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Abstract: In this paper we study the effects of dissipation in the Couette flow and heat transfer in a
drilling fluid, and explore the effects of concentration and the shear-rate and temperature-dependent
viscosity, along with a variable thermal conductivity. A brief discussion on the constitutive
relations for the stress tensor, the diffusive particle flux vector, and the heat flux vector is presented.
The one-dimensional forms of the governing equations are solved numerically and the results are
presented through a parametric study by varying the dimensionless numbers.
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1. Introduction

Flow of mixtures composed of solid particles of various shapes and sizes dispersed in a fluid occurs
in many industrial processes as well as in nature (see [1,2]). Examples of such complex fluid mixtures
are coal slurries and drilling fluids. Drilling fluids are generally water-based or oil/polymer-based.
In the formulation of either the water-based or the oil-based drilling fluids several additives are
added to maintain proper rheological properties. These additives, and the fact that drilling fluids are
composed of mud, pieces of rocks, water, oil, bubble, etc., make the drilling fluid behave as complex
non-Newtonian fluids. Flow of these fluids becomes even more complicated during the drilling
operation as continuously drill cuts of different size, shape, concentration, pH, etc., are added into
the drilling fluids. Amongst the most important properties of the drilling fluid one can name density,
viscosity, yield stress, etc. When the drilling fluid is subjected to high temperature and high pressure
then ionic mobility, reactivity, solubility etc., are increased and these, in turn, change the rheological
properties of the drilling fluid. The drilling operation is quite often, as a temporary solution, suspended
in order to change the drill bit, to clean the pipe or whenever some other difficulties are encountered.
During this stage, the drilling fluid should have the capability of holding the rock cuttings in suspended
form and prevent them from settling down in the well annulus (see [3]). Our main interest in this
paper is to study the behavior of non-linear fluids which in many ways resemble and behave similarly
to drilling fluids.

The success of the drilling operation depends, to a large extent, on variables such as the drill bit
design, the selection of the drilling fluid, the climate conditions, the geophysical properties of the
ground rock material, etc. [4]. The role of the drilling fluid is considered by many researchers to be a
prominent one [5]. Hole cleaning is an important issue in the drilling operation, especially in cases of
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horizontal drilling, as mentioned by Caenn, et al. [6]. Siginer and Bakhtiyavou [7] indicate that the
effect of the eccentricity of pipe on the flow of well bore fluids should also be studied. For deep drilling
applications, in addition to external factors such as temperature and pressure, factors such as the
permeability and deformation properties of the rocks and mudrock instability should be considered [8].
Hole cleaning is related to the ability of the drilling fluid to transport and suspend drilled cuttings.
Hole cleaning depends on many variables including well bore inclination, cuttings slip velocity, flow
regime, rotary speed of the drill pipe, fluid rheology, flow rate, rate of penetration, cuttings size and
shape, wellbore geometry, cuttings density, cuttings agglomeration, the fluid density, the wellbore
geometry, pipe rotation, etc. [9].

In most drilling applications, the Bingham or the Power-law models are used to represent the
drilling fluid behavior (see [10]). However, many drilling fluids behave according to the modified
Power-law or the Herschel-Buckley rheological model (see [10]). The shear rate is low in the annulus,
and as it is well known, in the low shear-rate regime, that the Power-law model underestimates while
the Bingham plastic model overestimates the frictional pressure drops. The Herschel-Buckley model
perhaps presents a more adequate constitutive relation [11]. Slawomriski [12], indicated that even
though the Bingham plastic model is often used in modeling the drilling fluids, some studies have
shown that many of the drilling fluids are non-linear fluids with memory. Briscoe et al. [13] indicate that
in a high pressure and high temperature environment, the yield stress and the plastic viscosity of the
muds are also influenced by pressure and temperature. In many ways, a drilling fluid, when modeled
as a (single component) suspension, behaves as a non-linear fluid similar to a slurry where the effects
of shear rate and concentration are to be included in the constitutive relation for the stress tensor.

