors
in most of the gyres but breaks down in the eastward jet region, which is characterized by the
most significant eddy effects. The approach taken provides new insights into the eddy/mean
interactions and framework for parameterization of unresolved eddy effects. Footprints provide us
with maps of potential vorticity anomalies expected to be induced by transient eddy forcing. This
information is used to calculate the equivalent eddy potential vorticity fluxes and their divergences
that partition the double-gyre circulation into distinct geographical regions with specific eddy effects.
In particular, this allows approximation of the real eddy effects that maintain the eastward jet
extension of the western boundary currents and its adjacent recirculation zones. Next, from footprints
and their equivalent eddy fluxes and from underlying large-scale flow gradients, we calculate
spatially inhomogeneous and anisotropic eddy diffusivity tensor. Its properties suggest that imposing
parameterized source terms, that is, equivalent eddy flux divergences, is a better parameterization
strategy than implementation of the eddy diffusion.

Keywords: mesoscale eddies; eddy/mean interactions; eddy parameterization

1. Introduction

Mesoscale oceanic eddies populate nearly all parts of the global ocean and play important
roles in maintaining the oceanic general circulation (e.g., [1]). The most straightforward, but also
the most computationally intensive and, thus, unfeasible, way of accounting for the eddy effects
on the large-scale circulation is by resolving them dynamically with eddy-resolving ocean general
circulation models (OGCMs). This brute-force approach requires computational grids with nominal
resolution of about 1 km, which makes it feasible only for relatively short-time simulations, whereas the
Earth system and climate modelling routinely require multiple and much longer simulations over
centuries and millenia. The only way to afford these time scales is to parameterize the important eddy
effects with simple and affordable but nevertheless accurate models embedded in non-eddy-resolving
OGCMs. In this context, an eddy parameterization is a parametric mathematical model for use in some
coarse-grained, reduced-dynamics ocean circulation models. Ideally, parameters involved are to be
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related to the explicitly resolved, large-scale circulation properties, thus resulting in a turbulence
closure for the eddy scales. Over the last few decades, the search for suitable eddy parameterizations
has remained a challenging theoretical topic with a clear practical dimension.

Development of mesoscale eddy parameterizations can be also viewed as a strategy for advancing
our knowledge about the eddy dynamics and eddy/large-scale flow interactions. The prevailing
approach strives to find some sort of diffusive closure for the eddy transport, assuming that eddies
transport the corresponding flow property down its large-scale gradient and along isopycnals. In this
sense, all ocean models implement eddy viscosity (e.g., Laplacian or biharmonic) for downgradient
diffusion of momentum. Many models also implement eddy buoyancy diffusion [2], which simulates
real effects of the baroclinic instability on large-scale currents and, thus, substantially improves model
solutions in many parts of the global ocean. The baroclinic instability effects can be also parameterized
in terms of large vertical viscosity in the momentum equations [3,4]. Eddy diffusion of potential
vorticity is another parameterization approach [5,6], but its closure and ultimate implementations
in OGCMs remain to be worked out. Along these lines, Eden [7] argued that, for some flows, eddy
diffusivities of buoyancy and potential vorticity (PV) can be identical, but for general flows this is not
true [8].

Most of the diffusive parameterization theories focus on either estimating various eddy
diffusivities from data (e.g., [9,10]) or deriving eddy diffusivities from the large-scale flow properties.
Several ideas were proposed for the latter. The classical idea is to relate linearly eddy diffusivity and
local strain rate tensor of the large-scale flow [11], but this approach is phenomenological, and there
is no theory for the linear coefficient involved. One idea is to find eddy diffusivity from the most
unstable normal mode of the locally homogeneous linear-stability analysis (e.g., [12,13]). This can be
interpreted as the single-wavenumber approach, and it was recently extended to incorporate a band of
wavenumbers [14]. The other idea is that an eddy diffusivity coefficient can be found by assuming
that the relevant time scale is given by the Eady growth rate, which in turn depends on the local
stratification and magnitude of the large-scale vertical shear [15]. This can be viewed as an f -plane
argument that does not take into account the planetary PV gradient and its orientation relative to the
large-scale velocity and its shear. There are also eddy diffusivity theories for horizontally homogeneous
flows [16], but their applicability to inhomogeneous flows is unclear. Another idea for deriving an
eddy diffusivity closure is that a fully developed equilibrium state of the baroclinic turbulence is
characterized by the comparable growth rates of primary and secondary instabilities of the large-scale
flow patterns [17]. Finally, various spectral homogeneous-turbulence diffusivity approaches (e.g., [18])
base derivation of scale-dependent eddy diffusivity on the existence of a universal turbulent energy
spectrum and on the mixing-length arguments; therefore, they do not apply to oceanic mesoscale
eddies that are spatially inhomogeneous and exhibit no universal spectra.

