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Abstract: The periosteum is a thin layer of connective tissue covering bone. It is an essential component
for bone development and fracture healing. There has been considerable research exploring the
application of the periosteum in bone regeneration since the 19th century. An increasing number
of studies are focusing on periosteal progenitor cells found within the periosteum and the use of
hydrogels as scaffold materials for periosteum engineering and guided bone development. Here, we
provide an overview of the research investigating the use of the periosteum for bone repair, with
consideration given to the anatomy and function of the periosteum, the importance of the cambium
layer, the culture of periosteal progenitor cells, periosteum-induced ossification, periosteal perfusion,
periosteum engineering, scaffold vascularization, and hydrogel-based synthetic periostea.

Keywords: periosteum; ossification; hydrogels; cambium layer; progenitor cells; synthetic periosteum;
3-D printing

1. Introduction

Bone tissue engineering (BTE) is dedicated to regenerating skeletal tissues for repairing
both the form and function of damaged bones. It utilizes stem cell technology, biomaterials,
and specialized fabrication techniques to initiate new bone growth. An important goal
of BTE is to replace the current gold standard used in clinical practice, i.e., the use of
autologous bone, which is often procedurally complex and time-consuming and leads to
substantial donor site morbidity [1,2]. The design and manufacture of scaffolds are critical
steps in tissue engineering as the scaffold provides a three-dimensional (3D) matrix for cell
attachment and structural support for tissue development. For bone engineering, a scaffold
should be amenable to osteoinduction, integrate with the host bone [2–4], and support tissue
vascularization. Vasculature is particularly important for oncological maxillomandibular
bone regeneration since the oral cavity harbors a diverse range of microorganisms and
patients frequently undergo radiotherapy as part of cancer treatment, which inhibits the
formation of new tissue. The inclusion of functional vasculature is crucial for large-size
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grafts and allows for the recruitment of highly specialized cells, such as tissue progenitors
or immune cells, both of which contribute to bone regeneration and remodeling, with the
latter also serving as a first line of defense against infection [5,6].

The periosteum is widely used in clinical practice to assist with the repair of bone
defects [7]. In most instances, this is in the context of vascularized bone flaps in which the
blood vessels are attached to the bone via the periosteum. However, clinical examples of
the use of periostea to generate new bone have been reported. For instance, vascularized
periosteal flaps taken from the iliac crest have been used in traumatic maxillary defects [8],
and the combination of pericrania and temporoparietal fascial flaps has been used to heal
mandibular defects caused by osteoradionecrosis [9]. In another clinical case, a periosteal
sleeve was circumferentially elevated off a healthy diaphyseal bone adjacent to a bone
defect following tumor resection. The healthy bone was then osteotomized and moved
along an intramedullary nail to fill the gap, and osteogenesis was observed inside the
periosteal sleeve that was left behind [10]. Spontaneous bone regeneration has also been
reported from the periostea of vascularized fibula flaps used for mandibular repair [11].

As a thin layer of connective tissue covering the bone surface, the periosteum is a
major source of osteogenic progenitor cells and blood supply to the bone. It is an essential
component for bone development, facture healing, and regeneration [12,13]. Research on
the use of the periosteum in BTE has expanded from simply transplanting the periosteum
for in vivo bone growth to in vitro periosteal cell isolation and expansion [14], periosteal
perfusion [15], and periosteum engineering [16]. Much of this research has involved
hydrogels as promising materials for fabricating artificial periostea owing to their biocom-
patibility and tunable mechanical, osteoconductive, and osteoinductive properties [1,17].
Although many publications describe the different applications of the periosteum, there
are no reviews that summarize the emerging research field of periosteum enhanced bone
tissue engineering (PEBTE). Thus, this paper aims to provide an overview of the research
investigating periostea derived for bone repair, with consideration given to the anatomy
and function of the periosteum, including the periosteal structure, the importance of the
cambium layer, the culture of periosteal progenitor cells, periosteum-induced ossification,
periosteal perfusion, periosteum engineering, scaffold vascularization, and hydrogel-based
synthetic periostea. Hydrogels, as promising biomaterials for the fabrication of scaffolds,
will be highlighted for their potential role in making a synthetic periosteum.

2. The Histology of the Periosteum

The periosteum is a thin layer of connective tissue that covers bone. It is composed
of two sub-layers: an outer fibrous layer and an inner cambium layer. The outer fibrous
layer has low cellularity but abundant nerves and blood vessels. This layer can be further
divided into superficial and deep layers. The superficial layer contains few fibroblasts
and therefore lacks elasticity but is highly vascularized and is the major contributor of
the supply of blood to the underlying bones and attached skeletal muscles [12]. The deep
layer exhibits a much higher degree of mechanical elasticity due to the large number of
fibroblasts and elastic fibers but is relatively avascular [18]. In addition to supplying blood
and nerves, the main role of the outer fibrous layer is to act as a pressure and tension buffer
that stabilizes the hematoma during fracture healing [18–20].

One important characteristic of the periosteum is its mechanical anisotropy. This
is likely due to the aligned orientation of collagen and elastin fibers which renders the
periosteum pre-stressed. When a periosteum is procured from its underlying bones, it
shrinks, with a larger degree of shrinkage in the axial direction along the bone than
circumferentially [21]. Tensile tests conducted on periosteal flaps collected from sheep
femora demonstrated that the elastic modulus of the axial specimens was five times larger
than that of the circumferential specimens [21].