The objective of the present paper is to numerically study the effects of viscous dissipation in the
Couette flow and heat transfer in such a fluid, and explore the effects of concentration and the shear
rate and temperature-dependent viscosity, along with a variable thermal conductivity. We assume
that the viscosity of this non-linear fluid depends on the shear rate and the volume fraction of the
particles. The effects of the particle concentration (volume fraction) and its behavior is governed
by a convection-diffusion equation. In the next section, the governing equations of motion are
provided. Section 3 focuses on the constitutive relations for the stress tensor, the diffusive particle flux
vector, and the heat flux vector. In Section 4, we describe the geometry of the problem and provide
the derivation for the one-dimensional form of the governing equations, as well as the boundary
conditions. In Section 5, we outline the numerical scheme we have used. In Section 6, we perform a
parametric study using the different dimensionless numbers.

2. Governing Equations

If the drilling fluid is treated as a single component material, in the absence of any electro-magnetic
effects, the governing equations of motion are the conservations of mass, linear momentum,
angular momentum, concentration and the energy equation. If the drilling fluid is modeled as a
multi-component material, then we need to provide the governing equations for all the components,
and a multi-phase approach should be used; this requires not only constitutive relations for each
component, but also for the interactions among the components [2,14,15]. In this paper, we assume
that the drilling fluid can be treated as a single component non-homogeneous fluid. As a result, the
governing equations are:

Conservation of mass
Bρ

Bt
` div pρvq “ 0 (1)

where ρ is the density of the fluid, B{Bt is the partial derivative with respect to time, and v is the
velocity vector. For an isochoric motion we have div v “ 0.
Conservation of linear momentum

ρ
dv
dt
“ divT` ρb (2)
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where b is the body force vector, T is the Cauchy stress tensor, and d{dt is the total time derivative,
given by d p.q { dt “ B p.q {Bt` rgrad p.qsv. The conservation of angular momentum indicates that
in the absence of couple stresses the stress tensor is symmetric, that is, T “ TT.

In suspension flows, the particle concentration is, in general, not constant and in many
applications, it is necessary to have an additional equation, often called the convection-diffusion
equation. Here we use the particle concentration equation for φ as discussed in [16], based on [17].

Conservation of concentration
Bφ

Bt
` vi

Bφ

Bxi
“ ´divN (3)

The first term on the left-hand side denotes the rate of accumulation of particles, the second

term denotes the convected particle flux (where
Bφ

Bxi
denotes the gradient of the concentration), and

the term on the right side denotes diffusive particle flux. Following [17], the diffusive particle flux
N is composed of fluxes related to the Brownian motion, the variation of interaction frequency and
the viscosity.

Conservation of Energy:

ρ
dε

dt
“ T : L´ div q` ρr1 (4)

where ε is the specific internal energy, L is the gradient of velocity, q is the heat flux vector, r1 is the
specific radiant energy, and “: ” designates the scalar product of two tensors. Thermodynamical
considerations require the application of the second law of thermodynamics or the entropy
inequality. The local form of the entropy inequality is given by (see [18], p. 130):

ρ
.
η ` div ϕ´ ρs ě 0 (5)

where η px, tq is the specific entropy density, the dot implies the material time derivative, ϕ px, tq is

the entropy flux, and s is the entropy supply density. If it is assumed that ϕ “
q
θ

, and s “
r
θ

, where
θ is the absolute temperature, then Equation (5) reduces to the Clausius-Duhem inequality:

ρ
.
η ` div

q
θ
´ ρ

r
θ
ě 0 (6)

In this paper, we do not consider the consequences of the Clausius-Duhem inequality [18–21]. In
the next section, we will address the constitutive relations for the stress tensor, the heat flux vector q
and the diffusive particle flux N.

