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Abstract: Pectin hydrogels have garnered significant attention in the food industry due to their re-
markable versatility and promising properties. As a naturally occurring polysaccharide, pectin forms
three-dimensional (3D) hydrophilic polymer networks, endowing these hydrogels with softness,
flexibility, and biocompatibility. Their exceptional attributes surpass those of other biopolymer gels,
exhibiting rapid gelation, higher melting points, and efficient carrier capabilities for flavoring and fat
barriers. This review provides an overview of the current state of pectin gelling mechanisms and
the classification of hydrogels, as well as their crosslinking types, as investigated through diverse
research endeavors worldwide. The preparation of pectin hydrogels is categorized into specific gel
types, including hydrogels, cryogels, aerogels, xerogels, and oleogels. Each preparation process is
thoroughly discussed, shedding light on how it impacts the properties of pectin gels. Furthermore,
the review delves into the various crosslinking methods used to form hydrogels, with a focus on
physical, chemical, and interpenetrating polymer network (IPN) approaches. Understanding these
crosslinking mechanisms is crucial to harnessing the full potential of pectin hydrogels for food-related
applications. The review aims to provide valuable insights into the diverse applications of pectin
hydrogels in the food industry, motivating further exploration to cater to consumer demands and
advance food technology. By exploiting the unique properties of pectin hydrogels, food formula-
tions can be enhanced with encapsulated bioactive substances, improved stability, and controlled
release. Additionally, the exploration of different crosslinking methods expands the horizons of
potential applications.

Keywords: pectin; gels; gelling mechanism; hydrogel; application

1. Introduction

In recent times, there has been a growing interest in developing innovative biomaterials
derived from natural biopolymers that could potentially revolutionize the food sector by
improving product quality and providing functional advantages to customers. Among
these biomaterials, carbohydrate-based polymers such as starch, cellulose, chitosan, and
pectin have emerged as versatile and valuable assets in food technology [1–5]. These
naturally derived polymers offer a wide range of applications as stabilizers, fat replacers,
emulsifiers, etc., in the food science industry, and they contribute distinct functionalities
to food products. In addition, they are applicable for ingredient enhancement, additive
integration, and food packaging [6,7]. For instance, starch and cellulose can contribute as
dietary fiber, act as an effective thickening and stabilizing agent [8,9], or be employed as
materials for food packaging [10,11]. Chitosan, with its potent antimicrobial properties,
is used as a preservative packaging material for extending the shelf life of perishable
goods, particularly fruits and vegetables [12]. On the other hand, pectin, renowned for its
remarkable gelling properties, frequently serves as a crucial gelling agent, transforming
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liquid formulations into stable gels, imparting desirable textures, and enhancing product
quality [13]. Besides these diverse applications, the preparation of food hydrogels using
these biopolymers has recently garnered significant interest in the food industry.

Hydrogels are polymeric materials with a 3D network capable of absorbing and retain-
ing water, making them highly hydrophilic [14]. Besides their controlled release properties,
ability to provide structural/textural stability, and ability to mimic desired food textures,
they are indispensable in modern food technology, further extending their applications
to other fields, including cosmetics, drug delivery, and tissue engineering [15–17]. Hydro-
gels are employed for tasks such as enabling intricate shapes in 3D printing, serving as
fat substitutes, and promoting satiety with smaller portions [18,19]. They also serve as
thickeners and stabilizers due to their capacity to retain a substantial quantity of water or
polar solvents while maintaining a solid-like structure, achieved through the physical or
chemical crosslinking of hydrophilic polymer chains.

Pectin, a naturally occurring polysaccharide found in plant cell walls, is primarily
composed of repeating units of α-(1-4)-linked D-galacturonic acid units [20]. Depending
on the plant source, a pectin structure may consist of homogalacturonan (HG), rhamno-
galacturonan I (RG-I), and rhamnogalacturonan II (RG-II) domains [21]. This diversity in
composition accounts for the unique properties exhibited by different pectins, such as their
gelation, solubility, and rheological behavior. Additionally, pectin can form 3D networks
of hydrophilic polymer chains, making it ideal for preparing hydrogels. Gels prepared
using pectin are advantageous over other biopolymer gels, such as gelatin, in terms of
their ability to form gels rapidly, elevated thermal stability, and exceptional capacity for
encapsulating flavors and creating fat barriers [22]. Compared to other natural biopolymers
such as starch, cellulose, chitosan, collagen, protein, and agarose, pectin distinguishes itself
through its exceptional gelling properties, allowing for the creation of stable hydrogels
under milder conditions. Moreover, pectin provides the advantage of controllable gelation
and interactions through its adjustability by modifying its degree of methoxylation and
acetylation [23–25]. Also, its amphiphilic nature, with both polar and non-polar sites within
its structure [26], enables effective interaction with water and oil, making it versatile for
encapsulating hydrophobic bioactives.