The inner cambium layer is adjacent to the bone surface. It harbors various types of
osteogenic cells including mesenchymal progenitor cells, differentiated osteogenic progeni-
tor cells, osteoblasts, and pericytes distributed within a collagen matrix that are recruited
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to a fracture site for bone healing [19]. It should be noted that the thickness and osteogenic
potential of the cambium layer declines with age but may be re-activated via mechanical
stimulation [18,22]. The periosteum was shown to increase its cambium thickness and
cellularity following surgical trauma in which incisions were made through the fibrous
layer down to the cortical surface [23]. Apart from age, location is another critical parameter
to consider in periosteal procurement [24]. Moore et al. studied the layer thickness and
cambium cellularity of periostea collected from the tibias and femurs of deceased patients
aged between 68 and 99 years. The thickness of the periosteum was approximately 100 µm
overall, and the cambium layer from the tibia was 29 ± 3.1 µm compared to 23 ± 2.5 µm for
the cambium layer from the femur [25]. For a given individual, the thickness and cellularity
of the cambium layer on the tibia along the major centroidal axes is much higher than the
respective layer on the femur. The results may provide a useful reference when harvesting
periostea for bone reconstruction [25]. Figure 1 below gives a simplified demonstration of
the structure and major cell types of the periosteum.
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Figure 1. The periosteum contains an outer fibrous layer and an inner cambium layer. The cambium
layer is the reservoir of osteochondrogenic progenitor cells, skeletal stem cells, osteoblasts, and others,
while the fibrous layer is abundant in fibroblasts and collagen fibers.

3. Early, Contentious Studies of the Periosteum

The importance of the periosteum in bone regeneration was only recently broadly ac-
cepted, having been intensely debated during the 19th and early 20th centuries. Conflicting
research involved various animal species (rabbits, rats, chicken, dogs, etc.), transplantation
types, surgical procedures, and sources of periostea [26,27].

The earliest research dates back to the 18th century, with Duhamel placing a number
of silver wires under the periostea of long bones and observing bone growth after several
weeks [13,28]. Ollier, a French scientist, pioneered research investigating the osteogenic
effect of the periosteum. Between 1859 and 1867, he performed a series of experiments
demonstrating that multiple factors influence osteogenesis, including animal age, type,
surgical technique, vascularity, the osteogenic stimulation of transplants, transplant size and
location, immediacy, infection, and the integrity of the periosteal cambium layer [26,28].
Following Ollier’s work, attempts to test the potency of free periosteal transplants for
ossification have resulted in both positive and negative results [26].

An important advance was made by Riess (1924), who found a close association
between ossification and the presence of the cambium layer and its age. Periosteal trans-
plants collected from young dogs tended to exhibit intact cambium layers and consistently
supported new bone growth. However, no ossification was observed for periostea har-
vested from elderly dogs which had no cambium layer or fragmented cambium layers [26].
Riess’s conclusion echoed the viewpoint of Kolodny (1923), who emphasized that many
studies did not differentiate between a young periosteum (at a reactive stage) and an old
periosteum (at latent stage) and that with appropriate stimulation, periostea procured from
adult animals should display an osteogenic potency equivalent to periostea collected from
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young animals [29]. In 1930, Burman and Umansky transplanted free periosteal grafts
harvested from the tibias of young rabbits into the tendons of the tibialis anterior muscles.
The research demonstrated new bone growth in the presence of the cambium layer and the
opposite when the cambium layer was absent [26]. Schepelmann further studied the effect
of vascularization, comparing periostea transplanted into either highly vascular organs (the
liver, spleen, ovaries, etc.) or less vascular organs (the stomach or bowel). Better ossification
was observed in the former group, showcasing the importance of blood supply [26]. To
clarify the periosteum’s role in ossification, in his 1952 paper, Urist suggests that “the
nineteenth-century controversy about the osteogenic potency of periosteum arose because
it was not generally recognized that the negative results occurred only in transplants from
adult or old animals” [30]. Based on the above-mentioned studies, we note that there
were several key factors determining the ossification efficacy of the periosteum. Among
them, age, vascularization, and the integrity of the periosteal cambium layer should be
highlighted and carefully considered for experimental planning.

4. Periosteum-Induced Intramembranous and Endochondral Ossification

Bone fracture healing can be categorized into two groups: stabilized fracture healing
and non-stabilized fracture healing [19,31]. In the former group, periosteal cells are min-
imally stimulated. If there is no gap between two fracture ends, a repair process called
contact healing will take place wherein oriented lamellar bone is produced by osteoprogen-
itor cells derived from the Haversian system within the cortex. When the fracture gap is
small, lamellar bone forms first and is subsequently remodeled to the correct orientation.
When the fracture gap is wide, woven bone is generated, followed by its conversion into
lamellar bone [18].

