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Abstract: Multiscale dynamics are frequently present in real-world processes, such as the
atmosphere-ocean and climate science. Because of time scale separation between a small set of
slowly evolving variables and much larger set of rapidly changing variables, direct numerical
simulations of such systems are difficult to carry out due to many dynamical variables and the
need for an extremely small time discretization step to resolve fast dynamics. One of the common
remedies for that is to approximate a multiscale dynamical systems by a closed approximate
model for slow variables alone, which reduces the total effective dimension of the phase space
of dynamics, as well as allows for a longer time discretization step. Recently, we developed
a new method for constructing a deterministic reduced model of multiscale dynamics where
coupling terms were parameterized via the Fluctuation-Dissipation theorem. In this work we
further improve this previously developed method for deterministic reduced models of multiscale
dynamics by introducing a new method for parameterizing slow-fast interactions through additive
stochastic noise in a systematic fashion. For the two-scale Lorenz 96 system with linear coupling,
we demonstrate that the new method is able to recover additional features of multiscale dynamics in
a stochastically forced reduced model, which the previously developed deterministic method could
not reproduce.
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1. Introduction

Multiscale dynamics are common in applications of contemporary science, such as geophysical
science and climate change prediction [1–7]. Multiscale dynamics are typically characterized by the
time and space scale separation of patterns of motion, with fewer slowly evolving variables and much
larger set of faster evolving variables. This time-space scale separation often made direct numerical
computation of the dynamics on the slow time scale quite difficult in real-world applications, which
led to the development of multiscale computational methods [8,9]. These methods make use of the
averaging formalism [10–12] to allow for large time discretization steps for the computation of the
slow part of the dynamics. However, in very large systems with many fast variables even these
methods are computationally expensive.

As a different alternative to direct numerical simulation of the complete multiscale model with
all variables, it has long been recognized that, if a closed simplified model for the slow variables
alone was available, one could use this closed slow-variable model instead to simulate the statistics
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of the slow variables. In order to derive such a reduced model, one usually represents the process as
a general two-scale dynamical system of the form

dx
dt

= F(x, y)
dy
dt

=
1
ε

G(x, y) (1)

where x ∈ RNx and y ∈ RNy are the state vectors, and F and G are nonlinear differentiable functions.
The scaling parameter ε � 1 is used to separate the time scales in Equation (1) into slow (that
is, x), and fast (that is, y). The scale separation parameter ε above is introduced for convenience
of presentation, because, as shown below, the method developed here does not require its explicit
presence to function. Besides, often real-world processes do not have any distinct time-scale
separation parameters, and the fast and slow variables are known empirically from observations.

Under the assumption of “infinitely fast” y-variables, one writes the reduced averaged system
for slow variables alone as

dx̄
dt

= F̄(x̄) F̄(x̄) =
∫

RNy
F(x̄, y)dµx̄(y) (2)

where µx̄ is the invariant distribution measure of the uncoupled fast dynamics where x̄ is a
fixed parameter:

dz
dt

= G(x̄, z) (3)

Under the assumption of ergodic µx̄, the measure integral in Equation (2) can be replaced with
the time average along a single trajectory zx̄(t) of Equation (3) for specified parameter x̄:

F̄(x̄) = lim
T→∞

1
T

∫ T

0
F(x̄, zx̄(t))dt (4)

From Equations (2)–(4), it is clear that the computation of the averaged function F̄(x̄) is
not a simple task; in fact, it is rarely available explicitly (except for some special cases where
either the invariant distribution measure µx̄ or the solution zx̄(t) are known as explicit formulas).
A good example of the system where the invariant distribution measure is known explicitly is
the Ornstein-Uhlenbeck process [13]; the invariant distribution measure of the Ornstein-Uhlenbeck
process is a Gaussian distribution with explicitly known mean state and covariance matrix. Because
of this convenient property, the Ornstein-Uhlenbeck process is popular in the area of stochastic
modeling of geophysical and other real-world processes.

The “upgrade” from the deterministic reduced model in Equation (2) is a stochastic model of
the form

dx̄ = F̄(x̄)dt + σ(x̄)dW t (5)

where W t is a Wiener process, and σ(x̄) is a matrix. This model was suggested in [2], and is referred to
as the “nonlinear diffusion approximation” in [14]. It is the correct homogenization approximation in
the case where the vector field G of the fast y-dynamics in Equation (1) does not depend on x [15–17],
whereas in the case of a fully coupled multiscale dynamics an additional deterministic term of order
ε appears in Equation (5) [14,18]. Here we choose to omit this extra term due to, first, difficulty in its
numerical computation, and, second, its relatively small contribution.

The stochastic reduced model in Equation (5) is generally considered to be more advantageous
to the deterministic reduced model in Equation (2), because the random noise can be used to
parameterize “noise-like” influence from fast variables onto slow dynamics, which is entirely lacking
in the deterministic reduced model in Equation (2). Sometimes, deterministic reduced models
of atmospheric processes fail to adequately represent atmospheric variability; it is thought that a
significant portion of atmospheric variability is essentially noise-like, and fitting it with deterministic
forcing terms does not seem to be a good way to produce an adequate approximation. Additionally,
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the deterministic slow dynamics in Equation (2) tend to produce the attractor of the slow dynamics
with significantly lower dimension than that for the full two-scale dynamics in Equation (1),
especially for weakly chaotic slow variables. At the same time, if the stochastic forcing in Equation (5)
is strong enough, it should “diffuse” the invariant manifolds of Equation (2), thus inflating the
dimension of the set containing limiting dynamics.