In application, pectin hydrogels are currently being investigated for their potential in
the development of innovative food products and the fabrication of structured food with
specific textures for specific purposes while elevating sensory properties. Also, there is
evidence that pectin hydrogels can be employed for effective encapsulation and targeted
release of bioactives to specific digestive tract regions [27]. Therefore, this paper aims to
provide valuable insights through a systematic review of the present status of research and
advancements in pectin hydrogels. This review could stimulate further exploration and
utilization of pectin hydrogels, aligning with the evolving demands of modern consumers
and promoting advancements in food technology.

2. Pectin Extraction and Characterization
2.1. Extraction of Pectin from Various Sources

Pectin can be extracted from a diverse range of sources, each possessing its own
distinctive composition and properties. Among these sources, pectin is commonly obtained
from citrus fruits like oranges, lemons, and limes due to their substantial peel content
and higher yield of pectic polysaccharides (Table 1). Also, apples offer a pectin-rich
pomace that includes both peels and cores, contributing to their relatively high pectin
yield. Other alternative sources, such as bananas, potato pulp, pumpkin peels, watermelon
rinds, cocoa husks, and soy hulls, have also been investigated for their pectin content.
These unconventional sources hold promise for diversifying pectin extraction options and
utilizing agricultural byproducts effectively.
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Table 1. Sources and extraction methods of pectin.

Source Pectin Yield (%) Extraction Methods References

Lime peel 17.70–26.30 EAE [28]
Blood orange peel 19.24 MAE [29]
Sour orange peel 29.10 MAE [30]

Navel orange peel 15.47–20.44 CE, MAE, UHP [31]
Apple pomace 3.63–14.50 SW, EAE [32,33]

Citrus peel 0.15–28.82 CE, SW, UAE [32,34–36]
Grapefruit peel 23.50–27.34 CE, UAE [37]
Pineapple peel 1.02–2.12 CE, MAE [38]

Apple peel 3.60–6.40 CE [39]
Plantain peel 6.20–13.40 CE, EAE [40]
Pumpkin peel 8.08–10.03 EAE [41,42]
Mango peel 1.55–21.82 CE, UAE [43,44]

Watermelon rind peel 11.25–25.79 CE, MAE [45–48]
Dragon fruit peel 7.50 MAE [49]

Cocoa husk 8.00–11.31 CE [50,51]
Soy hull 26.00–28.00 CE [52]

Potato pulp 14.34 CE [53]
Banana peel 15.89–24.08 CE [54]
Strawberry 4.10–9.00 CE, UAE, EAE [55]
Redcurrent 2.20–8.80 CE, UAE, EAE [55]
Blackberry 4.30–9.10 CE, UAE, EAE [55]
Raspberry 8.70–12.20 CE, UAE, EAE [55]

Recently, pectin extraction studies have progressively focused on the upcycling of
byproducts from the fruit industry. By valorizing the value of peel waste and husks, which
are often discarded, these byproducts offer an eco-friendly and sustainable avenue for
pectin extraction. This approach aligns with the principles of the circular economy, turning
what was once considered waste into a valuable resource.

Pectin is typically extracted through aqueous methods (Table 1), including conven-
tional heating (CE) [31,34], microwave heating (MAE) [29,30], ultrasonic (UAE) [37,43],
and enzymatic extraction (EAE) methods [28]. Unconventional techniques like ultra-high
pressure (UHP) and subcritical water (SW) extraction have also been explored, but they
can lead to some degree of pectin quality limitation and degradation [31,56]. It is worth
noting that pectin yield is also influenced by factors like temperature, extraction time, pH,
and raw material characteristics, along with extraction parameters [57].