In non-stabilized fracture healing, periosteal cells respond to mechanical stimuli to
induce bone healing through several stages [18]. Following bone fracture, the hematoma
plays a significant role in bone repair by not only providing a “recovery medium” but also
by releasing cytokines to recruit osteogenic stem cells from various sources, including the
periosteum, bone marrow, and endosteum [20]. In the peripheral zones of the fracture where
vascularization is maximal, the outer fibrous layer of the periosteum acts as a mechanical
stabilizer, and intramembranous ossification occurs via the differentiation of mesenchymal
stem cells derived from the periosteum into osteoblasts. The differentiated osteoblasts
secrete osteoid, which calcifies to form bone tissue [19,31]. However, in the center of the
fracture site, where the vascularization is poor, progenitor cells from the cambium layer
of the periosteum aggregate in the hematoma and differentiate into chondrocytes that
subsequently form cartilage (soft callus) to bridge the fracture. These cartilaginous tissues
then mineralize (hard callus) to form bone. This repair mechanism is called endochondral
ossification [18,19,31]. Therefore, the periosteum plays a major role in fracture healing
by providing osteochondrogenic progenitor cells. A fracture repaired via endochondral
ossification differs from intramembranous ossification in that it involves an intermediate
stage in which cartilage is formed and then ossified [12]. Figure 2 demonstrates the role
played by the periosteum in bone fracture repair.



Gels 2023, 9, 768 5 of 18
Gels 2023, 9, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 2. The periosteum is the major contributor to intramembranous and endochondral ossifica-

tion for bone fracture healing. 

5. The Periosteum Contains Skeletal Stem Cells That Undergo Chondrogenic and  

Osteogenic Differentiation in Response to BMP-2  

As the cambium layer of the periosteum provides critical osteochondrogenic cells 

that contribute to both endochondral and intramembranous ossification, the use of these 

skeletal stem cells for BTE requires their characterization. Another important question is 

whether periosteal cells outperform other stem cell sources such as bone marrow and en-

dosteum in terms of bone regeneration. Researchers have isolated both bone marrow stro-

mal/skeletal stem cells (BMSCs) and periosteal cells from mouse tibias and femurs [14]. 

They demonstrated that BMSCs and periosteal cells share a common mesenchymal em-

bryonic origin, but periosteal cells exhibit a better bone regenerative capacity [14]. Alt-

hough BMSCs are important in regulating hematopoiesis and bone resorption, they play 

indirect roles in skeletal repair by releasing growth factors. On the other hand, periosteal 

cells exhibit the critical characteristics of skeletal stem cells by expressing genes that show 

stemness and skeletal system development and are thus major contributors to the for-

mation of cartilage and bone formation calluses for skeletal repair [14]. The research team 

also identified a crucial extracellular matrix protein called Periostin as a key regulator of 

skeletal stem cells in the periosteum. Compared to wild-type periosteum, Periostin-de-

pleted mice have shown impaired bone repair and an inability to reconstitute a pool of 

periosteal cells in response to the injury [14,32].  

In other work, segmental mandibular defects were created in 18-month-old mini-pigs 

and fixated with a reconstruction plate. The periosteum was then sutured back, thus rec-

reating the periosteal envelope. The periosteal tissues from the experimental and control 

sites were collected in week 1 and week 2, respectively. A histological assessment of the 

cambium layer found more tissue growth in week 2 than that in week 1, with the over-

expression of several osteogenesis-associated genes involved in Tgfβ/Bmp, Wnt, and 

Notch signaling pathways [33]. Bone morphogenetic protein (BMP)-2 was suggested to be 

the key regulator of periosteum-induced bone regeneration [33,34]. As reported in several 

other publications, BMP-2 knockout mice exhibited a number of negative consequences 

for bone repair, including delayed periosteal activation [35], the absence of a bridging 

Figure 2. The periosteum is the major contributor to intramembranous and endochondral ossification
for bone fracture healing.

5. The Periosteum Contains Skeletal Stem Cells That Undergo Chondrogenic and
Osteogenic Differentiation in Response to BMP-2

As the cambium layer of the periosteum provides critical osteochondrogenic cells that
contribute to both endochondral and intramembranous ossification, the use of these skeletal
stem cells for BTE requires their characterization. Another important question is whether
periosteal cells outperform other stem cell sources such as bone marrow and endosteum in
terms of bone regeneration. Researchers have isolated both bone marrow stromal/skeletal
stem cells (BMSCs) and periosteal cells from mouse tibias and femurs [14]. They demon-
strated that BMSCs and periosteal cells share a common mesenchymal embryonic origin,
but periosteal cells exhibit a better bone regenerative capacity [14]. Although BMSCs are
important in regulating hematopoiesis and bone resorption, they play indirect roles in
skeletal repair by releasing growth factors. On the other hand, periosteal cells exhibit the
critical characteristics of skeletal stem cells by expressing genes that show stemness and
skeletal system development and are thus major contributors to the formation of cartilage
and bone formation calluses for skeletal repair [14]. The research team also identified
a crucial extracellular matrix protein called Periostin as a key regulator of skeletal stem
cells in the periosteum. Compared to wild-type periosteum, Periostin-depleted mice have
shown impaired bone repair and an inability to reconstitute a pool of periosteal cells in
response to the injury [14,32].