Nonetheless, in many applications, the reduced dynamics of the deterministic type in
Equation (2) or stochastic type in Equation (5) are not available explicitly. As a result, numerous
approximate closure schemes were developed for multiscale dynamical systems [9,19–23], which
are all based on the averaging/homogenization principle over the fast variables [10–12]. Some of
the methods (such as those in [20–23]) replace the fast nonlinear dynamics with suitable stochastic
processes [24], discontinuous Markov jump processes [25], or conditional Markov chains [19],
while others [9] provide direct closure by suitable tabulation and curve fitting. Reduced stochastic
dynamics were used to model global circulation patterns [26–30], and large-scale features of tropical
convection [31,32]. However, it seems that all these approaches require either extensive computations
to produce a closed model (for example,[9,19] require multiple simulations of fast variables alone with
different fixed states of slow variables), or somewhat ad hoc determination of closure coefficients by
matching areas under the time correlation functions [20–23]. Another interesting method was recently
developed in [33], however, again, somewhat ad hoc approach was used to compute the closure
(namely, slow variables of a multiscale system were treated as if their dynamics were generated by
a running average of an Ornstein-Uhlenbeck process). Recently, a stochastic parameterization of a
reduced dynamics was used in [34] for a low-order coupled atmosphere-ocean model.

In two recent works [35,36] the author developed a relatively simple and straightforward
method of constructing the deterministic reduced model for slow variables of a multiscale model
with nonlinear and multiplicative coupling, which required only a single computation of certain
statistics of the fast dynamics with a fixed state of the slow variables, located in the region where
the slow dynamics usually evolve. The method was based on the first-order Taylor expansion
of the averaged coupling term with respect to the slow variables, which was computed using
the Fluctuation-Dissipation theorem [37–44]. It was demonstrated through the computations
with the appropriately rescaled two-scale Lorenz 96 model [45,46] that, with nonlinear and
multiplicative coupling in both slow and fast variables, the developed reduced model produced good
approximation to the statistics of the full two-scale Lorenz 96 model. Among the advantages of the
developed method were its simplicity and explicit formulation. Additionally, existing zero-order
models of this kind for the Earth’s atmosphere (such as the T21 barotropic model [42,47,48]) can be
retrofitted with the new deterministic correction term emerging from the theory in [35].

In the current work, we introduce a method for computing a consistent approximation of the
form in Equation (5) to the multiscale dynamics in Equation (1). The method is aimed at stochastic
parameterization of general complex nonlinear multiscale dynamics with many variables, and has
essentially the same implementation restrictions as the method for deterministic reduced models we
developed previously in [35,36]. We test the new method on the two-scale Lorenz 96 model, where
only the linear part of the coupling is enabled for the simplicity of presentation. We demonstrate
through direct numerical simulations that the new method generally improves properties of statistics
of the reduced model, and, in particular, the injection of random noise into a deterministic reduced
model can make it both more or less chaotic and mixing, depending on the difference between the
dynamical regimes of the reduced and full two-scale models.

We must mention, however, that a formally more accurate stochastic reduced model can be
obtained from Equation (5) by adding a small deterministic correction term [14,18]. However,
this additional deterministic correction term is given as a statistical correlation of the slow vector
field with its own Jacobian, which is difficult to implement and expensive to compute numerically.
The main motivation for the current work, however, is to test a relatively simple and inexpensive
stochastic extension to the already available deterministic reduced model [35,36], which can be used
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to simplify a general nonlinear multiscale dynamics. Due to this reason, we chose to omit the small
deterministic correction term from [14,18].

The manuscript is organized as follows. In Section 2 we present the general description of the
new method, following the homogenization theory of [49]. In Section 3 we lay out the step-by-step
computational implementation of the new method for a general two-scale dynamical system with
linear coupling between the slow and fast variables, which does not contain any explicit time-scale
separation parameters. In Section 4 we test the new method on the two-scale Lorenz 96 model in a
range of dynamical regimes with varying chaos, mixing, and time scale separation between the slow
and fast variables. Section 5 summarizes the results of this work.

2. General Description of the Method

Here we introduce a new method for the stochastic correction of the form in Equation (5) for the
deterministic reduced model in Equation (2). To derive the method, we use the theoretical framework
similar to that applied to homogenization problems in [49]. To simplify presentation, we assume that
the deterministic averaged function F̄(x̄) from Equation (2) is already available, either as an explicit
formula, or as an approximation we developed previously in [35,36]. Below, x is used to denote the
state of the slow variables from the multiscale system in Equation (1), while x̄ denotes the state of the
slow variables from the deterministic reduced model in Equation (2). The difference between x and
x̄ is denoted as q = x − x̄. Then, one can rewrite the multiscale system in Equation (1) in the new
variables as

dx̄
dt

= F̄(x̄) (6a)

dq
dt

= F(x̄ + q, y)− F̄(x̄) (6b)

dy
dt

=
1
ε

G(x̄ + q, y) (6c)

What we see above is that the first equation is already a closed system from Equation (2), and
given a suitable approximation for F̄ from [35,36], it can be solved on its own. Thus, x̄(t) can be treated
as a given function of time. This, in effect, leaves q and y as the unknown variables, and Equation (6a)
can be dropped. Now, the idea is to apply the homogenization formalism to q, obtaining q̄ as the next
order correction to x̄. In this situation, the reduced model for q̄ should be derived as the Itô diffusion
process of the corresponding backward Kolmogorov equation restricted to slow time scale (see [49]
for details), under the condition that q (and, therefore, dq/dt) in Equations (6b)–(6c) is O(ε). To do
that, first we bring the time scale of q in Equations (6b)–(6c) to O(1) by rescaling the time t as τ = εt.
For the rescaled time τ, from Equations (6b)–(6c) we obtain

dq
dτ

=
1
ε
[F(x̄ + q, y)− F̄(x̄)] (7a)

dy
dτ

=
1
ε2 G(x̄ + q, y) (7b)