2.2. Pectin Structure and Characterization

Pectin, being a complex polysaccharide, has an extensive variety of physical and
chemical configurations, which affect its properties and functionality in a diverse array
of food applications. Pectin is mostly made of α-(1,4)-linked D-galacturonic acid units,
which form the polysaccharide’s backbone [58]. Moreover, pectin molecules exhibit pen-
dant groups that encompass both hydrophilic functional units, including hydroxyl and
carboxyl groups, and hydrophobic functional units, such as carboxylic ester and amide
groups [59]. The polysaccharide chain found in pectin is hydrophilic [60], while proteins,
feruloylated groups, and methyl and acetyl groups in pectin molecules are hydrophobic,
which gives pectin good amphiphilic properties [59–61]. Among the pendant groups in
pectin’s backbone structure, acetyl groups (CH3CO–) and methoxy groups (CH3O–) are
the most prevalent, as they play essential roles in defining the functionality of pectin. The
acetyl groups are typically attached to the hydroxyl (-OH) groups of galacturonic acid
units within the pectin structure. This is typically presented as the degree of acetylation
(DA), which is the number of acetyl groups present per galacturonic acid unit [62]. The
presence of acetyl groups profoundly influences pectin’s solubility, gelation characteristics,
and interactions with other molecules. Higher acetylation levels can impede molecular
interactions among pectin molecules, leading to a reduced ability to form gels [63,64].
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Conversely, lower acetylation levels encourage stronger interactions, enhancing pectin’s
gelling properties and potential applications. In contrast, methoxy groups are linked to the
carbon atoms of galacturonic acid units, and the degree of methoxylation (DM) signifies the
number of methoxy groups per galacturonic acid unit [65–67]. Methoxylation considerably
affects the gelation behavior of pectin [68], especially in the presence of calcium ions, which
will be further explained in subsequent sections that focus on the pectin gelling mechanism.

Based on the degree of esterification (DE) of these groups, pectin is classified either as
low-methoxyl (LMP; DE 50%) or high-methoxyl (HMP; DE > 50%) [69]. The DE influences
the gelation behavior, solubility, and engagement with other constituents within food
matrices, making it a critical parameter in tailoring pectin for specific applications. The
presence of side branches and neutral sugar side chains, such as rhamnose and arabinose
residues, also has a substantial impact on pectin’s gelling property, influencing its overall
structure and activity [70–72]. Pectin consists of three main regions (Figure 1): homogalac-
turonan (HG), which is regarded as the “smooth” region and made up of α-(1,4)-linked
D-galacturonic acid residues with methyl and acetyl esterification; rhamnogalacturonan I
(RG-I), which is termed the “hairy” region with alternating L-Rha and D-GalA residues and
variable side chains; and rhamnogalacturonan II (RG-II), a complex structure containing up
to 13 different sugars and 21 glycosidic linkages [73].
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HG, a linear chain of α-(1,4)-linked galacturonic acid residues, is the primary structural
component of pectin [74]. HG plays a pivotal role in establishing the gel matrix of pectin
hydrogels. Commercial pectin, with a higher proportion of the HG domain, is renowned
for its superior gelling ability, making it a widely used and stable gel-forming agent in the
food and pharmaceutical industries [75]. The gelation mechanism includes divalent cations,
such as calcium ions, interacting with the carboxyl groups present in the galacturonic
acid residues. This results in the creation of “egg-box” structures in which calcium ions
bridge adjacent HG chains, resulting in a 3D gel network with improved strength and
stability. Also, for pectin consisting of both HG and RG-I structures, its ability to form gels
is influenced by the ratio of HG:RG-I and the length of the HG domain. In addition, it
has been reported that hydrogels exhibit optimal properties when prepared using pectin
with a high content of galacturonic acid (GalA), a high molecular weight, and a suitable
proportion of side chains (>15.8%) [76].

RG-I is a complex side chain composed of alternating galacturonic acid and rhamnose
residues that is connected to the HG backbone [77]. The length of the RG-I backbone can
range between 20 and 300 repeating units. At the C-4 position of rhamnose residues in
pectin, there are side chains composed of galactose and/or arabinose residues. These side



Gels 2023, 9, 732 5 of 28

chains can form individual sugar units or combine to create chains of arabinans, galactans,
or arabinogalactans. The branched rhamnose units in these chains account for 20–80% of
the total structure [67,78]. A study by Zheng et al. [70] demonstrated that RG-I-enriched
pectin may produce gels under both cation-induced and acid-induced circumstances. The
existence of numerous arabinose sugar side chains in RG-I contributes significantly to the
gel network’s strength by generating entanglements and stabilizing both chain–chain and
dimer–dimer structures. These side-chain entanglements provide a denser gel network,
limiting network chain mobility, and strengthening hydrophobic and hydrogen bonding in
the HG region, which results in enhanced gel strength.