In other work, segmental mandibular defects were created in 18-month-old mini-pigs
and fixated with a reconstruction plate. The periosteum was then sutured back, thus
recreating the periosteal envelope. The periosteal tissues from the experimental and control
sites were collected in week 1 and week 2, respectively. A histological assessment of
the cambium layer found more tissue growth in week 2 than that in week 1, with the
over-expression of several osteogenesis-associated genes involved in Tgfβ/Bmp, Wnt, and
Notch signaling pathways [33]. Bone morphogenetic protein (BMP)-2 was suggested to be
the key regulator of periosteum-induced bone regeneration [33,34]. As reported in several
other publications, BMP-2 knockout mice exhibited a number of negative consequences
for bone repair, including delayed periosteal activation [35], the absence of a bridging
callus [35], un-differentiated progenitors [36,37], and prolonged cartilage callus growth [37].
Thus, BMP-2 is necessary for periosteum-induced bone healing.
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Recombinant human (rh)BMP-2 preferentially targets the periosteum, which expresses
BMP-2 receptors in the early stages of bone repair to activate the BMP signaling pathway.
rhBMP-2 recruits skeletal progenitor cells from both the periosteum and endosteum and
promotes both the chondrogenic and osteogenic differentiation of skeletal progenitor cells
from the periosteum but only the osteogenic differentiation of endosteal progenitor cells.
This highlights a key difference between periosteal and endosteal cells, i.e., the response to
BMP-2 stimulation [34].

6. The Procurement of the Cambium Layer

The importance of maintaining the cambium layer for periosteum-induced osteogene-
sis has been recognized as early as the 19th century. However, detaching an intact cambium
from the underlying bone is a challenging task. Firstly, the cambium layer is only ~20 µm
or from two to three cells thick and decreases with age [25]. Secondly, the cambium layer
is attached to cortical bone, sending a great many “buds” into the superficial pores of the
bone [38]. Once the layer is elevated, the buds containing osteogenic progenitor cells may
still remain on the bone, which greatly reduces the osteogenic efficacy of the harvested pe-
riosteum [38]. A third important factor is the elevation technique. Brownlow attempted to
harvest humeral and tibial periostea from adult white rabbits via four different techniques
including pulling, sharp dissection, the use of a periosteal elevator, and chisel elevation.
They recommend using either a periosteal elevator or chisel as both tools are able to strip
both fibrous and cambium layers, even though chisel elevation may create significant
surface damage to the underlying bone. In contrast, using a scalpel or pulling technique left
the cambium layer attached to the bone surface [39]. From other work, clinicians procured
periosteal samples at 1 cm, 3 cm, and 5 cm proximal and distal to the fracture sites of long
bones in 20 patients. However, they found the majority of the harvested periostea only
contained the outer fibrous layer, while the inner cambium layers remained attached to
the bone surfaces [40]. Simon et al. stimulated the proliferation of the cambium layer by
incising the periosteum and scoring to the cortical bone. The wound was then closed to
allow for in situ periosteal proliferation for 4, 8, and 16 days, respectively. Following animal
euthanasia, the periostea were harvested, and the results demonstrate that the expression
of BMP-2 was significantly elevated in the harvested periostea [23].

7. Periosteal Cell Isolation, Expansion, and Characterization

The osteogenic progenitor cells contained in the cambium layer of the periosteum
can be isolated and expanded in vitro. There are two approaches used for this purpose:
explant culture and tissue digestion [41]. The former approach involves culturing harvested
periosteal tissues wherein the periosteal cells migrate and outgrow from the primary tissue.
The tissue digestion method utilizes various collagenases to isolate the cells from a digested
collagen matrix [13,41]. It is worth noting that the osteogenic and chondrogenic capacity of
a harvested periosteum decreases within hours. Thus, delays in the harvesting procedure
need to be avoided and once harvested, the explants should be placed in Ringer’s solution,
phosphate-buffered saline, or a serum-free culture medium within 10–15 min [13].

One of the early attempts to culture periosteal explants employed 2-month-old New
Zealand white rabbits to investigate the effects of time and storage temperature on the
chondrogenic potential of the periosteal explants. The periosteal tissues were harvested
from cadavers stored at room temperature or 4 ◦C for 0, 4, 6, 8, 12, 16, 18, or 24 h following
sacrifice. The explants were cultured for 6 weeks using an organ culture model [42], and a
standard cartilage yield assay was performed [43]. The periosteal explants stored at room
temperature for ≥4 h showed little chondrogenesis, while chondrogenesis was observed
if the deceased animals were stored at 4 ◦C for no more than 24 h. It is clear that the
chondrogenic capacity of periosteal explants decreases quickly post-mortem or shortly
after harvest [43]. A more recent study using the explant culture method flushed the bone
marrow of mouse tibias and femurs, and the bone explants were cultured in growth media
to obtain periosteal cells for characterization [14].
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The enzymatic digestion method uses collagenase to decompose the collagen matrix
and release the periosteal cells. The literature has reported the applications of collagenase-
1 [44], -2 [45–48], -4 [49–51], and -6 [52], and an unspecified collagenase [53–59] on different
sources of periostea, including the tibia [45,55], femur [56], mandible [44,52], and rib [59].
The harvested periosteum is minced finely and then digested with the enzyme for a
length of time between 1 h [54] and overnight [57]. The widely used digestion media
are Dulbecco’s Modified Eagle Medium (DMEM) [55,59], high-glucose DMEM [47,49,50],
modified BGJb media [57], and Hank’s balanced salt solution [48]. Base media are usually
supplemented with 10% fetal bovine serum and penicillin–streptomycin. Following the
centrifugation of the digestion media, the collected cell pellets are re-suspended in the
growth media for various research purposes [41].