Above, the evolution equation for x̄ is no longer needed, as x̄(τ) is a given function of rescaled
time τ. Now we write the backward Kolmogorov equation for Equations (7a)–(7b). For that,
let v(τ, τ′, x̄, q, y), τ′ ≥ τ, be the value of a test function h(q(τ′), y(τ′)), given q(τ) = q, and
y(τ) = y. Then, v(τ, τ′, x̄, q, y) obeys the following backward Kolmogorov equation (for reference,
see, for example, [50]):

∂v(τ, τ′, x̄, q, y)
∂τ

=

[
1
ε2 G(x̄ + q, y) · ∇y +

1
ε

[
F(x̄ + q, y)− F̄(x̄)

]
· ∇q

]
v(τ, τ′, x̄, q, y) (8)
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Below, we drop the τ′-dependence from v as it is of no consequence to what is presented.
Observe that the terms in the backward Kolmogorov equation above are multiplied by different
powers of ε, which leads to the perturbation expansion of the solution v(τ, x̄, q, y) in powers of ε,
and derivation of the backward Kolmogorov equation for the term which has the lowest power of ε

in the closed form. Then, its corresponding Itô diffusion process will be the evolution equation for
dq̄/dt, as long as q̄ is small enough.

The expansion of v(τ, x̄, q, y) in powers of ε is

v = v0 + εv1 + ε2v2 + . . . (9)

Plugging the expansion above back into the Kolmogorov equation in Equation (8) and collecting
the terms with matching powers of ε, we obtain the following relations for each power of ε:

G(x̄ + q, y) · ∇yv0 = 0 for ε−2 (10a)

G(x̄ + q, y) · ∇yv1 = −
[
F(x̄ + q, y)− F̄(x̄)

]
· ∇qv0 for ε−1 (10b)

∂v0

∂τ
= G(x̄ + q, y) · ∇yv2 +

[
F(x̄ + q, y)− F̄(x̄)

]
· ∇qv1 for ε0 (10c)

Below we consider each of the relations above separately.

• Order ε−2. From the relation in Equation (10a) we determine that v0(τ, x̄, q, y) = v0(τ, x̄, q), that
is, v0 does not depend on y.

• Order ε−1. Here we use the relation in Equation (10b) to express v1 in terms of v0. We denote the
flow, generated by Equation (3), by φs

x̄, so that φs
x̄y is the solution of Equation (3) forward in time

s with the initial condition y, with the obvious identity

∂

∂s
φs

x̄+qy = G(x̄ + q, φs
x̄+qy) (11)

Now, consider the integral

u(s, x̄, q, y) =
∫ ∞

s

[
F(x̄ + q, φr

x̄+qy)− F̄(x̄)
]
dr · ∇qv0 =

=
∫ ∞

0

[
F(x̄ + q, φr

x̄+q(φ
s
x̄+qy))− F̄(x̄)

]
dr · ∇qv0

(12)

where the group property of φs
x̄ is used in the second equality. Then, from the first identity in

Equation (12), it follows that

∂

∂s
u(s, x̄, q, y)

∣∣∣∣
s=0

= −
[
F(x̄ + q, y)− F̄(x̄)

]
· ∇qv0 (13)

and from the second identity in Equation (12) it follows that u(s, x̄, q, y) is in fact an explicit
function of φs

x̄+qy, that is, u(s, x̄, q, y) ≡ U(x̄, q, φs
x̄+qy). However, any U(x̄, q, φs

x̄+qy) must obey
the transport equation

∂

∂s
U(x̄, q, φs

x̄+qy) = ∇U(x̄, q, φs
x̄+qy) · ∂

∂s
φs

x̄+qy =

= G(x̄ + q, φs
x̄+qy) · ∇U(x̄, q, φs

x̄+qy)
(14)

where the second identity is due to Equation (11), and which holds for any s including s = 0.
Combining Equations (13) and (14) at s = 0, we obtain

G(x̄ + q, y) · ∇yu(0, x̄, q, y) = −
[
F(x̄ + q, y)− F̄(x̄)

]
· ∇qv0 (15)
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From the comparison with Equation (10b) it follows that v1 = u(0, x̄, q, y), that is,

v1 =
∫ ∞

0

[
F(x̄ + q, φs

x̄+qy)− F̄(x̄)
]
ds · ∇qv0. (16)

• Order ε0. Here observe that v0 does not depend on y, as pointed out above. This means that
the average of v0 with respect to the invariant distribution measure µx̄+q of Equation (3) is the
identity operation, and the same holds for its τ-derivative. Then, averaging out Equation (10c)
with respect to µx̄+q yields,

∂v0

∂τ
=
∫

RNy
G(x̄ + q, y) · ∇yv2dµx̄+q(y)+

+
∫

RNy

[
F(x̄ + q, y)− F̄(x̄)

]
· ∇qv1dµx̄+q(y)

(17)

For the first integral above we express the gradient term as a time derivative of the function along
the flow (in the same way as above for v1):

G(x̄ + q, y) · ∇yv2(τ, x̄, q, y) =
∂

∂s
v2(τ, x̄, q, φs

x̄+qy)
∣∣∣∣
s=0

(18)