3. Constitutive Equations

Drilling fluids are complex multi-component fluids; in general, a drilling fluid is composed
of water, oil, pieces of rocks, sand, mud, etc., with bubbles and other chemicals added to this
mixture for various reasons. Most researchers assume that a drilling fluid is a suspension whose
rheological properties can be described using a non-linear (non-Newtonian) fluid. Based on the
available experimental observations, drilling fluids exhibit characteristics similar to those of non-linear
materials, such as colloidal suspensions, polymers, rubber, slag, etc. For complex materials, the main
points of departure from linear behavior are: (1) The ability to shear thin or shear thicken; (2) The ability
to creep; (3) The ability to relax stresses; (4) The presence of normal stress differences in simple shear
flows; (5) The presence of yield stress; (6) Memory effects, etc. For many practical fluid engineering
applications, the viscosity may be a function of time, shear rate, concentration, temperature, pressure,
electric field, magnetic field, etc. Therefore, in general, µ “ µ pt, Π, θ, φ, p, E, Bq, where t is the time, Π
is some measure of the shear rate, θ is temperature, φ is concentration, p is pressure, E is the electric
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field, and B is the magnetic field. For some materials or some applications, the dependence of one or
more of these can be dropped (see [22]).

3.1. Stress Tensor

A general constitutive relation for stress tensor of the drilling fluid should at the very least be able
to predict (or include) some type of yield stress and a viscous stress with shear-thinning capabilities,
i.e., where the coefficient of viscosity depends on the shear rate. Thus, we assume:

T “ Ty ` Tv (7)

where Ty is the yield stress and Tv is the viscous stress. In general, the yield stress can be obtained
from experiments and for the viscous stresses a model is needed where the shear viscosity depends on
volume fraction, temperature, pressure, chemical composition and the shear rate. In this paper, we
will not include the yield stress (In our next study, we plan to model and study the yield stress part of
the stress tensor.) in our model and we only consider the viscous stress which we assume to be given
by a generalized Power-law fluid model:

Tv “ ´p1`

«

µr

ˆ

1´
φ

φmax

˙´β

eαpθ0´θq

ff

Π
m
2 D (8)

Π “ 2trD2 (9)

D “
1
2

´

L` LT
¯

(10)

L “ gradv (11)

where µr is the reference viscosity, φm is the maximum volume fraction at which the suspension exhibits
fluid behavior, β is an experimentally determined coefficient, θ0 and µ0 are reference values, and α is a
constant. Here, 1 is the identity tensor, p is the pressure, θ is temperature, φ is the volume fraction (The
function φ is an independent kinematical variable called the volume distribution or volume fraction
function (related to concentration) having the property 0 ď φ px, tq ď φmax ă 1. The function φ is
represented as a continuous function of position and time; in reality, φ in such a system is either one or
zero at any position and time, depending on whether one is pointing to a particle or to the void space
(fluid) at that location. Now, ρ, is related to ρ f (density of pure fluid) and φ through ρ “ p1´ ϕq ρ f .),
tr is the trace operator, Π is an invariant of D where D is the symmetric part of the velocity gradient,
µ and Π together form the effective viscosity, and m is a material parameter. When m < 0, the fluid
is shear thinning, and if m > 0, the fluid is shear thickening. For the remainder of this paper, we
drop the dependency of µ on p, while recognizing that in many drilling applications, especially in
the case of deep-ocean drilling, the effect of pressure should be included (We should mention that
the viscosity of drilling muds at high pressure and high temperatures, will also depend on pressure
and temperature. For example, Briscoe, et al. [13] suggested a high shear-rate viscosity of the type,
µ “ µo p1` α1 pφq ` α2 ppq pq exp pEu ` p pBθ ´ Cqq {kθq , where µo is a factor related to the activation
energy Eu, the Boltzmann constant (k) etc., B and C are constants, φ is the volume fraction, and α2 ppq is
a compressibility term.). Note that in our previous study, Zhou et al. [3], we used a similar but simpler
model where the effect of temperature on viscosity was ignored; also, no heat transfer was considered
in that paper. In the current model, as shown in Equation (8) which is based on our previous studies,
including Gupta and Massoudi [23], Miao et al. [24] and Miao and Massoudi [25], we have included
an exponentially decaying function for the effects of the temperature. The basic form of the viscosity

is based on Krieger’s viscosity-concentration correlation ( µ “ µrp1´
φ

φm
q
´1.82

) [26]. In the model

described in Equation (8), we have assumed that the apparent viscosity is not only a function of
temperature but also of volume fraction, obeying the Einstein-Roscoe relation [27,28] (if β “ 2.5). It
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should be mentioned that alternative ways of modeling non-homogeneous fluids exist (see Massoudi
and Vaidya [29,30]).