Another critical task is to characterize the “stemness” of these isolated cells. Skeletal
stem cells derived from the periosteum, bone marrow, and endosteum share a common
mesenchymal origin. Mesenchymal stem cells (MSCs) are multipotent stromal cells which
can self-renew and differentiate into the lineages for cartilage, bone, adipose, and skeletal
muscle [54,60]. Given that there is still a lack of established criteria to identify periosteum-
derived progenitor cells, the classic criteria used to identify MSCs can also be used to verify
periosteum-derived stem cells [61]. According to the International Society for Cellular Ther-
apy, the minimal criteria for the identification of MSCs is the expression of surface markers
of the clusters of differentiation CD73, CD90, and CD105 and a lack of expression of CD45,
CD14, CD34, and HLA-DR (Human Leukocyte Antigen-DR isotype) [61]. To differentiate
the pure periosteum-derived progenitor population from fibroblasts, one should also con-
sider other markers. For example, MSCs express more CD166 than fibroblasts do, whereas
the levels of expression of CD9 are higher in fibroblasts than in MSCs [62]. In a study using
a real-time polymerase chain reaction (PCR), the researchers found that MSCs exhibited
levels of expression of CD106, integrin alpha 11, and insulin-like growth factor-2 that were
10-fold higher than fibroblasts, while the expression levels of matrix metalloproteinase 1 and
matrix metalloproteinase 3 in the MSCs were 100-fold lower than in fibroblasts [62]. Some
other markers which may be useful for the identification of periosteum-derived progenitor
cells include Leptin receptor [63,64], Prrx1 [65,66], Periostin [14], and Nestin [67,68].

8. In Vivo and Ex Vivo Periosteal Bioreactor Systems

In addition to using periosteum-isolated cells, another approach is to incorporate a
vascularized periosteum flap into a scaffold that can be transplanted for bone regener-
ation. A periosteum was used to enclose in vivo bioreactors containing bone scaffolds
to stimulate osteogenesis within and vascularize the scaffold [69,70]. Tatara et al. used
a rib periosteum to generate large amounts of mineralized bone that were transplanted
for mandible reconstruction [71]. Huang et al. employed a vascularized periosteal flap
to revascularize a decellularized bone matrix scaffold in a rabbit model [72]. In a sheep
model, a vascularized periosteum was elevated from the infraspinous scapula and wrapped
around an autologous bone graft. The periosteum-wrapped bone grafts were incubated in
the sheep’s body for 84 days. The results demonstrated a thickening of the periosteal flap
with endochondral ossification [73].

However, the use of a periosteum for scaffold fabrication requires a feasible ex vivo
approach in which the tissue viability of the harvested periosteum is preserved. Xin
et al. used a perfusion bioreactor system as demonstrated in Figure 3 in which an ovine
periosteal flap was placed in a 3-D printed bioreactor and perfused with a culture medium
via its artery [15]. Both live and dead assays, PrestoBlue assays, and a histology analysis
suggested that a significant proportion of cells were still viable after being perfused for up
to 4 weeks. As a proof-of-concept study, the proposed ex vivo perfusion system was shown
to be a feasible solution for preserving a harvested periosteum for a prolonged period for
upcoming scaffold vascularization. However, several key system parameters still need to
be optimized, such as the flow rate, pressure, and culture medium formulation [15]. These
factors have been proven important in previous similar studies in which the researchers
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attempted to perfuse scaffold constructs seeded with osteogenic cells to study bone biology,
proliferation, and gene expression [74–76]. Meanwhile, maintaining an efficient oxygen
supply to the perfused tissue over the course of an experiment is another critical issue [77].
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Figure 3. The concept of ex vivo perfusion bioreactor system to maintain the tissue viability of a
periosteum procured from an ovine model, adapted from [15]. In the system, the culture media
containing oxygen and nutrients were introduced into the periosteal vascular network via its artery,
using a circulating pump. The cellular viability of the tissue was reported to be preserved for up to
4 weeks [15].

9. Hydrogel-Based Artificial Periostea for Bone Regeneration

The utilization of harvested periostea is limited by several factors such as availability,
tissue viability, tissue morphology, age, and the morbidity of procurement. Periosteum
engineering or artificial periostea has the potential to provide customizable and biomimetic
periostea bespoke for different clinical applications. Cell sheet techniques have been
developed to form synthetic periostea in which the target cells are extracted, cultured,
expanded, and fused, and an extracellular matrix is then produced to form a continuous
and adhesive tissue sheet [19,78,79]. One example is the application of cell sheets formed by
culturing cells isolated from a human mandible periosteum. The resultant sheet, together
with platelet-rich plasma and hydroxyapatite granules, was used for the treatment of bony
periodontal defects [80]. Another study achieved the formation of new bone based on
BMSC-laden tricalcium phosphate (TCP) scaffolds encased by a cell sheet produced from
periosteum-derived cells [81].