RG-II is the most complex and structurally unique component of pectin. It consists
of a branched backbone of alternating galacturonic acid and rhamnose residues, with
various side chains containing arabinan, apiose, and xylose residues [67,74,77]. RG-II
has great crosslinking capabilities [79], which help to generate robust and stable pectin
hydrogels. Because of its structural complexity, RG-II may interact with a wide spectrum of
macromolecules in food systems, making it a crucial element in improving the functionality
and performance of pectin hydrogels. However, there are yet few studies on hydrogels
prepared with RG-II pectins or pectin structures containing a higher proportion of RG-II.

3. Gelling Mechanism of Pectin

The gelling properties and mechanisms of pectin have primarily been categorized and
discussed in various studies, with a focus on factors such as its degree of esterification.
This section discusses the impact of the presence of esters and other molecules in the pectin
network on its gelation behavior and structural characteristics.

3.1. High-Ester Pectin

High-methoxyl (HM) pectins, with a DE ranging from 50% and above, predominantly
form gels through the cohesion of hydrophobic forces and the formation of hydrogen
bonds under specific environmental circumstances. These conditions include low pH
levels (around 2.5 to 3.5) and the presence of soluble solids like sucrose (55% to 75%) or
similar co-solutes for the gelling process to occur [74,80,81]. Sugar plays a crucial role in gel
formation by reducing the amount of available water, which stabilizes the junction zones
through hydrophobic interactions. As a result, the formed gel exhibits a two-dimensional
(2D) network of interconnected pectin molecules with water and co-solutes trapped inside,
contributing to its ability to resist deformation. The 3D network of HM pectin gels is
established through junction zones that are stabilized by hydrogen bonding between
carboxyl and secondary alcohol groups, as well as hydrophobic interactions involving
methyl esters. These gels exhibit thermal reversibility, meaning they can undergo gel-to-sol
transitions with changes in temperature. When exposed to hot water, HM pectin gels
are soluble, and to prevent lumping, they are often used with a dispersion agent like
dextrose [74]. The gelling mechanism of HM pectin is depicted in Figure 2.
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The gel formation of high-ester pectins is a complex process affected by various
factors beyond just the DE. These pectins typically create gels by linking polymer chains
at junction zones, facilitated by hydrogen bonding and hydrophobic interactions among
methyl-ester groups. In cases where esters are grouped together, allowing some parts
of the molecule to remain as free acids, calcium bridges might also contribute to the
gelation process. The factors influencing the gelation process and gel structure of high-ester
pectins include the concentration of pectin, its molecular weight, degree of acetylation,
branching pattern, pH, ionic strength, water content, type of sugar present, cooling rate, and
storage temperature [63]. These parameters play crucial roles in determining the properties
and characteristics of the pectin gels [63]. During the gelation process, 3D networks are
established, effectively entrapping water and solute molecules within the gel structure. The
gel strength of high-ester pectins increases with higher pectin concentration, creating more
junction zones and elastic chains [74,82]. The DE determines pH and temperature range
for gelling, with higher DE pectins gelling at higher pH and temperature [83]. Acetylation
reduces pectin’s gelling ability by hindering interactions [84,85], while neutral sugars can
either hinder or enhance gel cohesion through hydrophobic interactions [63,74]. For sugar
composition in high-ester pectin, the effect is dependent on the molecular geometry of the
sugar interacting with neighboring water molecules [80]. The other factor affecting pectin
gelling properties is pH level. Lower pH promotes gel formation by facilitating interactions
between pectin molecules [63]. The carboxyl groups on galacturonic acid residues are less
dissociated in acidic circumstances, resulting in less electrostatic repulsion between pectin
chains. This permits the chains to generate additional hydrogen bonds and form a gel
network. On the other hand, an excessively low pH level might cause rapid gelling without
sufficient organization, resulting in a weak and poorly organized gel.