3.2. Heat Flux Vector

According to Fourier [31] (see also Winterton [32]) the heat flux vector depends on the temperature
gradient, where

q “ ´k∇θ (12)

and k is the thermal conductivity of the material. For many complex materials, k is considered an
effective or modified form of the thermal conductivity that depends on concentration, temperature,
etc.. In fact, for anisotropic materials, k becomes a second order tensor. (For a discussion of the effective
thermal conductivity concept in porous media and multiphase flows, see [33] (p. 129) and [34–36]).
Jeffrey [37] derived an expression for the effective thermal conductivity which includes the second
order effects in the volume fraction [38]:

k “ κM

”

1` 3ξφ` ξ̂φ2
ı

`O
´

φ3
¯

(13)

where

ξ̂ “ 3ξ2 `
3ξ3

4
`

9ξ3

16

ˆ

ω` 2
2ω` 3

˙

`
3ξ4

26
` . . . (14)

where
ξ “

ω´ 1
ω` 2

(15)

ω “
k2

k1
(16)

where ω is the ratio of conductivity of the particle to that of the matrix, k the effective conductivity
of the suspension, kM the conductivity of the matrix, and φ is the solid volume fraction [34]. More
recently, Pabst [39] has derived a relationship for the effective thermal conductivity,

k “ 1´
3
2

φ`
1
2

φ2 (17)

We will use Equations (12)–(16) in this paper. Miao et al. [40] used Equation (12) but in their study
they assumed that the thermal conductivity is a constant. In this paper, we will consider the case
where the thermal conductivity is a function of volume fraction.

3.3. Particle Flux

As noted in [16], the various particle fluxes in the concentration equation are due to different
mechanisms such as the Brownian motion, sedimentation, particle interactions, etc. In this paper, we
assume that the Brownian motion can be neglected and consequently the diffusive particle flux is
modeled as:

N “ Nc `Nµ (18)

where Nc is the flux due to particle interactions and Nµ is the flux associated with spatial variations in
the viscosity. Based on the proposal of [17], we assume:

Nc “ ´a2φKc∇
` .
γφ

˘

(19)

Nµ “ ´a2φ2 .
γKµ∇ plnµq (20)

.
γ “

`

2DijDij
˘1{2

“ pΠq2 (21)
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where a is the characteristic particle length (e.g., radius),
.
γ is the local shear rate, given by Equation

(21), µ is the effective viscosity, and Kc, Kµ are empirically determined coefficients.
In the next section, we will examine the Couette flow of a fluid modeled as a concentrated

suspension where the constitutive relations are given by Equations (8), (13)–(16) and (18)–(20).

4. Couette Flow

For the fully developed Couette flow of a suspension, (shown in Figure 1), we assume:

(i) the motion is steady;
(ii) the particle flux due to the Brownian diffusion is neglected;

(iii) the constitutive equation for the stress tensor is given by Equation (8), the constitutive relation
for the particle flux is given by Equations (18)–(20), the constitutive relation for the heat flux is
given by Equations (13)–(16).

(iv) the velocity, the volume fraction, and the temperature profiles are of the form:
$

’

&

’

%

v “ v prq eθ

φ “ φ prq
θ “ θ prq

(22)
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With Equation (22), the conservation of mass is automatically satisfied, and by substituting
Equation (8) into Equation (2), while neglecting the gravity term, the equations of linear momentum
reduce to:

$

’

&

’

%

1
r2

d
dr

ˆ

r2µrp1´
φ

φm
q
´β

eαpθ0´θq

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

m dv
dr

˙

“ 0

dp
dr
“

dp
dz
“ 0

(23)

Substituting Equations (18)–(20) into Equation (3), the concentration equation reduces to

Kc

Kµ

ˆ

φ2 d
dr

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

` φ

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

dφ

dr

˙

`

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

φ2 1

µrp1´
φ

φm
q
´β

eαpθ0´θq

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

m
d
dr
rµrp1

´
φ

φm
q
´β

eαpθ0´θq

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

m

“ 0

(24)
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Due to the kinematics of the flow, it follows that

dε

dt
“ 0 (25)