Eventually, eddy diffusivities must be somehow derived from the flow dynamics, but until this
happens, one can try at least to constrain the involved eddy diffusivities by the physical conservation
laws assumed by the underlying dynamics. There were several studies introducing energy and
momentum conservation constraints [19–22], but each approach takes into account conservation of
a quadratic quantity at the expense of solving a dynamical prognostic equation for its evolution.
This equation involves its own assumptions and approximations. It is argued that taking into
account horizontal and vertical variations, as well as anisotropy of eddy diffusivities should be
a high priority (e.g., [8,9]), but it remains unclear to what extent these factors can be captured along
with assuming local flow homogeneity. Alternatively, one can assume specific spatial patterns of the
eddy diffusivity (e.g.,[23]), but this approach remains to be generalized. Finally, it remains unclear
what to do with negative eddy diffusivities that arise from common situations with upgradient eddy
fluxes [24] and make the whole eddy diffusion model ill-posed. Along this line, Jansen [25] proposed
parameterizing upscale energy transfers by the negative Laplacian eddy viscosity stabilized by the
additional hyperviscosity. Overall, relatively few studies propose abandoning the diffusion and look
for other frameworks.
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An emerging theoretical alternative to the diffusion is to account for the negative-diffusion eddy
effects by imposing random forcing that induces upscale energy transfers and flow rectification.
The forcing randomness is justified by highly transient and structurally complicated patterns of
the actual eddy fluxes (e.g., [26–28]). First studies of this kind were made within the classical
homogeneous-turbulence approach (e.g., [29–31]), and only more recent studies are spatially
inhomogeneous (e.g., [32–34]). Determining random forcing, deriving its parameters and relating
them to the large-scale flow remains to be done. So far, construction of random forcing is achieved by
fitting patterns from the eddy-resolving simulations (e.g., [35,36]).

Another way to overcome problems of the diffusion approach is to solve explicitly some
intermediate-complexity dynamical model for the momentum, buoyancy or PV ([37] (hereafter B15),
[38] (hereafter G15)). In G15, the intermediate-complexity model relied on the local homogeneity
assumption. It was driven by spatially correlated white-noise stochastic forcing, under assumption
that the damping rates are consistent with k−5/3 and k−3 turbulent energy spectra for the long and
short length scales, respectively. Here, parameters controlling the damping rates and stochastic-forcing
structural properties remain to be justified and constrained. Choice of the applied time-averaging
interval is another concern because intermediate-complexity model possesses modes that are
linearly unstable and exponentially growing in time. Although the intermediate dynamics require
extra computational costs, they can be alleviated by pre-computing the solutions for all possible
configurations of the large-scale flow. The B15 study offers another direct dynamical approach, which
is a precursor of this paper. This approach is based on analysis of the linear-dynamics responses to
spatially localized, periodic forcing functions representing an elementary eddy flux divergence and
referred to as transient impulses or plungers. Note that spatially localized forcing is very different from
the classical spectral random forcing because it involves many phase-correlated Fourier harmonics
with different wavenumbers. The plunger effectively rearranges PV and induces permanent changes
of the background flow ([39–42]). In B15, the plunger effect is interpreted in terms of its footprint
(i.e., large-scale feedback) that strongly depends on the underlying large-scale flow—this dependence
provides the vital link for the eddy parameterization closure.

We start by introducing the model and its solution, and by explaining the relationship between
transient impulses and the eddy backscatter mechanism that is responsible for maintaining the
eastward jet and its adjacent recirculation zones. Then, we extend B15 results in two main directions.
First, we overcome the local homogeneity assumption and demonstrate its consequences. This is
achieved by considering full background flow and finite-time, rather than periodic, transient forcing
impulses. Second, we use the upgraded plunger-footprint analyses to derive the dynamically
consistent, anisotropic, and spatially inhomogeneous, equivalent eddy diffusivity tensor that
incorporates information about the eddy backscatter. On the one hand, the eddy diffusivity
map provides a new and powerful tool for understanding the eddy effects. On the other hand,
the corresponding equivalent eddy fluxes can be used directly as the simple source term parameterizing
the eddies. In Section 2, we describe the ocean model, the reference eddy-resolving solution and the
eddy backscatter mechanism, as well as the linearized model and formulation of transient impulses.
We present the main results in Section 3, followed by the discussion and conclusions in Section 4.

2. Statement of the Problem

2.1. Ocean Model

The dynamical model and its reference solution are adopted from B15; therefore, we discuss them
briefly. The classical double-gyre quasigeostrophic PV model representing wind-driven midlatitude
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ocean gyres is configured in a flat-bottom square basin with three stacked isopycnal layers. The
governing equations for the PV anomalies qi and velocity streamfunctions ψi are

∂q1

∂t
+ J(ψ1, q1) + β

∂ψ1

∂x
=

1
ρ1 H1

W + ν∇4ψ1 , (1)

∂q2

∂t
+ J(ψ2, q2) + β

∂ψ2

∂x
= ν∇4ψ2 , (2)

∂q3

∂t
+ J(ψ3, q3) + β

∂ψ3

∂x
= −γ∇2ψ3 + ν∇4ψ3 , (3)

q1 = ∇2ψ1 + S1 (ψ2 − ψ1) , (4)

q2 = ∇2ψ2 + S21 (ψ1 − ψ2) + S22 (ψ3 − ψ2) , (5)

q3 = ∇2ψ3 + S3 (ψ2 − ψ3) , (6)

where the layer index starts from the top, and J(, ) is the Jacobian operator. The basin size is
2L = 3840 km, so that −L ≤ x ≤ L, and −L ≤ y ≤ L; the layer depths are H1 = 250 m,
H2 = 750 m, and H3 = 3000 m; ρ1 = 103 kg·m−3 is the upper layer density; β = 2× 10−11 m−1·s−1

is the planetary vorticity gradient; ν = 20 m2·s−1 is the eddy viscosity; γ = 4× 10−8 s−1 is the
bottom friction; and the stratification parameters S1, S21, S22 and S3 are chosen so that the first and
second Rossby deformation radii are Rd1 = 40 km and Rd2 = 20.6 km, respectively. The prescribed
steady Ekman pumping W(x, y) is the only external forcing. The layer-wise model equations are
augmented with the partial-slip lateral-boundary conditions and mass conservation constraints and
solved by the high-resolution numerical algorithm [43] on the uniform 5132 grid with 7.5 km nominal
resolution.