The invariant distribution measure µx̄+q preserves the averages of functions of φs
x̄+qy:

∫
RNy

v2(τ, q, φs
x̄+qy)dµx̄+q(y) = constant, for all s (19)

This, in turn, results in

∂

∂s

∫
RNy

v2(τ, x̄, q, φs
x̄+qy)dµx̄+q(y) = 0, for all s, including s = 0 (20)

and, therefore,
∂v0

∂τ
=
∫

RNy

[
F(x̄ + q, y)− F̄(x̄)

]
· ∇qv1dµx̄+q(y) (21)

At this point, substituting the expression for v1 from Equation (16), and rescaling time τ back to
t yields

∂v0

∂t
=

[
Q(x̄ + q, x̄) · ∇q +

1
2

S(x̄ + q, x̄) :
(
∇q ⊗∇q

)]
v0 (22a)

Q(a, b) = ε
∫ ∞

0

∫
RNy

(
∂

∂a
F(a, φs

ay)
) [

F(a, y)− F̄(b)
]
dµa(y)ds (22b)

S(a, b) = 2ε Sym
∫ ∞

0

∫
RNy

[
F(a, φs

ay)− F̄(b)
]
⊗
[
F(a, y)− F̄(b)

]
dµa(y)ds (22c)

where “:” denotes the Frobenius product of two matrices, and “ Sym” denotes the symmetric part of
a matrix (the skew-symmetric part is canceled out by the Frobenius product with a symmetric matrix).

As a result, the next-order correction q̄ to the averaged dynamics in Equation (2), generated by
the backward Kolmogorov equation above, is given by the Itô diffusion process

dx̄
dt

= F̄(x̄) (23a)

dq̄ = Q(x̄ + q̄, x̄)dt + σ(x̄ + q̄, x̄)dW t (23b)
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as long as q̄ is small enough. Above, W t is a K-dimensional Wiener process for some positive integer
K, Q(x̄+ q̄, x̄) is the O(ε) Ny-vector drift term, and σ(x̄+ q̄, x̄) is the O(

√
ε) Ny×K stochastic diffusion

matrix, given (non-uniquely) by
σσT = S (24)

Thus far, in Equations (23a)–(23b) we obtained the equations for two sets of variables, x̄ and q̄,
while the evolution of the stochastic reduced dynamics for Equation (1) is given by the sum (x̄ + q̄).
However, what we actually need is an approximate reduced model for (x̄ + q̄) directly. For that, we
add Equations (23a) and (23b) to obtain

d(x̄ + q̄) = F̄(x̄ + q̄)dt + σ(x̄ + q̄, x̄ + q̄)dW t+

+
[
F̄(x̄)− F̄(x̄ + q̄) + Q(x̄ + q̄, x̄)

]
dt+

+ [σ(x̄ + q̄, x̄)− σ(x̄ + q̄, x̄ + q̄)]dW t

(25)

Above, observe that the first term in the right-hand side is O(1), the second term is O(
√

ε), and
the rest of the terms are O(ε) or higher (taking into account that q̄ is O(ε)). Additionally, the terms
in the second and third line of Equation (25) are very difficult to compute in practice for complex
nonlinear dynamics. Therefore, we delete the terms in the second and third lines from Equation (25),
thus completely decoupling Equation (25) from Equations (23a)–(23b). Then, after replacing (x̄ +

q̄) → x̄, we obtain the stochastic reduced model in Equation (5), where the diffusion matrix σ is
computed according to Equations (22c) and (24) with a = b = x̄ (further we denote S(x̄) ≡ S(x̄, x̄)).

Remark: σ(x̄) Does not Depend on ε.

It is important to note that S(x̄), and, therefore, σ(x̄), do not in fact depend on ε. Indeed,
observe that

S(x̄) = 2ε Sym
∫ ∞

0

∫
RNy

[
F(x̄, φs

x̄y)− F̄(x̄)
]
⊗
[
F(x̄, y)− F̄(x̄)

]
dµx̄(y)ds =

= 2 Sym
∫ ∞

0

∫
RNy

[
F(x̄, φs/ε

x̄ y)− F̄(x̄)
]
⊗
[
F(x̄, y)− F̄(x̄)

]
dµx̄(y)ds

(26)

where φs/ε
x̄ y is the solution of the fast dynamics from Equation (1) (with ε−1 still in front of G(x, y))

with x = x̄ fixed as a constant parameter. Thus, there is no need to know what ε is to compute
S(x̄), and, in fact, ε does not have to be an explicit scaling parameter in the multiscale dynamics
in Equation (1). This makes the new method practical in realistic applications, where time-scale
difference might not be explicitly available in the form of a parameter.

3. Practical Implementation of the Reduced Stochastic Model For a General Multiscale Process
With Linear Coupling

As formulated above in Section 2, the new method is applicable for a broad range of dynamical
systems with general forms of coupling. However, for the clarity of presentation, we dedicate a
separate section to the implementation of the developed method for a multiscale process with linear
coupling. The linear coupling is the most basic form of coupling in physical processes, however,
because of that it is also probably the most common form of coupling. Below we describe the complete
step-by-step assembly of the reduced model, with both the deterministic and stochastic terms which
parameterize coupling.