Also, the specific radiant energy, r1, is assumed to be negligible. Then the energy equation becomes

µrp1´
φ

φm
q
´β

eαpθ0´θq

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

m`2
´

1
r2

d
dr

ˆ

r2kmp1` 3ξφ` ξ̂φ2q
dθ

dr

˙

“ 0 (26)

where the first term on the left-hand side is the viscous dissipation (see [41]). Equations (23), (24) and
(26) are subject to the following boundary conditions:

#

at r “ Ri : v “ RiΩ “ V; θ “ θi
at r “ Ro : v “ 0; θ “ θ0

(27)

where Ri and Ro are the inner and outer radii, RiΩ is the inner wall velocity, and θi and θo are the
temperature of the inner and the outer walls. Here we assume the no-slip condition for the velocity at
the outer wall and a constant velocity at the inner wall; φ is the value of the volume fraction, and its
value depends to some extent on the average volume fraction φavg through:

φavg “
2

Ro2 ´ Ri
2

ż Ro

Ri

φrdr (28)

We need to assume a value for φavg so that the solution of φ can be determined accordingly. If the
calculated volume fraction distribution satisfies condition Equation (28), then the original assumption
is valid; otherwise a new guess for φ must be made until condition Equation (28) is satisfied.

Equations (23) and (24) as well as the boundary conditions, Equation (27), are made dimensionless.
The dimensionless quantities are defined as:

v “
v

V
, r “

r
Ro

, θ “
θ ´ θ0

θi ´ θ0
(29)

Substituting Equation (29) into Equation (23) yields:

1
Re

1
r2

d
dr

ˆ

r2p1´
φ

φm
q
´β

e´Mθ

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

m dv
dr

˙

“ 0 (30)

Here Re is the Reynolds number, given by:

Re “
ρVR

µr
; and M “ α pθi ´ θ0q (31)

For the current problem, due to the kinematics of the flow, that is, the fact that the flow is steady
and fully developed, we could have eliminated the Re. However, we keep the form of the equation as
it is for problems involving the pressure gradient term. Substituting Equation (29) into Equations (24)
and (26) results in:

Kc

Kµ

ˆ

φ2 d
dr

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

` φ

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

dφ

dr

˙

`

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

φ2 1

p1´
φ

φm
q
´β

e´Mθ

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

m
d
dr

„

p1´
φ

φm
q
´β

e´Mθ

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

m

“ 0 (32)
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R4p1´
φ

φm
q
´β

e´Mθ

ˇ

ˇ

ˇ

ˇ

dv
dr

ˇ

ˇ

ˇ

ˇ

m`2
´

1
r2

d
dr

˜

r2p1` 3ξφ` ξ̂φ2q
dθ

dr

¸

“ 0 (33)

where R4 “
µrV2

km pθi ´ θ0q

ˆ

V
Ro

˙m
, and

Kc

Kµ
is the ratio of the effect of varying interaction frequency to

varying the viscosity on the non-uniform distribution of volume fraction. Substituting Equation (29)
into Equations (27) and (28) gives:

$

&

%

at r “
Ri
Ro

: v “ 1; θ “ 1.

at r “ 1 : v “ 0; θ “ 0;
(34)

φavg “
2

1´ Ri
2

ż 1

Ri
Ro

φrdr (35)

Now Equations (30), (32) and (33) can be solved numerically with the conditions and constraints
of Equations (34) and (35). Note that R4 is related to the Prandtl and Eckert numbers p R4 “ PrEcq.

5. Numerical Results

The dimensionless differential equations are solved using the MATLAB solver bvp4c, which is a
collocation boundary value problem solver. The step size is automatically adjusted by the solver and
the default relative tolerance for the maximum residue is 0.001. The constraint Equation (35) for φavg

was achieved by applying the shooting method. Table 1 shows the designated values of the studied
dimensionless numbers and parameters in current work.