2.2. Reference Solution and Eddy Backscatter

The time-mean circulation and instantaneous snapshot shown in Figure 1 illustrate the
double-gyre circulation and its well-developed eastward jet extension of the western boundary currents.
The mean-flow kinetic energy is concentrated in the western boundary currents and the eastward jet,
whereas the potential energy is stored in the gyres; it is shown further below that these fields are poorly
correlated with the transient eddy forcing; therefore, they can not be used for scaling the linearized
model solutions. We also show (Figure 1g–l) the time-mean PV anomaly gradient that will be used for
estimating the eddy diffusivity. Away from the western boundary currents, the largest absolute values
of the upper-ocean gradient are concentrated around the eastward jet and dominated by the meridional
gradient component—this is the region where the local homogeneity assumption, assessed further
below, is most likely problematic. In the deep ocean, the gradient has larger values near the basin
boundaries rather than around the eastward jet. We also show absolute value of the upper-ocean PV
flux (Figure 1m), which was used in B15 for scaling the linear solutions, and argue that it provides
scaling which is relatively poor, though noticeably better than scaling by the mean-flow energy.

The reference solution is characterized by vigorous eddy fields that can be defined relative to
either time-mean background flow (Figure 1a–c) or a low-pass, temporally evolving flow components.
Although, in both cases, point-wise statistics of the eddies are qualitatively similar, only the latter
flow decomposition illustrates the eddy backscatter mechanism (e.g., [26,32]) that maintains the
eastward jet and its adjacent recirculation zones via positive correlations between the transient
eddy forcing and the large-scale eastward jet. In order to illustrate fundamental properties of the
backscatter, we spatially low-pass PV anomaly of the reference flow solution by a flat, 300× 300
km running-average filter centered on the reference point. In the vicinity of a lateral boundary,
we limit the corresponding half-size of the filter by the shortest distance from the reference point to the
boundary. Qualitative outcome of the flow decomposition is not sensitive to the filter width, as long as
it spans at least several first Rossby deformation radii but remains much shorter than the basin size.
We also calculate time average of the high-pass PV anomaly and move it to the low-pass component,
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so that by construction eddies represented by the high-pass field have zero time-mean. The resulting
large-scale and eddy PV components (Figure 2a–c) are inverted to obtain the corresponding velocity
streamfunction fields.

Figure 1. Characteristics of the reference eddy-resolving solution: time mean. Time-mean transport
streamfunction in the (a) upper (Contour Interval (CI) = 3 Sv); (b) middle (CI = 6 Sv); and (c) deep
layer (CI = 12 Sv); (d) upper-layer snapshot of the instantaneous transport streamfunction (CI = 3 Sv);
(e) kinetic and (f) potential energies of the upper-layer time-mean flow (all energies are normalized
so that the basin average of the upper-layer time-mean eddy energy is unity, and the maximum and
minimum values of the color scale are ±10); the upper-layer gradient of the time-mean Potential
Vorticity (PV) anomaly is characterized by its (g) zonal and (h) meridional components; and (i) absolute
value (normalized so that the basin average of the absolute value is unity, and the maximum and
minimum values of the color scale are ±3); the row of panels (j–l) shows the same as the above but for
the middle layer (the maximum and minimum values of the color scale are ±3); (m) absolute value
of the upper-layer time-mean PV anomaly flux (normalized so that its basin average is unity, and the
maximum and minimum values of the color scale are ±5).
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Figure 2. Illustration of the eddy backscatter in action. (a) instantaneous upper-ocean PV anomaly field
is decomposed into (b) large-scale and (c) eddy components; The corresponding eddy forcing field is
decomposed into the (d) time-mean and (e) transient parts, which are both positively correlated with the
large-scale PV anomaly in the eastward jet region. On average, covariance of the transient eddy forcing
with the large-scale PV anomaly is about 104 times bigger than covariance of the time-mean eddy
forcing, suggesting that the effect of the eddy backscatter completely dominates over the time-mean
eddy stresses. Flow fields in the upper row of panels have the same but arbitrary units. Eddy forcing
components are also shown with arbitrary units, but units in panel (e) are 5× 104 times bigger than
in (d), thus indicating that the transient component of the eddy forcing is much larger than the
time-mean component.

Given the flow decomposition, we define the eddy forcing as divergence of the eddy PV flux,

Ei(t, x, y) ≡ −
[
∇·ui qi −∇·〈ui〉 〈qi〉

]
, i = 1, 2, 3 , (7)

where angle brackets indicate large-scale fields. Eddy forcing is dominated by the upper-ocean part
E1(t, x, y), which has the time-mean E1 and transient (i.e., fluctuation) E′1 components (Figure 2d,e).
Only the time-mean eddy forcing enters the time-mean dynamical balance; therefore, one could
erroneously conclude that only the time-mean eddy forcing is needed to maintain the eastward jet.
This interpretation would be true only in the situation when the eastward jet stays in its time-mean
state; however, as illustrated by Figure 2, this is never the case. In order to estimate actual importances
of the eddy forcing components, we focus on the region of about 1/4 of the basin that includes the
eastward jet and calculate correlations and covariances between the snapshots of the eddy forcing
components and large-scale PV anomalies. We find that time-mean correlations are positive for both
E1 and E′1; the former is about 30% and the latter is about 1%, suggesting that both components
support the eastward jet. Although correlation between the jet and E′1 is small, the values of the latter
are five orders of magnitude larger than those of E1; as a result, covariance of the jet with E′1 is 104