Here we consider the special setting of Equation (1) with linear coupling between x and y:

dx
dt

= f (x) + Lyy
dy
dt

= g(y) + Lxx (27)
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where f and g are nonlinear vector functions of x and y, respectively, and Lx and Ly are constant
matrices of suitable sizes. As before, x and y denote the slow and fast variables, respectively.
However, one important distinction between Equation (27) and Equation (1) is that we no longer
make use of the time scale separation parameter ε; here the assumption is that it is somehow
known that x-variables are slow, and y-variables are fast, but no further information about time scale
separation is available beyond that, and, in particular, no explicit time scale separation parameter is
known. As before, we introduce the corresponding fast limiting system

dz
dt

= g(z) + Lxx (28)

with x specified as a constant parameter. It is easy to see that for the multiscale system with linear
coupling in Equation (27), the matrix S(x̄) from Equation (22c) is computed as the time-lag correlation
matrix

S(x̄) = 2Ly Sym
[∫ ∞

0

∫
RNy

(
φs

x̄y− z̄(x̄)
)(

y− z̄(x̄)
)Tdµx̄(y)ds

]
LT

y (29)

where φs
z̄ is the solution of Equation (28), with x fixed at constant parameter x̄, forward in time s

from an initial condition y, and z̄(x̄) is the mean state of Equation (28). Before constructing the
reduced model, we need realistic assumptions on what we can compute in the multiscale system in
Equation (27), which we take directly from [35,36]:

• First, we are going to presume that the multiscale dynamical system in Equation (27) is not
necessarily computable at will for arbitrarily long time intervals. The reason is that if it is possible,
then the need for a reduced model becomes somewhat difficult to justify.

• Even if the full multiscale model is not computable at will, we still need some statistical
information about it to formulate the reduced model. Here, we presume that some typical state
x∗ of the slow variables x is available, such that the dynamics evolve in the proximity of x∗.
For example, a rough estimate of the mean state of the slow variables of the full multiscale system
can be taken as x∗, or a nearby state.

• We presume that the limiting fast dynamics in Equation (28) is computable beyond the mixing
time scale, so that time averages of Equation (28) can be computed, at least for a single given
value x = x∗.

• The assumptions above are the same as in [35,36], in order to ensure compatibility of
the proposed stochastic reduced model method with what we have already developed
in [35,36] for deterministic reduced models of multiscale dynamics with nonlinear and
multiplicative coupling.

Under the above assumptions and the ergodicity hypothesis, we compute the mean state 〈z〉 and
the time covariance matrix C(τ) from the long-term time series of the solution z(t) of Equation (28)
with fixed parameter x = x∗:

〈z〉 = lim
T→∞

1
T

∫ T

0
z(t)dt (30a)

C(τ) = lim
T→∞

1
T

∫ T

0
(z(t + τ)− 〈z〉) (z(t)− 〈z〉)T dt (30b)

C̄ =
∫ ∞

0
C(τ)dτ (30c)

Then, we assemble the reduced stochastic model for Equation (27) in the explicit form as

dx̄ =
[

f (x̄) + Ly〈z〉+ LyRLx(x̄− x∗)
]

dt + σdW t (31)

where the constant terms R and σ are computed as

R = C̄C−1(0) (32a)
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σσT = S = Ly

(
C̄ + C̄T

)
LT

y (32b)

Above, the deterministic part in Equation (31) is computed as described in [35] using the
quasi-Gaussian linear response approximation [43], while the stochastic part is computed according
to Equation (29) (where the measure average is replaced with the time average) with x̄ = x∗. Observe
that the matrix σ will be computed only once, for the particular value x∗. That, in effect, makes it a
constant matrix approximation to the exact σ(x̄) from Equation (24), provided that the trajectory x̄(t)
of the reduced model in Equation (31) is in the vicinity of x∗. This type of stochastic parameterization
with a constant diffusion matrix is called the additive noise parameterization (as opposed to the
multiplicative noise parameterization, where σ is a function of x̄). In the future work, we plan to
extend the method described here onto the multiplicative noise parameterization.

The Choice of σ.

Observe that σ is not determined uniquely by Equation (32b), as multiple decompositions of
S into σσT are available (the Cholesky decomposition into the product of a lower-triangular matrix
with its own transpose being one of the examples). Here we use the following algorithm to compute
σ: first, solve the eigenvalue problem

SX = XΛ (33)

where X is the matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues. Since S is
symmetric and nonnegative-definite [49], then all eigenvalues in Λ are guaranteed to be positive,
and all eigenvectors in X are guaranteed to be orthonormal (so that X−1 = XT). Then, we compute
σ as

σ = XΛ1/2XT (34)

This method uniquely determines σ as a square, symmetric, and positive-definite diffusion
matrix for the Wiener process W t.

4. Computational Study: The Two-Scale Lorenz 96 Model With Linear Coupling

The test multiscale system used to study the new method of stochastic parameterization here is
the rescaled two-scale Lorenz 96 system with linear coupling, previously used in [35] to study the
deterministic reduced model parameterization. The Lorenz 96 system is given by

ẋi = xi−1(xi+1 − xi−2) +
1

βx
(x̄(xi+1 − xi−2)− xi) +

Fx − x̄
β2

x
−

λy

J

J

∑
j=1

yi,j (35a)

ẏi,j =
1
ε

[
yi,j+1(yi,j−1 − yi,j+2) +

1
βy

(ȳ(yi,j−1 − yi,j+2)− yi,j) +
Fy − ȳ

β2
y

]
+

λx

ε
xi (35b)

with 1 ≤ i ≤ Nx and 1 ≤ j ≤ J, such that Ny = Nx J. The model has periodic boundary conditions:
xi+Nx = xi, yi,j+J = yi+1,j, and yi+Nx ,j = yi,j. The parameter ε � 1 sets the time scale separation
between the slow variables xi, and the fast variables yi,j. The parameters (x̄, βx) and (ȳ, βy) are the
(mean, standard deviation) pairs for the corresponding uncoupled and unrescaled Lorenz models