Table 1. Designated values of the dimensionless numbers and parameters.

m φm M R4

´0.5, 0.0, 0.5, 1.0 0.45, 0.5, 0.68, 0.9 0.0, 0.5, 1.0, 5.0 0.1, 0.5, 2.0, 3.0
ω Kc{Kµ φavg –

0.01, 1.0, 100.0, 1000.0 0.4, 0.6, 0.8, 0.9 0.1, 0.3, 0.4, 0.6 –

5.1. Effect of m

Figures 2–4 show the effect of m on the distribution of velocity, volume fraction and temperature.
Recall that when m > 0 the fluid is shear thickening and when m < 0 the fluid is shear thinning.
Therefore, we can see that as m increases, that is, as the fluid increasingly shear thickens, contributing
to a more uniform apparent viscosity, the velocity profiles become more linear as shown in Figure 2.
From Figure 3 we can see that the shear-dependent viscosity has a strong effect on the particle
distribution. For the case when m = 1, the value of the volume fraction at the outer wall is about ten
times that of the value of the volume fraction at the inner wall. For the range of parameters considered
in this study we can see that the effect of m on the temperature distribution is very small.
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Figure 4. Effect of m on the temperature field when φm “ 0.68, M “ 1, R4 “ 0.1,
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5.2. Effect of φm

Recall that φm represents the maximum packing of solid particles in a solid-fluid system.
A higher maximum packing can be attributed to the non-uniform distribution of the particle sizes,
the deformability of the particles and so on. From Figure 5 we can see that a smaller φm produces a
more non-linear velocity profile. Figure 6 shows that as φm increases, the volume fraction distribution
becomes more non-uniform. For the case of φm “ 0.45, it can be seen that near the outer wall, the
particle distribution is very uniform and the value of the volume fraction is close to 0.45. Furthermore,
in that region, the fluid motion is negligible (see Figure 5). In other words, the particles seem to
accumulate in the region near the outer wall. Similar to the parameter m, the effect of φm on temperature
distribution is negligible (see Figure 7).
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5.3. Effect of M

In the current model, M is the parameter controlling the effect of temperature on the apparent
viscosity. A larger M represents a higher sensitivity of the viscosity on the temperature change.
Therefore, from Figure 8, we can see that as M increases, the velocity curve becomes more non-linear,
which can be attributed to a more non-linear behavior of the apparent viscosity. It should be
emphasized that if we had considered a pressure-driven flow, then as M increases we would expect
a higher flow rate, since with the same temperature, a larger M implies a lower apparent viscosity.
Figure 8 shows that at a larger M, such as M = 5, a higher velocity is reached mainly in the region
near the inner wall. From Figures 9 and 10 we can see that the effect of M on the volume fraction and
temperature distribution is minimal.



Fluids 2016, 1, 4 13 of 23

Fluids 2016, 1, 4 11 of 20 

 

Figure 7. Effect of 𝜙𝑚  on the temperature field when 𝑚 = 0.0,𝑀 = 1, 𝑅4 = 0.1, 𝜔 = 10, 𝐾𝑐/𝐾𝜇 =

0.8, 𝜙𝑎𝑣𝑔 = 0.4. 

5.3. Effect of M 

In the current model, M is the parameter controlling the effect of temperature on the apparent 

viscosity. A larger M represents a higher sensitivity of the viscosity on the temperature change. 

Therefore, from Figure 8, we can see that as M increases, the velocity curve becomes more non-linear, 

which can be attributed to a more non-linear behavior of the apparent viscosity. It should be 

emphasized that if we had considered a pressure-driven flow, then as M increases we would expect 

a higher flow rate, since with the same temperature, a larger M implies a lower apparent viscosity. 

Figure 8 shows that at a larger M, such as M = 5, a higher velocity is reached mainly in the region 

near the inner wall. From Figures 9 and 10, we can see that the effect of M on the volume fraction and 

temperature distribution is minimal. 

 

Figure 8. Effect of M on the velocity field when 𝑚 = 0.0,  𝜙𝑚 = 0.68, 𝑅4 = 0.1, 𝜔 = 10, 𝐾𝑐/𝐾𝜇 =

0.8, 𝜙𝑎𝑣𝑔 = 0.4. 
Figure 8. Effect of M on the velocity field when m “ 0.0, φm “ 0.68, R4 “ 0.1, ω “ 10,
Kc{Kµ “ 0.8, φavg “ 0.4.Fluids 2016, 1, 4 12 of 20 

 

Figure 9. Effect of M on the volume fraction field when 𝑚 = 0.0, 𝜙𝑚 = 0.68, 𝑅4 = 0.1, 𝜔 = 10, 𝐾𝑐/𝐾𝜇 =

0.8, 𝜙𝑎𝑣𝑔 = 0.4. 