times larger, suggesting that the eddy backscatter mechanism completely dominates over the more
familiar effect of the time-mean diverging eddy fluxes. Thus, an adequate eddy parameterization must
maintain the eastward jet and its adjacent recirculation zones far beyond the simple implementation of
the time-mean eddy fluxes.
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Now, let us characterize the eddies in terms of the eddy energy and PV fluxes. We find that
the eddy energy is concentrated in a broader region encompassing the eastward jet (Figure 3a,d),
and it is approximately equally and uniformly partitioned between the kinetic and potential energy
components (not shown). Next, we find standard deviation σi(x, y) of the eddy forcing (Figure 3b,e).
Although σ is noticeably similar to the eddy energy (correlations of the corresponding fields around
the eastward jet, in the upper, middle and deep layers are 0.92, 0.86 and 0.80, respectively), these fields
have significant differences, which increase with depth (Figure 3c,f). Relative to the eddy forcing,
the eddy energy is significantly more peaked around the eastward jet, at the expense of smaller
values in the interior gyres. This indicates that correlations between the eddy energy and PV anomaly
increases away from the eastward jet, thus resulting in more diverging eddy PV fluxes for the same
eddy energy. To summarize, further below, we approximate transient eddy forcing by the plunger
forcing imposed on the linearized model, but finding appropriate scaling for the plunger amplitudes is
somewhat problematic. On the one hand, we have the perfect scaling in terms of σi(x, y). On the other
hand, it is not clear how to relate σi(x, y) to the large-scale circulation because spatial correlations
between σi(x, y) and such time-mean flow fields, as the absolute value of the upper-ocean PV flux [28],
or the mean flow kinetic and potential energies, or absolute value of the PV gradient, are all positive
but relatively poor. Relating σi(x, y) to the eddy energy is more justified, though neither perfect nor
trivial, and this resonates with other parameterization ideas that are anchored on predicting the eddy
energy (e.g., [13,25]). However, finding an accurate prognostic model for prediction of the eddy energy
is another problem, well beyond the scope of this study. In what follows below, we circumnavigate
this problem by resorting to the perfect scaling of transient impulses by σ1(x, y).

Figure 3. Characteristics of the reference eddy-resolving solution: eddies. The upper-layer
(a) time-mean eddy energy and (b) standard deviation of the eddy forcing (both fields are normalized
so that their basin averages are unity, and the maximum and minimum values of the color scale are
±6); and (c) ratio of these fields minus unity (the maximum and minimum values of the color scale
are ±1). The lower row of panels shows the same quantities but for the middle layer. The time-mean
transport streamfunctions are shown for convenience with CI = 6 and 12 Sv.
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2.3. Linearized Ocean Model and Transient Impulses

The governing equations are linearized around the time-mean circulation, given by the
streamfunction Ψ(x, y, z) and the corresponding PV anomaly Q(x, y, z), and forced by the prescribed
transient-impulse (plunger) forcing P1 (restricted, for simplicity, to the upper layer):

∂q1

∂t
+ J(Ψ1, q1) + J(ψ1, Q1) + β

∂ψ1

∂x
=

1
ρ1 H1

W + ν∇4ψ1 + P1 , (8)

∂q2

∂t
+ J(Ψ2, q2) + J(ψ2, Q2) + β

∂ψ2

∂x
= ν∇4ψ2 , (9)

∂q3

∂t
+ J(Ψ3, q3) + J(ψ3, Q3) + β

∂ψ3

∂x
= −γ∇2ψ3 + ν∇4ψ3 . (10)

Following B15, the spatial function of the simple transient impulse (plunger) located at (x0, y0) is
formulated as:

P1(t, x, y; x0, y0) = 2.16 A(t) cos
(π

2
r
r0

)
, r < r0, (11)

P1(t, x, y; x0, y0) = 0 , r ≥ r0 , (12)

where r =
√
(x− x0)2 + (y− y0)2 is the distance from the plunger center, and the forcing is

concentrated within radius r0. For brevity, our presentation focuses on the r0 = 60 km case and on
the transient impulses acting in the upper layer only. The time dependence of the transient-impulse
forcing is chosen as the following piecewise-linear wavelet-like function,

A(t) = − t− T
T
− 1 , 0 ≤ t <

T
2

; A(t) =
3(t− T)

T
+ 1 ,

T
2
≤ t < T,

A(t) = −3(t− T)
T

+ 1 , T ≤ t <
3T
2

; A(t) =
t− T

T
− 1 ,

3T
2
≤ t < T , (13)

which consists of the larger impulse surrounded by the pair of weaker opposite-sign impulses, so that
the time mean of the function is zero, and, overall, the time interval of the forcing action is 2T.
Thus, the forcing is no longer harmonic as in B15 and more consistent with the actual transient eddy
forcing, but it also can be interpreted as a distributed in space and time version of Green’s function
(e.g., [44]) for the linearized dynamics. For brevity, our presentation focuses on T = 50 days, but we
varied T over the range from 45 to 65 days and found that the results are qualitatively similar. The
time scale T is fitted from the observed transient eddy forcing, which exhibits decaying and oscillating
autocorrelations [32], and the transient impulse choice is the most simple wavelet function exhibiting
similar autocorrelations. The main motivation for implementing finite-time impulses is that they are
more physical than the periodic ones and do not assume temporal homogeneity. Each plunger-induced
solution of the linearized model is obtained from zero initial conditions over the time interval 2T and
saved for further analyses.