ẋi = xi−1(xi+1 − xi−2)− xi + Fx (36a)

ẏi,j = yi,j+1(yi,j−1 − yi,j+2)− yi,j + Fy (36b)

with the same periodic boundary conditions. The rescaling above ensures that the Lorenz 96 model in
Equations (35a)–(35b) has zero mean state and unit standard deviation for both slow and fast variables
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in the absence of coupling (λx = λy = 0), and remain near these values when λx and λy are nonzero.
The linear coupling above preserves the energy of the form

E =
λx

2

Nx

∑
i=1

x2
i +

ελy

2J

Nx

∑
i=1

J

∑
j=1

y2
i,j (37)

Below we display the results of a numerical study of the stochastic reduced model for slow
variables of multiscale dynamics, using the rescaled Lorenz system in Equations (35a)–(35b) as the
test model. We compare the statistical properties of the slow variables for the four following systems:

• The complete rescaled Lorenz system from Equations (35a)–(35b);
• The stochastic reduced model from Equation (31);
• The deterministic reduced model obtained from Equation (31) by removing the stochastic forcing

(this model was previously developed in [35]);
• The poor man’s version of Equation (31) with no stochastic forcing and the first-order linear

deterministic correction term R set to zero (further referred to as the “zero-order” system,
same as in [35]). This zero-order system represents the simplest reduced model with constant
parameterization of coupling terms.

The fixed parameter x∗ for the computation of 〈z〉, R and σ was set to the long-term mean
state 〈x〉 of the full multiscale model in Equations (35a)–(35b) (in computationally expensive models,
a rough estimate could be used). Like in [35,36], for all computational statistical results presented
below, the averaging time window Tav equals 10000 time units.

Due to translational invariance of the studied models, the statistics are invariant with respect to
the index shift for the variables xi. For diagnostics, we monitor the following long-term statistical
quantities of xi:

a. The distribution density functions, computed by bin-counting. A distribution density function
gives the best information about the one-point statistics of xi, as it shows the statistical
distribution of xi in the phase space.

b. The time auto-correlation functions 〈xi(t)xi(t + s)〉, where the time average is over t, normalized
by the variance 〈x2

i 〉 (so that it always starts with 1).
c. The time cross-correlation functions 〈xi(t)xi+1(t + s)〉, also normalized by the variance 〈x2

i 〉.
d. The energy auto-correlation function

K(s) =
〈x2

i (t)x2
i (t + s)〉

〈x2
i 〉2 + 2〈xi(t)xi(t + s)〉2

This energy auto-correlation function measures the non-Gaussianity of the process (it is
identically 1 for all s if the process is Gaussian, such as the Ornstein-Uhlenbeck process).
For details, see [23].

The following dynamical regimes are studied:

• Nx = 20, J = 4 (so that Ny = 80). Thus, the number of the fast variables is four times greater than
the number of the slow variables.

• ε = 0.01, 0.1. The time scale separation of two orders of magnitude (ε = 0.01) is consistent
with typical real-world geophysical processes (for example, the annual and diurnal cycles of
the Earth’s atmosphere). Also, in large-scale atmospheric processes the time scale separation
between slow and fast variables can be weaker than that (for example, typical time scale of
equatorial Kelvin waves is about 70 days, and that of Yanai waves is about 30 days, which is
well in between the annual and diurnal cycles), so we additionally test the dynamical regimes
with weak time scale separation ε = 0.1.
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• λx = λy = 0.3, 0.35. These values of coupling are chosen so that they are neither too weak,
nor too strong (although 0.3 is weaker, and 0.35 is stronger). However, this small variation in
coupling changes the dynamical regime in the slow variables between moderately (ε = 0.3) and
weakly (ε = 0.35) chaotic and mixing, due to the suppression of chaos effect previously studied
in [51].

• Fx = 6. The slow forcing Fx adjusts the chaos and mixing properties of the slow variables, and
in this work it is set to a weak-to-moderate chaotic regime Fx = 6. The reason for that is that it
was found previously in [35] that in strongly chaotic and mixing regimes at slow variables there
is not much of a difference between the multiscale dynamics and reduced models.

• Fy = 16. The fast forcing adjusts the chaos and mixing properties of the fast variables. Here the
value of Fy is chosen so that the fast variables are strongly chaotic and mixing for Fy = 16.

4.1. Moderate Mixing at Slow Variables With Weak Time Scale Separation

Here we present the comparison of different statistics for the dynamical regime with moderate
chaos and mixing at slow variables (achieved by setting λx = λy = 0.3) and weak time scale
separation (achieved by setting ε = 0.1). In Figure 1 we show the distribution density functions, time
auto-correlation functions, time cross-correlation functions, and energy auto-correlation functions for
the multiscale dynamics in Equations (35a)–(35b), and three different kinds of the reduced models:
the new stochastic reduced model, the deterministic reduced model from [35], and the zero-order
reduced model with constant parameterization of coupling terms (which is given for reference as
a simplest/poorest form of parameterization). Observe that the difference between the new stochastic
and deterministic models here are rather small, however, it does look like the additional stochastic
term improves the statistics. In particular, the stochastic terms makes the distribution density more
spiky towards the multiscale density, and appears to produce better fits for correlation functions.
The probable reason why there is not much of a difference between the deterministic and stochastic
reduced models is that the slow dynamics are not sufficiently weakly chaotic for the stochastic term
to make a significant difference. Table 1 confirms that there is some improvement error-wise in the
distribution density and energy auto-correlation, but no improvement in auto- and cross-correlations
(probably due to oscillations getting out of sync with increased lag time).
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Figure 1. Cont.
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Figure 1. (a) Distribution density function; (b) time auto-correlation function; (c) time
cross-correlation function; (d) energy auto-correlation function. Fx = 6, Fy = 16, λx = λy = 0.3,
ε = 0.1.