In addition, pectic polysaccharides, such as pectins, are polyelectrolytes whose gelation
behavior and interactions with ions are affected by the solution’s ionic strength [86]. Higher
ionic strength can change the pH range for gel formation and enhance the creation of
stronger gel networks by binding divalent cations such as calcium (Ca2+), which function
as bridges between pectin molecules [63]. This can also enhance the creation of junction
zones between pectin molecules, resulting in stronger gel networks. These cations operate
as bridges between the negatively charged carboxyl groups of pectin, further solidifying
the gel structure. Meanwhile, lowering the water activity by increasing the concentration
of soluble solids to around 65 wt% is preferred, as it speeds up the gelling process and
enhances the strength of the resulting gel [87]. When water activity is reduced, gelation
occurs faster because there is less water available to hydrate the pectin molecules. As a
result, the molecules are forced closer together, resulting in a denser and closer woven gel
network. As a result, the final gel strength increases. The cooling rate of gels has been
indicated as another factor influencing the pectin gelation rate [63]. Intermediate cooling
rates and temperatures are favorable for gel formation as they promote the formation of a
network with the highest elasticity. During cooling, hydrogen bonding and hydrophobic
interactions between pectin molecules play an important role in gel structure stabilization.
A slower cooling rate gives these interactions more time to occur, resulting in a stronger
and more elastic gel. Therefore, to explicitly determine the gelling behavior and consequent
gel characteristics of high-ester pectin obtained from different sources, the interactions
between these parameters and their optimal conditions for desirable gel formation must
be investigated.

3.2. Low-Ester Pectin

Low-ester pectins have historically served as the go-to option for gelling food products
in scenarios where high-ester pectins may not be as effective in forming a gel. In addition,
low-ester pectins have demonstrated their usefulness in forming stable gels in low-to-
moderate sugar and acidic environments. Amidated pectins, which are a subcategory
of low-ester pectins, exhibit distinct gelling characteristics, providing a wide array of
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functional properties in the food industry. These unique characteristics make them versatile
choices for various food applications.

Low-ester pectins with a low degree of methylation (DM) have more free carboxylic
acid groups, which interact with Ca2+ ions to create a continuous gel network through
the “egg-box” paradigm [68]. Figure 3 presents the “egg-box” model, elucidating the gel
formation mechanism of low-methoxyl pectin. However, it remains disputed how many
contiguous non-methoxylated galacturonic acid residues are necessary for cooperative
egg-box formation (6 to 20 residues) [88–91]. The capacity of the gel to produce stable egg-
box junction zones is governed by the presence of extended blocks of non-methoxylated
galacturonic acid residues for cooperative Ca2+ ion binding [92]. The amount of calcium
required for gelation is determined by the DE, size, and distribution of non-methylesterified
galacturonic acid, as well as the process parameters [92,93]. Calcium excess can cause pre-
gelation or the formation of pectin precipitates.
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According to Flutto [63] and Vriesmann [64], the presence of ester, acetyl, or amide
groups in pectin disrupts the stabilization of polar groups in the junction zones between
neighboring pectic chains, resulting in hindered gel formation. The side chains of pectin
may also influence the flexibility of the molecule, preventing aggregation through steric
hindrance. Hydrogen bonds and hydrophobic interactions can also impact the ultimate
texture of low-ester pectin gels, particularly in conditions of low pH and high soluble solid
concentrations. Various parameters influence the gelling of low-ester pectins, including the
number and distribution of ester and amide groups, molecular weight, pH, ionic strength,
and water activity of the gelling system [63].

Several variables determine the gel strength of low-ester pectins. As calcium bonds
can only form in esterification-free areas, lower esterification levels result in greater gel
strength. Pectin amidation enhances gelling power, promotes hydrogen bonding, and leads
to tougher and thermo-reversible gels with reduced calcium requirements. Amidation
increases the gelling ability of low-methoxy pectins by requiring less calcium to gel and
making them less likely to precipitate at high calcium levels [94]. The molecular weight
of low-ester pectins governs gelation by influencing the number of required connection
zones [63]. Pectins with higher molecular weights have more junction zones, leading to
faster gelation and reduced syneresis. The length of the pectin chain directly relates to its
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molecular weight, creating a greater number of junction zones and resulting in stronger gel
formation [95,96].