Another approach to fabricating a synthetic periosteum is to utilize hydrogels to
form either single- or multi-layered scaffold membranes in which the osteogenic cells
and growth factors are encapsulated to mimic the structure and function of a physio-
logical periosteum [16,19]. Hydrogels are 3D polymeric networks with excellent water-
absorbing capabilities, biocompatibility, flexibility, injectability [82], stimuli-responsiveness
(pH, temperature, magnetic field, etc.) [83–85], and tunable mechanical properties [86].
All these characteristics make hydrogels ideal material candidates for various biomedical
applications including drug delivery [87,88], tissue engineering scaffolds [89,90], artificial
muscles [91,92], wound healing [93], wearable sensors [94,95], cornea repair [96,97], and
cartilage replacement [98,99]. Compared with synthetic polymers in which un-reacted
crosslinkers or monomers may introduce cytotoxicity [100,101], biopolymers such as colla-
gen, gelatin, chitosan, alginate, and Gelatin Methacryloyl (GelMA) exhibit enhanced bio-
compatibility and have broad applications as bioactive scaffolds in bone tissue engineering.
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One of the most studied biopolymers is collagen, which represents a family of 28 sub-
categories of proteins with similar triple-helix structures composed of inter-twined polypep-
tide chains. Collagen type 1 is especially abundant and is a key component of bone,
cartilage, cornea, tendons, and ligaments [102–104]. As an important constituent of the
extracellular matrix (ECM), collagen type 1 is widely used as a scaffold material to provide
mechanical support and biological cues for cell proliferation and differentiation [105,106].
For example, to develop alternatives to autologous bone grafts in posterolateral spinal
fusion, mesenchymal stem cells (MSC) have been cultured in type 1 collagen gels with
hydroxyapatite particles, resulting in a favorable degree of spinal fusion in adult rab-
bits [107]. More recently, a hydrothermal approach has been applied to prepare nanoscale,
rod-like hydroxyapatite particles which were incorporated into type 1 collagen hydrogels
to form a homogeneous composite to mimic bone structures. A particularly significant
breakthrough was the application of Darvan 821-A as both a particle-size-controlling agent
and dispersion agent to prevent the agglomeration of hydroxyapatite particles in collagen
matrixes [108]. Apart from inorganic particles, collagen can be mixed with organic materials
or other biopolymers to fabricate hydrogel scaffolds for osteogenesis and chondrogenesis.
For example, chitosan was combined with bovine type 1 collagen, and the mixture was
gelated with the cyto-compatible crosslinker glyoxal. The resultant hydrogel scaffold sup-
ported the attachment, proliferation, and osteogenic differentiation of human bone marrow
stem cells [109]. Another example are collagen-alginate hydrogels, which inhibited the
dedifferentiation of chondrocytes when compared with pure collagen hydrogels [110].

Another intensely researched biopolymer is GelMA, which has been shown to have the
potential to repair segmental bone defects in rat models with bone marrow stem cells [111].
GelMA hydrogels are commonly prepared via UV light crosslinking, but the exposure
of cells and tissues to UV light must be optimized to avoid DNA damage [112]. Visible
light is a better alternative to activate the free radicals of riboflavin for GelMA crosslinking.
GelMA-Riboflavin hydrogels seeded with KUSA-A1 cells were shown to exhibit elevated
cellular viability, osteoblastic differentiation, and the expression of osteogenesis-associated
genes when compared with UV-crosslinked GelMA hydrogels [113]. GelMA can also
be combined with silver-containing hydroxyapatite microspheres to prepare injectable
hydrogels. The hydrogel scaffold may be used to encapsulate a pre-osteoblast cell line
(MC3T3-E1), resulting in enhanced mechanical toughness, cytocompatibility, and antimicro-
bial properties against Staphylococcus aureus and Escherichia coli [114]. In order to improve
the mechanical properties and porosity of GelMA hydrogels, hydroxyapatite microtubules
may be incorporated into GelMA matrixes to elevate the mechanical performance of the
scaffold and to enhance the inter-connections of the hydrogel pores. These improvements
serve to increase the cellular proliferation and differentiation of bone marrow mesenchymal
stem cells [115]. Owing to its excellent printability, GelMA has been well utilized as a
cell-laden bioprinting ink for tissue engineering [116], with recent studies supporting the
addition of hydroxyapatite [117], silica nanoparticles [118], and synthetic polymers [119] to
improve the mechanical properties and bioactivity of GelMA based bioinks.