Table 1. Relative errors between the slow variables of the full multiscale system, and different reduced
models, computed for the plots in Figure 1. Fx = 6, Fy = 16, λx = λy = 0.3, ε = 0.1.

Rel. Error Stochastic Deterministic Zero-Order

Density 3.803× 10−3 7.424× 10−3 2.093× 10−2

Corr. 0.1218 0.1152 0.1935
Cross-corr. 0.1297 0.1222 0.2118

Energy corr. 1.312× 10−2 1.436× 10−2 3.473× 10−2

4.2. Moderate Mixing at Slow Variables With Strong Time Scale Separation

Here we present the comparison of different statistics for the dynamical regime with moderate
chaos and mixing at slow variables (achieved by setting λx = λy = 0.3) and strong time scale
separation (achieved by setting ε = 0.01). In Figure 2 we show the distribution density functions, time
auto-correlation functions, time cross-correlation functions, and energy auto-correlation functions for
the multiscale dynamics in Equations (35a)–(35b), and three different kinds of the reduced models: the
new stochastic reduced model, the deterministic reduced model from [35], and the zero-order reduced
model with constant parameterization of coupling terms. Observe that the difference between
the new stochastic and deterministic models here are even smaller than for the regime with weak
time-scale separation, probably due to the fact that the contribution of the stochastic term scales as√

ε. However, again, it looks like the additional stochastic term improves the statistics somewhat.
Table 2 show that there is some improvement error-wise in all presented statistics, but not enough to
be discernible visually in Figure 2.

Table 2. Relative errors between the slow variables of the full multiscale system, and different reduced
models, computed for the plots in Figure 2. Fx = 6, Fy = 16, λx = λy = 0.3, ε = 0.01.

Rel. Error Stochastic Deterministic Zero-Order

Density 8.105× 10−3 1.048× 10−2 2.233× 10−2

Corr. 9.309× 10−2 9.627× 10−2 0.1923
Cross-corr. 9.57× 10−2 9.99× 10−2 0.2129

Energy corr. 9.042× 10−3 1.209× 10−2 2.776× 10−2
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Figure 2. (a) Distribution density function; (b) time auto-correlation function; (c) time
cross-correlation function; (d) energy auto-correlation function. Fx = 6, Fy = 16, λx = λy = 0.3,
ε = 0.01.

4.3. Weak Mixing at Slow Variables With Weak Time Scale Separation

Here we present the comparison of different statistics for the dynamical regime with weak
chaos and mixing at slow variables (achieved by setting λx = λy = 0.35) and weak time scale
separation (achieved by setting ε = 0.1). In Figure 3 we show the distribution density functions, time
auto-correlation functions, time cross-correlation functions, and energy auto-correlation functions for
the multiscale dynamics in Equations (35a)–(35b), and three different kinds of the reduced models:
the new stochastic reduced model, the deterministic reduced model from [35], and the zero-order
reduced model with constant parameterization of coupling terms. Here we can see a significant
improvement between the deterministic reduced model from [35] and the new stochastic reduced
model. In particular, what apparently happens here is that the deterministic reduced model from [35]
turns out to be less chaotic and mixing than the original multiscale dynamics at slow variables
(observe that the distribution density is very spiky for the deterministic reduced model, while the
time auto- and cross-correlation functions are less mixing, and the energy auto-correlation function is
more sub-Gaussian than those for the multiscale dynamics). Then, the introduction of the stochastic
term results in improvement of mixing and sub-Gaussianity, and also smoothes out the spikes on the
distribution density, resulting in better approximation of the multiscale dynamics. Table 3 confirms
that there is improvement of statistics error-wise with the introduction of the stochastic term in the
new reduced model.
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Table 3. Relative errors between the slow variables of the full multiscale system, and different reduced
models, computed for the plots in Figure 3. Fx = 6, Fy = 16, λx = λy = 0.35, ε = 0.1.

Rel. Error Stochastic Deterministic Zero-Order

Density 2.166× 10−2 4.83× 10−2 7.516× 10−2

Corr. 0.2322 0.2335 0.3584
Cross-corr. 0.2277 0.2346 0.3557

Energy corr. 2.858× 10−2 5.031× 10−2 0.2163

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

D
e

n
s
it
y
 f

u
n

c
ti
o

n

x

Nx=20, Ny=80, λx=0.35, λy=0.35, Fx=6, Fy=16, ε=0.1

Multiscale system
Stochastic model

Deterministic model
Zero-order model

(a)

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20

A
u
to

c
o
rr

. 
fu

n
c
ti
o
n

Time

Nx=20, Ny=80, λx=0.35, λy=0.35, Fx=6, Fy=16, ε=0.1

Multiscale system
Stochastic model

Deterministic model
Zero-order model

(b)

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20

C
ro

s
s
-c

o
rr

. 
fu

n
c
ti
o
n

Time

Nx=20, Ny=80, λx=0.35, λy=0.35, Fx=6, Fy=16, ε=0.1

Multiscale system
Stochastic model

Deterministic model
Zero-order model

(c)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 5 10 15 20

E
n

e
rg

y
 c

o
rr

. 
fu

n
c
ti
o

n

Time

Nx=20, Ny=80, λx=0.35, λy=0.35, Fx=6, Fy=16, ε=0.1

Multiscale system
Stochastic model

Deterministic model
Zero-order model

(d)

Figure 3. (a) Distribution density function; (b) time auto-correlation function; (c) time cross-correlation
function; (d) energy auto-correlation function. Fx = 6, Fy = 16, λx = λy = 0.35, ε = 0.1.