The pH of the pectin solution influences gel texture as well as calcium needs. Studies
on LM-pectin gel properties [97,98] revealed that lowering the pH < 3 weakened the Ca2+

-induced gel for non-amidated pectin but strengthened it for amidated pectin. Interestingly,
LM pectin can form gels even at low pH without Ca2+ [99]. They proposed that below
a certain pH, a conformational transition induces pectin aggregation and gelation when
G′ > G′′. Additionally, gelation of LM pectin is favored at high pH, as Ca2+ bridges
require an adequate number of dissociated carboxyl groups [92]. These findings provide
valuable insights into the complex gelation behavior of LM-pectin under different pH
and Ca2+ conditions. Managing calcium requirements is another important parameter
influencing gelation, which can be achieved by adjusting the water activity through the
addition of sugar or by varying the concentration of soluble solids in the solution [63].
Increasing the solid level reduces the amount of calcium needed while accelerating the
gelling process, elevating the setting temperature, and enhancing the final gel strength.
However, this approach also leads to a narrower optimal calcium window, prompting
practical applications to favor pectin with higher esterification at higher solid levels.

4. Types of Pectin Gels

Pectin gels exhibit diverse forms, comprising hydrogels, cryogels, aerogels, xerogels,
and oleogels, each of which will be explored in detail in the subsequent sections. A visual
representation of these distinct pectin gel types is presented in Figure 4, offering a schematic
diagram for better understanding.
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4.1. Hydrogels

Hydrogels are 3D porous materials made from crosslinked hydrophilic polymers,
whether natural or synthetic. They possess the ability to absorb substantial quantities of
water or biological fluids without dissolution [100,101]. Hydrogels are created by either
physically or chemically crosslinking polymer chains, which can be synthetic or naturally
derived. The control of hydrogel formation and the enhancement of interactions depend sig-
nificantly on factors such as pH and charge balance. Most hydrogels, especially those based
on polysaccharides, exhibit desirable biocompatibility, biodegradability, tunable structures,
and stable physicochemical properties. These unique features of pectin hydrogels enable
their wide application in wound healing [102,103], tissue engineering [104], drug deliv-
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ery [59,105,106], strain sensors [107], supercapacitors [108], aqueous batteries [108], and
various other fields. However, hydrogels formed through single chemically or physically
cross-linked methods may have poor mechanical properties and weak energy dissipation
during deformation. This brittleness limits their potential applications. To enhance their
properties, various techniques in preparing hydrogels are utilized, such as ionic gelation,
ionotropic gelation, casting, and filtration, offering versatile routes to tailor hydrogels for
specific needs, as demonstrated in Table 2.

Table 2. Types of pectin gels and their applications.

Types of Pectin Gel Composite Material Methods Outcomes Applications References

Hydrogel Pectin/chitosan/essential
oils

Ionic gelation
(Dripping method)

Good antimicrobial activity against
six types of microorganism - [109]

Hydrogel Pectin/chitosan Ionic charge interaction Good antibacterial and wound
healing properties Tissue regeneration [110]

Hydrogel LM apple pectin -

Low toxicity, improved stability
towards elastic and plastic

deformation, ability to adhere to
macrophages and the non-specific

adsorption of blood plasma
proteins

Scaffold for tissue
engineering [13]

Hydrogel LM apple pectin/LM
hogweed pectin Ionotropic Increased gel strength - [111]

Hydrogel
HM apple

pectin/Glucono-δ-
lactone

-
Great mechanical strength, stronger
thermo-reversibility, and higher pH

stability
[112]

Hydrogel (membrane
layer)

Banana peel
pectin/Water hyacinth

carboxymethyl cellulose
Casting Increased hydrophobicity of

hydrogel membrane - [113]

Hydrogel
LM pectin/Resistant
starch/Lactobacillus

bulgaricus
Filtration High storage ability and protective

effects on L. bulgaricus

Synbiotic encapsulation,
protection, and delivery

of probiotics
[114]

Aerogel Citrus pectin/cellulose
nanofiber Freeze drying Improved tensile and compressive

properties

Edible fungus
moisture-regulating

packaging
[115]

Aerogel LM pectin/alginate Freeze drying
Strong antioxidant activity with

good controlled released of
proanthocyanidins

Matrix for the
controlled release of
proanthocyanidin

compound

[116]

Aerogel 1.Citrus pectin Supercritical drying
with CO2

High specific surface and low bulk
density

Matrix for the
controlled release of
vanillin compound

[117]2. Watermelon rind
pectin

Aerogel Citrus pectin/PLA Supercritical drying Increased swelling and simulated
body fluid (SBF) uptake