The use of hydrogels to prepare a synthetic, engineered periosteum was first proposed
by Hoffman and Benoit in 2012; they indicated that allografts exhibited slow regeneration
and minimal engraftment, whereas autograft healing was complete due to periosteum-
mediated bone regeneration [120]. Moreover, they recommended using degradable poly
(ethylene glycol)-poly (lactic acid)-dimethacrylate hydrogels as synthetic periostea encap-
sulating MSCs to fill and regenerate 5 mm segmental bone defects. Several advantages of
using PEG for periosteum engineering included its resistance to nonspecific protein adsorp-
tion, tunable degradability, cellular encapsulation density, hierarchical network structures,
and ability to release small-molecule drugs [120]. The same research group later described
seeding MSCs into hydrolytically degradable PEG-based hydrogels and the encapsulation
of the cells to the allograft surface. To achieve a 14-day survival of stem cells similar to
what is observed during autograft healing, the degradable units within the hydrogel net-
work were carefully altered through enhanced vascularization, bone callus formation, and
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increased biomechanical strength after 16 weeks of implantation. However, compared with
autograft healing, the endochondral ossification of tissue engineered periosteum was found
to be delayed [121]. To overcome this challenge and better mimic the native periosteal
production of paracrine factors, including vascular endothelial growth factor (VEGF) and
bone morphogenetic protein 2 (BMP2), a mixture of MSCs (50%) and osteoprogenitor cells
(50%) was encapsulated within the tissue-engineered periosteum. Enhanced bone callus
formation and graft–host integration were observed following in vivo implantation [122].
Other synthetic periostea have utilized GelMA. GelMA hydrogels can be blended with
calcium phosphate nanoparticles to form an inorganic–organic hybrid construct which
is then mixed with hydrogel fibers to mimic the periosteum. Human umbilical vascular
endothelial cells and MC3T3-E1 cells were co-cultured into this artificial periosteum to
stimulate both osteogenesis and angiogenesis [123].

For a better simulation of a natural periosteum, bi-layered or multiple-layered hydro-
gel membranes can also be considered. Alginate hydrogels can be crosslinked with varying
amounts of hydroxyapatite nanoparticles to form two-membrane composites with one
porous layer seeded with fibroblasts and one rougher and more mineralized layer growing
with osteoblasts. Osteoblast differentiation was observed from the membrane with the
highest concentration of hydroxyapatite [124]. Utilizing a layer-by-layer bottom-up strategy,
researchers incorporated collagen with polycaprolactone (PCL) and nano-hydroxyapatite to
prepare a synthetic composite which was seeded with BMSCs. This engineered periosteum
was used along with a structural bone allograft to repair a segmental bone defect in a
mouse femur [125].

Additionally, 3-D printing techniques have demonstrated their utility for the produc-
tion of customizable, precise, and hierarchical microstructures for scaffold constructs [4,126].
Various materials including degradable (iron, magnesium, and zinc) and non-degradable
(titanium) metals [126], bioactive ceramics (hydroxyapatite [127]), non-degradable poly-
mers (poly ether ether ketone [128]), degradable polymers (such as polycaprolactone [129]
or poly lactic acid [130]), and hydrogels (gelatin and alginate [131] or GelMA [132]) can be
printed into pre-designed and validated implantation constructs to repair bone defects. The
degradable materials are those which can decompose via hydrolytic, enzymatic, cellular-
mediated, or stimuli-assisted reactions in the body. The most crucial parameters when
using a degradable scaffold for bone engineering are the degradation kinetics, which must
be consistent with the growth of new bone [133,134]. By using 3-D printing techniques, Sun
et al. manufactured a cambium layer based on GelMA mixed with nano-hydroxyapatite
and a fibrous layer based on poly (N-acryloyl 2-lycine) (PACG) and GelMA loaded with
Mg2+. The nano-hydroxyapatite in the biomimetic cambium layer was used to stimulate
bone regeneration due to its favorable interaction with the host bones and its release of Ca2+.
The hydrogen bonds formed by the PACG in the GelMA hydrogel layer not only enhanced
the mechanical properties of the artificial fibrous layer but also extend its degradation
time to 60 days. The addition of Mg2+ improved both angiogenesis and bone mineraliza-
tion [132]. Figure 4 below demonstrates the concept of using 3-D bioprinting to manufacture
a hydrogel-based, biomimetic, engineered periosteum as a bone regeneration scaffold.

Conventional hydrogels possess poor mechanical properties [135] and are unable
to simulate the mechanical ductility and flexibility of a natural periosteum. This issue
can be resolved through the use of several novel mechanically strong and tough hydro-
gels such as nano-composite hydrogels [136], slide-ring hydrogels [137], double-network
hydrogels [138,139], covalent–ionic hybrid hydrogels [140,141], and hydrogen-bonded
polyurethane hydrogels [142,143]. These tough hydrogels can be generally categorized into
two groups: covalently crosslinked and physically crosslinked. Covalently crosslinked
tough hydrogels, such as chemically crosslinked double-network hydrogels, possess a wide
molecular-weight distribution in network strands, and these short network strands can be
easily broken via small mechanical strains [144]. Physically crosslinked hydrogels possess
reversible crosslinks, making the hydrogel network degradable and damage-recoverable,
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and are promising candidates as re-absorbable scaffolds to release and deliver osteogenic
cells or molecules to treatment sites.

Gels 2023, 9, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 4. Three-dimensional bioprinting was used to prepare an engineered artificial periosteum 

for bone defect repair (Created with BioRender.com). 