 

Figure 10. Effect of M on the temperature field when 𝑚 = 0.0,  𝜙𝑚 = 0.68, 𝑅4 = 0.1, 𝜔 = 10, 𝐾𝑐/𝐾𝜇 =

0.8, 𝜙𝑎𝑣𝑔 = 0.4. 

5.4. Effect of 𝑅4 

Recall that 𝑅4 is defined as 
𝜇𝑟𝑉

2

𝑘𝑚(𝜃1−𝜃0)
(
𝑉

𝐻
)
𝑚

, which is a measure of viscous dissipation and is 

related to the Prandtl and the Eckert numbers. Figures 11–13 show the impact of 𝑅4 in this problem. 

From Figures 11 and 12, it can be seen that the effect of 𝑅4 on the velocity and volume fraction 

Figure 9. Effect of M on the volume fraction field when m “ 0.0, φm “ 0.68, R4 “ 0.1, ω “ 10,
Kc{Kµ “ 0.8, φavg “ 0.4.



Fluids 2016, 1, 4 14 of 23

Fluids 2016, 1, 4 12 of 20 

 

Figure 9. Effect of M on the volume fraction field when 𝑚 = 0.0, 𝜙𝑚 = 0.68, 𝑅4 = 0.1, 𝜔 = 10, 𝐾𝑐/𝐾𝜇 =

0.8, 𝜙𝑎𝑣𝑔 = 0.4. 

 

Figure 10. Effect of M on the temperature field when 𝑚 = 0.0,  𝜙𝑚 = 0.68, 𝑅4 = 0.1, 𝜔 = 10, 𝐾𝑐/𝐾𝜇 =

0.8, 𝜙𝑎𝑣𝑔 = 0.4. 

5.4. Effect of 𝑅4 

Recall that 𝑅4 is defined as 
𝜇𝑟𝑉

2

𝑘𝑚(𝜃1−𝜃0)
(
𝑉

𝐻
)
𝑚

, which is a measure of viscous dissipation and is 

related to the Prandtl and the Eckert numbers. Figures 11–13 show the impact of 𝑅4 in this problem. 

From Figures 11 and 12, it can be seen that the effect of 𝑅4 on the velocity and volume fraction 

Figure 10. Effect of M on the temperature field when m “ 0.0, φm “ 0.68, R4 “ 0.1, ω “ 10,
Kc{Kµ “ 0.8, φavg “ 0.4.

5.4. Effect of R4

Recall that R4 is defined as
µrV2

km pθ1 ´ θ0q

ˆ

V
H

˙m
, which is a measure of viscous dissipation and is

related to the Prandtl and the Eckert numbers. Figures11–13 show the impact of R4 in this problem.
From Figures 11 and 12 it can be seen that the effect of R4 on the velocity and volume fraction
distribution is negligible. From Figure 13 it can be seen that R4 increases if the temperature profiles
become more non-linear. From the expression of R4, we know that a larger R4 implies a stronger effect
of the shear stress on temperature distribution; furthermore, from the velocity profile, we can see that
near the inner wall, the velocity gradient is larger and therefore a larger R4 has the tendency to increase
the temperature gradient near the inner wall region.
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Figure 13. Effect of R4 on the temperature field when m “ 0.0, φm “ 0.68, M “ 1, ω “ 10,
Kc{Kµ “ 0.8, φavg “ 0.4.