Active wound-healing
materials [118]

Aerogel Pectin/TiO2
Supercritical CO2

drying
Great mechanical, thermal, and

antimicrobial properties
Temperature-sensitive

food [119]

Aerogel Citrus pectin Supercritical CO2
drying

Low density with high porosity and
pore volume resulted in small pores

size, mainly mesopores and small
macropores

Matrix for the
controlled release of

theophylline compound
[120]

Oleogel

Citrus pectin/camellia
oil/tea

polyphenol-palmitate
particles

Freeze drying Improved oil binding capacity and
gel strength - [121]

Oleogel Citrus pectin/
ovotransferrin fibrils Homogenizing

Better stability, smaller droplet size,
more prominent gel-like structure,
high viscosity, and superior texture

properties

Matrix for the
controlled release of
curcumin compound

[122]

Oleogel Citrus pectin/tea
polyphenol ester Freeze drying

Increased stability and
viscoelasticity of emulsions,

improved oil binding capacity and
gel strength of the oleogels

Fat replacer in cookies
product [123]

Cryogel
1. Apple

pectin/chitosan Cryotropic gelation
(Freeze drying)

Possessed biocompatibility,
biodegradability, and low toxicity

Potential medical
purposes [124]

2. Heracleum
pectin/chitosan

Cryogel LM pectin/sucrose Freeze drying Reduction of ice crystal in gel - [125]

Cryogel Citrus pectin Freeze drying High loading efficiency of
theophylline compound

Matrix for the
controlled release of

theophylline compound
[120]

Cryogel
LM, MM and HM
pectin/polyvinyl

alcohol
Film drying

Ability to keep the enrofloxacin
antibiotic inside the matrix and
control of the cargo amount in

the gel

Can be used for
different infectious
pathologies and/or

treatments

[126]
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Table 2. Cont.

Types of Pectin Gel Composite Material Methods Outcomes Applications References

Xerogel Citrus pectin Oven drying
High density, low porosity, low

pore volume and compact
morphology

Matrix for the
controlled release of

theophylline compound
[120]

Xerogel Sugar beet pectin Air drying
Improved stability and reusability

of the gels with good sorption
capability of metal compounds

Heavy metal removal [127]

Xerogel Sugar beet pectin Air drying
Good mechanical strength with

high continuous biosorption and
desorption of copper

Biosorbent for copper
removal in a fixed-bed

column
[128]

Xerogel LM pectin/brea gum Oven drying

Showed good compatibility
between both polymers with high

gel strength, while also able to
respond to the changes in pH of the

medium and modify dye release

Matrix for the
controlled release of
methylene blue dye

[129]

Hydrogel Preparation

Ionic gelation is a commonly employed technique for producing hydrogels, especially
those derived from natural polymers such as pectin, alginate, or chitosan. This method is
widely used due to its effectiveness and versatility in creating hydrogel networks. This
method involves crosslinking polymer chains through ionic interactions with multivalent
ions, typically divalent cations such as calcium (Ca2+) or zinc (Zn2+) [109,130,131]. In this
process, the polymer solution is mixed with the crosslinking ion solution, resulting in the
creation of a cohesive gel structure. The gelation process occurs when the divalent ions
interact with the functional groups (e.g., carboxylate or sulfate groups) on the polymer
chains, forming strong ionic bonds. The crosslinking of polymer chains creates a 3D
network that traps water molecules, giving rise to the hydrogel structure. The gelation
can be triggered by changing pH, temperature, or simply mixing the polymer and ion
solutions. In research conducted by Torpol et al. [109], a pectin hydrogel was developed
using the ionic gelation method, which involved the combination of chitosan and essential
oils with the addition of CaCl2. In another study, the ionic gelation method was utilized for
microencapsulation-based gelation, enabling the crosslinking of polyelectrolytes (pectin
and chitosan) with multivalent ions, including calcium (Ca2+), to create the hydrogel
bead [132]. The study findings indicated that the hydrogel developed exhibited significant
inhibition activity against various harmful bacteria, such as B. cereus, C. perfringens, E. coli, P.
fluorescens, L. monocytogenes, and S. aureus. This suggests the potential of the pectin–chitosan
hydrogel for antimicrobial applications.