3. Transient-Impulse Solutions and Analyses

We consider a uniform 1252 horizontal grid, so that its nodes are at least r0 away from the lateral
boundaries, solve the linearized model (8)–(10) for 1252 transient impulses, one at a time, and analyze
the outcome. First, we look at the transient-impulse flow patterns (Figure 4a–c) and find that, in the
vicinity of the plunger and at the end of the forcing time interval, they resemble the periodic solutions
studied in B15. Second, for each transient-impulse solution, we obtain the corresponding induced
time-mean eddy PV flux (the layer index is omitted for simplicity, and the overbar denotes the time
averaging over 2T)

f(x, y) ≡ uq ≡
(

uq, vq
)

(14)
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(not shown). The corresponding “footprint” (Figure 4d–f) is defined as the horizontal divergence of
the eddy PV flux taken with the minus sign

F(x, y) = −∇·f , (15)

so that F(x, y) can be interpreted as the cumulative PV forcing to be exerted on the background
flow by the nonlinear interactions of the transient-impulse solution, if this solution were nonlinear.
Transient-impulse solutions differ from the temporally periodic ones (not shown, but we checked this
by comparing responses in a double-periodic domain with uniform background flows), especially in the
far field, but this difference has a relatively weak effect on the footprints. The other noticeable difference
from the periodic solutions is due to the inhomogeneous background-flow effect—we observe it by
replacing the 2D background circulation with the uniform flow given by the velocity at the plunger
location (x0, y0) (the effect of the local homogeneity assumption is discussed further below). The third
noticeable difference is due to the fact that the periodic solutions do not take into account natural
instabilities of the background flow, whereas the transient-impulse solutions pick them up. The main
instabilities grow in the eastward jet (Figure 4a–c), even if the plunger is located far away from it,
but more vigorously if the plunger is close to the jet. However, these instabilities yield nearly negligible
contributions to the footprints, especially for plungers located far away from the jet. To summarize,
we find that the transient-impulse solutions not only produce meaningful and structurally rich maps
of the footprints, but they also can be viewed as physically justified upgrades of the periodic solutions.

Figure 4. Plunger-induced flows and footprints. The top row of panels show upper-layer velocity
streamfunction anomalies induced at the end of the plunger impulse interval for three different
locations of the plunger. Each plunger is located in the middle of the square outlining its surrounding
region, and the lower row of panels shows the corresponding eddy forcing patterns in these squares.
The time-mean transport streamfunction is shown for convenience with CI = 6 Sv. The color scale units
are chosen arbitrarily, since all solutions are linear but kept constant in each row of panels. Plungers
are located in (a,d) westward return flow, (b,e) eastward jet, and (c,f) meridional interior-gyre flow.

3.1. Equivalent Eddy PV Flux

The footprint pattern F(x, y) can be also viewed as a nonlinearly driven redistribution of PV
anomalies supplied by the imposed plunger forcing; hence, we can recast it in terms of the equivalent
PV flux. Let us introduce this concept and show that it can be useful both for interpretation of the
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eddy effects and for upgrading the earlier simple treatment of footprints in B15. First, in each layer
(layer indices are omitted), we calculate F(x, y) anomalies accumulated to the north and south of the
reference point (x0, y0) :

Fnorth =
∫ ∫

y>y0

F(x, y) dx dy , Fsouth =
∫ ∫

y<y0

F(x, y) dx dy, (16)

and similarly to the west and east of it, that is, Fwest and Feast. Next, we calculate the “centers of mass”
for these anomalies as illustrated by

ynorth =
1
C

∫ ∫
y>y0

|y| |F(x, y)| dx dy , C =
∫ ∫

y>y0

|F(x, y)| dx dy , (17)

and ysouth, xwest and xeast are found analogously. Although, the area of integration may cover the
full basin, in practice, we integrate over the square with size 0.15L centered at (x0, y0), in order to
avoid remote and small contaminations of the footprint due to the above-discussed instabilities of the
eastward jet. The equivalent eddy flux components are found as

f̃x = Fnorth ynorth − Fsouth ysouth , f̃y = Feast xeast − Fwest xwest , (18)

so that the equivalent eddy flux is a simple measure of the amplitude of the PV anomaly generated
by the transient impulse, and of its spatial orientation. The main difference between the equivalent
and full eddy flux (14) is that the latter is a 2D vector field, whereas the former is a local single-vector
quantity for each transient impulse. Of course, there is more information in the footprint pattern,
but we treat it simplistically, motivated by the initial investigation purpose. Further below, we will
refer to f̃ simply as the eddy flux, while keeping in mind its definition (18). Note that the eddy flux
can be straightforwardly decomposed into the relative-vorticity and isopycnal-stretching terms that
can be interpreted as Reynolds and form stresses, but we leave the corresponding analyses beyond the
scope of this paper.