5.5. Effect of ω

Recall that ω represents the ratio of the conductivity of the particles to the matrix; ω only appears
in the energy equation. Therefore, as expected from Figures 14 and 15 we can see that the effect of
ω on the velocity and the volume fraction distribution is meagre. Figure 16 shows the effect of ω

on the temperature profile. It can be seen that as ω increases, the temperature distribution becomes
more non-linear. This may be attributed to the higher dependency of the thermal conductivity on the
volume fraction as ω increases.
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Figure 15. Effect of 𝜔 on the volume fraction field when 𝑚 = 0.0, 𝜙𝑚 = 0.68,𝑀 = 1, 𝑅4 = 0.1, 𝐾𝑐/
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5.6. Effect of 𝐾𝑐/𝐾𝜇 

Figures 17–19 show the effect of 𝐾𝑐/𝐾𝜇. This ratio represents the effect of varying interaction 

frequency to varying viscosity on the non-uniform distribution of the volume fraction. From Figure 

18, we can see that as 𝐾𝑐/𝐾𝜇 decreases, the particle distribution becomes more uniform. That is, when 

the 𝐾𝑐/𝐾𝜇 is small, a small particle non-uniformity can cause viscosity gradients large enough to 

Figure 15. Effect of ω on the volume fraction field when m “ 0.0, φm “ 0.68, M “ 1, R4 “ 0.1,
Kc{Kµ “ 0.8, φavg “ 0.4.
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Figure 16. Effect of ω on the temperature field when m “ 0.0, φm “ 0.68, M “ 1, R4 “ 0.1,
Kc{Kµ “ 0.8, φavg “ 0.4.

5.6. Effect of Kc{Kµ

Figures17–19 show the effect of Kc{Kµ. This ratio represents the effect of varying interaction
frequency to varying viscosity on the non-uniform distribution of the volume fraction. From Figure 18,
we can see that as Kc{Kµ decreases, the particle distribution becomes more uniform. That is, when the
Kc{Kµ is small, a small particle non-uniformity can cause viscosity gradients large enough to satisfy
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Equation (32) [17]. Figures 17 and 19 show that as Kc{Kµ increases, the velocity and the temperature
curves become more linear, though the effect is small.
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Figure 19. Effect of Kc{Kµ on the temperature field when m “ 0.0, φm “ 0.68, M “ 1, R4 “ 0.1,
ω “ 10, φavg “ 0.4.

5.7. Effect of the Average Volume Fraction φavg

From Figure 20, it can be seen that when φavg increases, the velocity curves become more non-linear.
This may be attributed to higher non-uniform distribution of volume fraction when φavg is high. As
Figure 21 shows, the effect of φavg on the volume fraction distribution is strong. For higher values of
φavg, the volume fraction profile becomes more non-linear; that is, more particles stack near the outer
wall. At the same time, we can see that the velocity does not change much in the region where the
particles accumulate. That is as expected, since when the bulk volume fraction is approaching the
maximum packing, then a very high apparent viscosity is reached. From Figure 22, we can see that the
effect of φavg on temperature profile is negligible.
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6. Concluding Remarks

In this paper, we have studied the fully developed flow of a drilling fluid between two rotating
cylinders. We have modeled the drilling fluid as a non-Newtonian suspension. The viscosity is
assumed to depend not only on the volume fraction and the shear rate but also on the temperature.
To study the variation of the volume fraction, a convection-diffusion equation with a concentration
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flux suggested by Phillips et al. [17] is used. The condition of the fully developed flow is considered
and the governing equations are non-dimensionalized and numerically solved. The parametric
study indicates that the flow field is greatly affected by the dependency of the viscosity on the shear
rate and the temperature, and that the concentration flux parameters, Kc{Kµ, and the solid-particle
maximum packing, φm, play a significant role in the particle distribution. For future studies, we plan to
consider the yield stress portion of the stress tensor, as well as look at unsteady multi-dimensional flow
situations. Furthermore, the effects of viscous dissipation near the tip of the drilling bit is considered
to be more significant than inside the flow domain, and therefore, we plan to study the torsional and
longitudinal oscillation of a cylindrical rod immersed in a non-linear fluid.
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Wei-Tao Wu.
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Nomenclature

Symbol Explanation
b body force vector
φ concentration
D symmetric part of the velocity gradient
g acceleration due to gravity
l identity tensor
L gradient of the velocity vector
m Power-law index
t time
T Cauchy stress tensor
ρ bulk density
µr reference viscosity
η effective viscosity
θ temperature
div divergence operator
∇ (or grad) gradient operator
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