4.4. Weak Mixing at Slow Variables With Strong Time Scale Separation

Here we present the comparison of different statistics for the dynamical regime with weak
chaos and mixing at slow variables (achieved by setting λx = λy = 0.35) and strong time scale
separation (achieved by setting ε = 0.01). In Figure 4 we show the distribution density functions, time
auto-correlation functions, time cross-correlation functions, and energy auto-correlation functions for
the multiscale dynamics in Equations (35a)–(35b), and three different kinds of the reduced models: the
new stochastic reduced model, the deterministic reduced model from [35], and the zero-order reduced
model with constant parameterization of coupling terms. Here, again, we can see a significant
improvement between the deterministic reduced model from [35] and the new stochastic reduced
model, however, in a somewhat reverse way if compared to the previous set-up with weak time scale
separation. Here observe that the deterministic reduced model is more chaotic and mixing than the



Fluids 2016, 1, 2 15 of 18

slow variables of the multiscale dynamics, and the stochastic term makes the new model less chaotic
and mixing to better match the multiscale dynamics. While at first seeming counter-intuitive, this
effect can happen due to the stochastic noise pushing the solution off the unstable manifold of the
deterministic system (where the chaotic and mixing motion occurs) into the dissipative absorbing
region surrounding the system’s attractor while not having enough strength to compensate for the
lack of chaos and mixing with its own random forcing. In fact, the same (but somewhat weaker)
effect can also be observed in Figures 1 and 2 for weaker coupling and stronger chaos and mixing, so
one can presume that it should be generally common in stochastic reduced models, especially if the
time scale separation is strong and, because of that, the stochastic noise is weak enough to produce
its own mixing. Table 4 confirms that there is some improvement of statistics error-wise with the
introduction of the stochastic term in the new reduced model.

Table 4. Relative errors between the slow variables of the full multiscale system, and different reduced
models, computed for the plots in Figure 4. Fx = 6, Fy = 16, λx = λy = 0.35, ε = 0.01.

Rel. Error Stochastic Deterministic Zero-Order

Density 6.237× 10−2 7.716× 10−2 0.1088
Corr. 0.2629 0.2752 0.3769

Cross-corr. 0.2556 0.2684 0.3726
Energy corr. 0.1254 0.1846 0.3059
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Figure 4. (a) Distribution density function; (b) time auto-correlation function; (c) time cross-correlation
function; (d) energy auto-correlation function. Fx = 6, Fy = 16, λx = λy = 0.35, ε = 0.01.
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5. Conclusions

In the current work we improve the recently developed method [35,36] for deterministic reduced
models of multiscale dynamics with the higher-order additive stochastic term which parameterizes
the slow-fast interactions with random noise. The method is based on the homogenization techniques
for multiscale systems [49] and offers a practical way of creating stochastic reduced models for a broad
range of general multiscale processes. As demonstrated above in Section 3, the stochastic term
upgrade comes at no additional computational cost for systems with linear coupling between slow
and fast variables, as it uses the same time correlation matrix of the fast variables for a fixed state of the
slow variables as the response term in the deterministic part of coupling parameterization. Another
practical advantage of the new method is that it does not require an explicit time-scale separation
parameter between the slow and fast variables of multiscale dynamics. We tested the new method
numerically using the two-scale Lorenz 96 model with linear coupling between the slow and fast
variables in a range of dynamical regimes with weak/strong time-scale separation, chaos and mixing
at the slow variables. The new stochastic reduced model consistently improved the results of the
previously developed deterministic approach [35,36] in the two different dynamical regimes:

• In the situation where the deterministic reduced model was less chaotic and weaker mixing
than the slow variables of the full multiscale dynamics, the stochastic model was more chaotic
and stronger mixing, due to stochastic forcing smoothing out spikes in distribution density and
introducing random decorrelation in time auto- and cross-correlation functions.

• In the situation where the deterministic reduced model was more chaotic and stronger mixing
than the slow variables of the full multiscale dynamics, the stochastic model suppressed chaos
and mixing in the reduced dynamics. While this effect seems somewhat counter-intuitive, it
can be explained by the stochastic noise pushing the solution off the unstable manifold of the
deterministic system (where the chaotic and mixing motion occurs) into the dissipative region
around the system’s attractor, while not having enough random force to increase chaos and
mixing on its own.

In the future work, we plan to extend the new method of stochastic parameterization of reduced
slow dynamics onto multiplicative stochastic forcing parameterization. Observe that the additive
stochastic forcing parameterization in the current work emerges from the constant diffusion matrix
approximation above in Section 3. However, if the constant diffusion matrix approximation is
improved by including its higher order Taylor expansion terms (as was done to the deterministic
coupling parameterization in [35,36]), the inclusion of the higher-order terms will result in the
multiplicative coupling with the diffusion matrix of the reduced model being a function of the slow
variables. For the multiplicative diffusion matrix approximation, we plan to use an approach similar
to that in [35,36].
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