We decompose the isopycnal eddy fluxes (e.g., as in [45]) into their gradient and agradient
components found with respect to the time-mean large-scale PV field Q = q + βy, so that

f̃ = −κ∇Q− κ⊥∇⊥Q , ∇⊥ ≡ k×∇ =

(
−∂/∂y

∂/∂x

)
, (19)

or, equivalently,

f̃ = −
(

κ
∂Q
∂x
− κ⊥

∂Q
∂y

, κ⊥
∂Q
∂x

+ κ
∂Q
∂y

)
,

where the eddy diffusivity components are defined as

κ = − f̃
|∇Q|

· ∇Q
|∇Q|

, κ⊥ = − f̃
|∇Q|

· ∇⊥Q
|∇Q|

. (20)

Thus, the eddy diffusivity tensor can be defined as the sum of its symmetric and antisymmetric
parts (The importance of both symmetric (diffusive) and antisymmetric (advective) eddy-induced tracer
transports has been addressed by Griffies [46]. More recently, Bachman and Fox-Kemper [47] estimated
and compared passive-tracer κ and κ⊥ in the Eady spin-down problem, and argued that their values
are similar, but to what extent this can be applied to other geophysical flows remains unclear):

K =

(
κ −κ⊥

κ⊥ κ

)
=

(
κ 0
0 κ

)
+

(
0 −κ⊥

κ⊥ 0

)
, (21)
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and the flux-gradient relation can be compactly written as

f = −K∇Q . (22)

We calculate the eddy fluxes on the 1252 grid, as described above, scaled them by σ(x, y)
from the reference solution and found their divergence. By local rotation of the coordinate system,
each flux field is also recast in terms of the gradient and agradient components. The fluxes themselves
show how the transient forcing redistributes the PV, and their divergence shows the corresponding
accumulation of the time-mean PV—hence, the large-scale effect induced by transient impulses.
The negative/positive divergence of the flux describes the local accumulation of the positive/negative
PV anomaly, and following B15, this anomaly can be added to the non-eddy-resolving model as the
source term.

The upper- and deep-ocean eddy fluxes and their divergences, as well as the gradient and
agradient components of the fluxes, are shown in Figures 5 and 6. These patterns suggest several
conclusions. First, almost everywhere, the meridional component of the eddy flux is larger than the
zonal one. Second, orientation of the flux relative to the background PV gradient tells us that although
the gradient component dominates, in the upper ocean, the agradient component is also significant.
In the deep ocean, the gradient component is always negative (i.e., PV is fluxed down the gradient),
whereas, in the upper ocean, it changes the sign to negative in the northern and southern parts of the
double gyres and in the recirculation zones around the eastward jet. The latter sign changes are due to
the sign changes in the PV gradient, rather than to the real flux reversals. The upper-ocean agradient
flux component exhibits many sign reversals and characteristic recirculation cells to the north and south
of the eastward jet. These recirculation cells are such that, in the immediate vicinity of the eastward jet,
they advect downstream positive/negative PV anomalies. This is consistent with the downstream
enstrophy advection mechanism ([26,42]). The upper-ocean flux divergence is characterized by two
types of patterns: the anomalies around the eastward jet are such that they enhance the recirculation
zones, and the anomalies in the northern and southern parts of the double gyres are such that they
slow down the background westward return flows. The deep-ocean flux divergence is characterized
only by the latter pattern. All these equivalent eddy flux effects are consistent with the actual eddy
effects in the eddy-resolving double-gyre solutions (e.g., [26]).

Next, we find the eddy diffusivity tensor following (20) and (21) and analyze its properties
(Figure 7). The eddy diffusivity components κ and κ⊥ are similar to the corresponding eddy flux
components, except around (x, y) curves corresponding to zero background PV gradient; this is
where κ and κ⊥ become singular. Since we work with discrete solutions, these singularities cause
no problems, because they are poorly resolved and manifested only by sharp differences between
large, positive and negative values on the neighboring grid points. Positive values of κ, such as in
the westward return flows of the gyres, correspond to the downgradient redistribution of PV, and the
negative values describe the upgradient, antidiffusive eddy fluxes. The eddy diffusivity pattern in the
recirculation zones is dominated by κ⊥, and along the core of the eastward jet κ is mildly negative
and decreasing in the downstream direction. In the deep ocean, κ⊥ is relatively small, whereas κ

is positive and significant only in the westward return flows of the gyres. Overall, we conclude that
the eddy diffusivity is asymmetric, and its κ⊥ part is significant and has to be taken into account.
More importantly, the diffusivity components are negative and even singular in many parts of the
basin, and this makes the whole idea of the diffusive eddy parameterization ill-posed. On the other
hand, an eddy parameterization that directly imposes diverging eddy fluxes can be well-posed and
more straightforward.
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Figure 5. Equivalent eddy fluxes and their divergences. (a) zonal and (b) meridional components of
the upper-layer equivalent eddy flux; and (c) the flux divergence; the same flux is represented by its
(d)∇ and (e)∇⊥ components. The time-mean transport streamfunction is shown for convenience with
CI = 6 Sv. The color scale units are chosen so that MAX = 3 for the fluxes, and MAX = 1 for their
divergences and divergence components.

Figure 6. Equivalent eddy fluxes and their divergences. The same as in Figure 5 but for the middle
isopycnal layer: (a) zonal and (b) meridional component of the upper-layer equivalent eddy flux,
and (c) the flux divergence; the same flux is represented by its (d) ∇ and (e) ∇⊥ components. The
time-mean transport streamfunction is shown for convenience with CI = 12 Sv. The color scale units
are chosen so that MAX = 2 for the fluxes, and MAX = 0.2 for the divergences.
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Figure 7. Equivalent eddy diffusivity tensor. (a) Upper-layer κ, (b) upper-layer κ⊥; (c) middle-layer κ,
(d) middle-layer κ⊥. The time-mean transport streamfunction is shown for convenience with CI = 6 Sv
(upper row) and CI = 12 Sv (lower row). The color scale units are chosen arbitrarily but kept constant
for all panels, and all fields were mildly smoothed by a running-average filter.