Conventional hydrogels possess poor mechanical properties [135] and are unable to 

simulate the mechanical ductility and flexibility of a natural periosteum. This issue can be 

resolved through the use of several novel mechanically strong and tough hydrogels such 

as nano-composite hydrogels [136], slide-ring hydrogels [137], double-network hydrogels 

[138,139], covalent–ionic hybrid hydrogels [140,141], and hydrogen-bonded polyurethane 

hydrogels [142,143]. These tough hydrogels can be generally categorized into two groups: 

covalently crosslinked and physically crosslinked. Covalently crosslinked tough hydro-

gels, such as chemically crosslinked double-network hydrogels, possess a wide molecu-

lar-weight distribution in network strands, and these short network strands can be easily 

broken via small mechanical strains [144]. Physically crosslinked hydrogels possess re-

versible crosslinks, making the hydrogel network degradable and damage-recoverable, 

and are promising candidates as re-absorbable scaffolds to release and deliver osteogenic 

cells or molecules to treatment sites.  

A yet-unresolved challenge is the supply of nutrients to complex tissue-engineered 

constructs that are designed to be implanted in vivo to replace critical-sized bone defects. 

Whilst diffusion is feasible for thin artificial periostea, it is insufficient when combined 

with cellular bone scaffolds that are designed for hostile environments that have failed to 

repair via endogenous mechanisms. Therefore, the vascularization of artificial periostea 

needs to be addressed. One effective approach was to differentiate rat-bone-marrow-de-

rived mesenchymal stem cells to induce endothelial-like cells. The obtained cells were 

combined with a cell sheet of un-differentiated MSCs. This sheet was used as an artificial 

fibrous layer. Meanwhile, another cell sheet was produced by differentiating the MSCs 

into osteogenic cells to form an artificial cambium layer. Both layers were assembled to-

gether to bio-mimic a natural periosteum, and the assembly was then wrapped around a 

porous β-tricalcium phosphate scaffold to facilitate vascularization [145]. In another ap-

proach, a decellularized periosteum was utilized as a template to create a pseudo-perios-

teum based on collagen in which the stem cells and endothelial cells were co-cultured to 

stimulate both osteogenesis and angiogenesis. The publication emphasizes the role of 

“cross-talk” between osteoblasts and endothelial cells for bone regeneration [146].  

Figure 4. Three-dimensional bioprinting was used to prepare an engineered artificial periosteum for
bone defect repair (Created with BioRender.com).

A yet-unresolved challenge is the supply of nutrients to complex tissue-engineered
constructs that are designed to be implanted in vivo to replace critical-sized bone defects.
Whilst diffusion is feasible for thin artificial periostea, it is insufficient when combined with
cellular bone scaffolds that are designed for hostile environments that have failed to repair
via endogenous mechanisms. Therefore, the vascularization of artificial periostea needs
to be addressed. One effective approach was to differentiate rat-bone-marrow-derived
mesenchymal stem cells to induce endothelial-like cells. The obtained cells were combined
with a cell sheet of un-differentiated MSCs. This sheet was used as an artificial fibrous layer.
Meanwhile, another cell sheet was produced by differentiating the MSCs into osteogenic
cells to form an artificial cambium layer. Both layers were assembled together to bio-mimic
a natural periosteum, and the assembly was then wrapped around a porous β-tricalcium
phosphate scaffold to facilitate vascularization [145]. In another approach, a decellularized
periosteum was utilized as a template to create a pseudo-periosteum based on collagen in
which the stem cells and endothelial cells were co-cultured to stimulate both osteogenesis
and angiogenesis. The publication emphasizes the role of “cross-talk” between osteoblasts
and endothelial cells for bone regeneration [146].

10. Summary and Future Directions

The periosteum plays essential roles in bone development and fracture healing. The
human application of the periosteum for bone regeneration began a few centuries ago.
Despite controversy, several scholars in the 19th and early 20th centuries emphasized the
critical roles of the cambium layers, age, vascularization, and harvesting techniques. The pe-
riosteum contributes to both intramembranous and endochondral ossifications during bone
fracture healing which, in turn, depends on stabilization and the distance to the fracture site.
The cambium layer acts as a reservoir of osteogenic progenitor cells that are stimulated to
differentiate by BMP-2 and skeletal stem cells, which have common mesenchymal origins
with BMSCs. The cambium layer is thin, reduces with age, and is adherent to the cortical
bone, making surgical harvesting challenging. The progenitor cells of the cambium cells
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can be isolated and expanded from a harvested periosteum via either explant culture or
enzymatic digestion, and classical markers used for the identification of MSCs can also be
used to characterize the cambium progenitor cells as distinct from periosteal fibroblasts. An
ex vivo perfusion bioreactor system demonstrated the feasibility of preserving the cellular
viability of a harvested periosteum. The preserved periosteum may have the potential
for use in future scaffold fabrication and vascularization. Periosteum engineering or the
creation of artificial periostea using hydrogel scaffolds is a growing and promising field.
Osteogenic cells and molecules are encapsulated into single-layered or bi-layered hydrogel
membrane scaffolds to mimic a natural periosteum. 3-D printing techniques can be applied
to manufacture biomimetic artificial periostea with complex microstructures, with one key
challenge being the vascularization of the constructs. In the future, ex vivo perfusion may
be combined with artificial periostea to expand their application to complex bone scaffold
constructs for hostile tissue beds. This research direction may present a new perspective to
accelerate the development of bone tissue engineering.
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