3.2. Local Homogeneity Assumption

We assess accuracy of the local homogeneity assumption by comparing the eddy fluxes calculated
without it (all results in this paper) and with it. For this, we remove the flow inhomogeneity
by assuming that transient impulses act on the horizontally homogeneous flow with the velocity
components estimated at each reference location (x0, y0) on the same 1252 grid. These solutions
are similar to those from B15, but with several important differences: transient impulses are
finite rather than periodic in time, solutions are found in the closed rather than double-periodic
domain, and both zonal and meridional components of the background flow are taken into account.
The resulting outcome is illustrated by Figure 8, which has to be compared with Figure 5a–c, and several
conclusions can be drawn from it. First, the local homogeneity assumption completely fails in the
eastward jet region, which is characterized by the largest values of the background PV gradient.
Second, significant differences are found even in the interior gyres, where they are more quantitative
rather than qualitative. Third, we simplify the local homogeneity even further, by setting to zero the
meridional background-flow component, and find that the resulting differences are small. This suggests
that taking into account only zonal background-flow component (as in B15) is justified simplification
away from the eastward jet. Overall, we conclude that the transient-impulse approach indeed bypasses
the local homogeneity assumption and is well justified.

As we showed above, large inhomogeneities of the background flow have a significant effect on
the transient-impulse responses and the resulting equivalent eddy fluxes. We explore this further by
considering a highly idealized situation of the narrow eastward jet that was fitted to approximate
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the jet from the reference eddy-resolving solution (Figure 9a–c). The idealized jet profile (in all three
isopycnal layers) is given by the following exponentially decaying oscillation:

u1(ỹ) = U exp[−(ỹ/w̃)2] cos
[ ỹ

p

]
, u2(ỹ) = 0.45 U exp[−ỹ2/(1.2 w̃)2] cos

[ ỹ
0.92 p

]
,

u3(ỹ) = 0.15 U exp[−ỹ2/(2.4 w̃)2] cos
[ ỹ

0.80 p

]
, (23)

where the nondimensional meridional coordinate and the jet width are related to the dimensional
variables as ỹ = 512 y/L and w̃ = 512 w/L, respectively, and parameter p = 1.67 w/π is always
kept fixed. The idealized jet is controlled by amplitude U and width w, and it closely resembles
the reference jet when w = 280 km. We place the idealized jet in the center of the basin, find its
velocity streamfunction by integration of the velocity profile, and taper the streamfunction to zero
around the boundaries (Figure 9d,e), in order to satisfy the no-flow-through boundary condition for
the synthetic flow.

Next, we position our standard transient-impulse forcing in the center of the basin and calculate
its responses and footprints for a broad range of U and w values (Figure 10). The outcome clearly
shows that the (across-jet) eddy flux strongly depends on the width of the jet, and for a strong enough
jet it changes sign from the positive to negative. On the one hand, this result is a simple conceptual
illustration of how the local homogeneity assumption fails. Applying this assumption to any point
(U, w) in Figure 10 is equivalent to taking w to infinity; as the Figure suggests, this results in large
error in the equivalent eddy flux for fast and narrow eastward jets. On the other hand, this result
implies that the tendency of transient eddy forcing to maintain the jet weakens with the jet strength
and even reverses for strong enough jet. This is consistent with the eddy diffusivity across the eastward
jet becoming more negative further downstream (Figure 7a).

Figure 8. Effect of the local homogeneity assumption. (a) Zonal and (b) meridional components of the
upper-layer equivalent eddy flux, and (c) the flux divergence, all obtained with the local homogeneity
assumption. These fields are to be compared with those shown in Figure 5a–c, and the corresponding
differences are shown in the lower row of panels: differences in (d) zonal and (e) meridional component
of the upper-layer equivalent eddy flux, and (f) the flux divergence. The color scale units are as in
Figure 5.
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Figure 9. The eastward jet and its idealized approximation. (a) upper-layer zonal velocity from the
eddy-resolving reference solution; the color scale is saturated at 50 cm·s−1, thus indicating that the
velocity in the western half of the jet exceeds this value; (b) the meridional profiles of the zonal
velocity component in all three isopycnal layers, zonally averaged over the western half of the basin;
and (c) the corresponding idealized zonal velocity profiles with w = 280 km (curves with larger/smaller
values correspond to the upper/deep isopycnal layers); (d) upper- and (e) middle-layer 2D velocity
streamfunction fields constructed from the idealized velocity profile (the color scale is arbitrary).

Figure 10. Effect of a zonal jet on plunger-induced footprints and equivalent eddy fluxes.
The equivalent across-jet eddy flux as function of the jet velocity amplitude U and width w (normalized
by its value obtained for the zero-amplitude jet). The width of the jet shown in Figure 9c is indicated by
the straight line. The zero value of the functions is indicated by the black curve; the flux changes sign
for U about 0.5 m·s−1.
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4. Discussion and Conclusions

In this paper, we continue development of the new framework for parameterizing mesoscale eddy
effects in non-eddy-resolving ocean circulation models. The central theme of the approach is its reliance
on explicit dynamical solutions of an idealized model of the eddy effects; therefore, we refer to the
approach as dynamically consistent. In Part I of this paper, we (a) focused on the eddy backscatter effect
of the transient part of mesoscale eddy forcing; (b) proposed the “plunger-footprint” approach that
translates simple and spatially localized, elementary transient forcing (i.e., plunger) into its nonlinearly
rectified response (i.e., footprint); (c) related the footprint to the underlying large-scale flow; and (d)
implemented the resulting cumulative effect of many footprints as the eddy parameterization in a
non-eddy-resolving model of wind-driven ocean gyres ([28] hereafter, B15). Despite several significant
shortcuts made, especially with how the large-scale flow information was treated, the parameterization
demonstrated remarkable skills. In this paper, by making significant modifications of the approach,
we not only fixed several problematic shortcuts but also gained new dynamical insights into the
eddy/mean interactions.

We continued to focus on the classical, wind-driven double-gyre model and showed how
the eddy backscatter mechanism maintains the eastward jet via positive correlations between the
upper-ocean transient eddy forcing and the jet itself. In order to understand and model nonlinear flow
rectification in response to the transient component of the eddy forcing, we constructed elementary,
spatially localized and temporally transient forcing functions, referred to as the transient impulses
(plungers), and imposed them on the governing quasigeostrophic potential vorticity dynamical
equations linearized around the time-mean double-gyre reference solution. For each position of
the transient impulse inside the double gyres, we found the corresponding flow solution and its
nonlinear self-interaction, referred to as the footprint. The resulting footprints strongly depend on
the underlying large-scale flow, and, therefore, vary across the gyres. At this point, we fixed the
following shortcuts made in the previous theory and its implementation (B15). First, when solving
the linearized dynamics, we took into account not only zonal but also meridional component of the
mean large-scale flow. Second, we upgraded the time-periodic transient impulses to more general
and realistic, finite-time impulses which take into account the decaying autocorrelations of the actual
eddy forcing. We chose a simple wavelet-like piecewise-linear shape of the transient-impulse time
dependence: one larger pulse is surrounded by two equal and smaller pulses with the opposite sign.
In the presentation, we considered 50-day-long impulses, and the sensitivity study in the interval from
45 to 70 days showed that the results are qualitatively similar. Third, we overcame the local spatial
homogeneity assumption that used only local flow information at each plunger position and allowed
the Fourier transform, which greatly simplified the problem. Without the assumption, we had to solve
the problem differently—by forward time stepping combined with the second-order finite differences.
By comparing transient-impulse solutions with and without the local homogeneity assumption,
we found that this assumption completely breaks down in the eastward jet, which is characterized
by the most energetic eddies and significant eddy effects, and yields significant quantitative errors in
other parts of the gyres. To summarize, we concluded that the proposed extensions of the theory and
parameterization are important.

The transient-impulse approach provided us with several new insights into the double-gyre
eddy/mean interactions. First, the footprints provided us with maps of the PV anomalies expected
to be induced by a general transient eddy forcing acting on the top of the considered background
circulation. This information was used to calculate the equivalent eddy PV fluxes and their divergences,
and thus to partition the double-gyre circulation into distinct geographical regions with specific eddy
effects. In particular, these results suggested that the eddies have to maintain the eastward jet extension
of the western boundary currents and its adjacent recirculation zones and to slow down the western
parts of the subtropical and subpolar gyres. In turn, these results are consistent with the actual eddy
effects in the nonlinear double-gyre solutions (e.g., [26,48]). Second, from the equivalent eddy PV fluxes
and the underlying large-scale PV gradients, we calculated a spatially inhomogeneous and anisotropic
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eddy diffusivity tensor. Both of its components along and across the large-scale PV gradient have
multiple singularities where the gradient changes sign. Existence of these singularities is consistent
with the fact that the eddy fluxes are driven mostly by nonlocal dynamical mechanisms; therefore,
they can not be determined only by local gradients. Third, in many parts of the gyres, especially
around the eastward jet and its adjacent recirculation zones, the resulting eddy diffusivity is found to
be negative, that is, counter-gradient, which is consistent with some earlier studies (e.g., [26,45,49]).
All these eddy diffusivity properties suggest that imposing estimated diverging eddy fluxes directly
on non-eddy-resolving solutions is better parameterization strategy than relying on the eddy diffusion
model. Finally, our results provided a new eddy diffusivity theory, which is complimentary to the
existing ideas, such as invoking the linear-stability analysis under the local homogeneity assumption,
constraining by the conservation laws, scaling by the Eady growth rate, and relying on the universal
turbulent energy spectra (see Section 1).

There are several avenues for future upgrades of the proposed parameterization framework,
and the most important one is extension beyond the quasigeostrophic to primitive-equation dynamics,
which is the main tool of comprehensive OGCMs. Extension from linear to fully nonlinear transient
impulses is another anticipated future development. Accounting for the large-scale low-frequency
variability of the eastward jet and upgrading the transient-impulse forcing towards much more realistic
multiscale patterns (e.g., by data-driven statistical models; see also [36]) will provide further advances
to the whole approach. The transient-impulses approach can be also advanced as a powerful analytical
tool for estimating eddy fluxes and diffusivities for both passive and active tracers. The fluxes and
diffusivities can be used not only for eddy parameterizations but also for dynamical interpretations
of the observations and model solutions, as well as for various practical predictions. To summarize,
the framework being developed in this paper and its prequel (B15) is promising but requires further
understanding and development. The main advantage, as well as the added complexity and extra
capabilities of the new framework stems from its explicit use of the high-resolution dynamics—this
constitutes the main difference from the mainstream approaches [2] that use dynamical arguments
implicitly.
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