Ionotropic gelation is a specific type of ionic gelation that relies on the capacity of poly-
electrolytes to undergo crosslinking when exposed to counterions, leading to the formation
of hydrogels [133]. In this method, the polymer solution is mixed with a solution containing
metal cations, such as calcium (Ca2+) or aluminum (Al3+). The metal cations interact with
the carboxylate or sulfate groups on the polymer chains, leading to gel formation [134]. The
formation of the hydrogel structure through ionotropic gelation is influenced by factors
such as the polymer concentration, crosslinking ions, and ionic strength of the surrounding
medium. By adjusting the concentration and types of metal cations used, the crosslinking
process can be customized. Ionotropic gelation finds widespread use in various applica-
tions, including controlled drug release, encapsulation of bioactive substances, and tissue
engineering purposes. In another study by Popov et al. [111], the ionotropic gelation
method was employed to create hydrogels using low-methyl apple and hogweed pectin
samples with the addition of calcium gluconate. Ionotropic hydrogels are formed when
polymers gel in the presence of metal cations. Pectin, with its carboxylate groups, readily
forms gels in the presence of metal cations like Ca2+. Calcium gluconate, a divalent metal
cation, can crosslink with pectin and contribute to its gelling properties. The use of calcium
gluconate was preferred over calcium chloride due to its milder taste, improving consumer
acceptance. The presence of sucrose was observed to positively influence the creation
of pectin gels by stabilizing the crosslinks between pectin and calcium ions. Moreover,
sucrose forms hydrogen bonds with water molecules, resulting in the immobilization of free
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water and promoting the concentration of the polymer environment, thereby facilitating
gelation. The study demonstrated that a mixture of both apple and hogweed pectin showed
a synergistic effect, contributing to higher gel strength in the hydrogels formed through
ionotropic gelation [111].

The casting method involves the preparation of hydrogels by casting a solution or
dispersion of hydrogel precursors into a mold or container of the desired shape [135].
Natural polymers, synthetic polymers, or a combination of both can be used as hydrogel
precursors. Precursor gelation happens by physical or chemical crosslinking, depending on
the formulation. Intermolecular forces like hydrogen bonding and hydrophobic interactions
cause gelation in physical hydrogels. Conversely, chemical hydrogels are created through
covalent bonding of polymer chains, in which chemical processes generate permanent links
between polymer chains. The casting approach provides for exact control over the shape
and size of the hydrogel, making it suited for applications such as drug delivery systems,
wound dressings, and tissue engineering scaffolds. The casting method of developing
hydrogel was demonstrated by Elma et al. [113], who showed good compatibility between
CMC and pectin from banana peels that led to stabilization of cross-linking the hydrogel
membrane synthesis. The study also showed an increase in the hydrophobicity of the
hydrogel membrane due to the addition of banana peel pectin.

The filtering process includes extruding a mixture of hydrogel precursors through a
membrane or filter with precise pore sizes to create hydrogel beads [114]. The extrusion
procedure results in the creation of uniformly sized hydrogel beads. Polymers containing
crosslinking functional groups, such as alginate or chitosan, can be used as hydrogel
precursors [132]. During the extrusion process, the hydrogel precursors interact and create
a gel network [136]. The addition of crosslinking agents or ions can improve the gelation
process even more. The filtration method is commonly used for the encapsulation of drugs,
enzymes, or bioactive compounds, as well as the delivery of therapeutic agents and the
immobilization of cells for various biomedical applications. A study by Lee et al. [114]
demonstrated the filtration method for preparing hydrogels. The study showed that
adding pectic oligosaccharide (POS) resulted in smooth hydrogel beads with fewer surface
imperfections. The smoothness was achieved through hydrogen bonding between resistant
starch (RS) beads and POS. The study suggests that RS-POS (1.2%) hydrogel beads could
be used as an effective carrier for encapsulating L. bulgaricus probiotics, offering protection
and controlled delivery.

4.2. Cryogels

Cryogels are a type of pectin gel formed using a cryotropic gelation process. In this
method, pectin solutions are frozen at sub-zero temperatures, and the ice crystals formed
act as templates for the gelation process [137]. As the frozen gel is thawed, the ice crystals
melt, leaving behind a porous network of interconnected pectin chains [138]. Cryogels have
a highly open and porous structure, making them ideal for applications requiring high
surface area and rapid mass transfer, such as in food packaging, adsorption, and filtration
processes. Cryogels are 3D porous materials formed by a process called cryotropic gelation.
The preparation of cryogels involves two main methods: freeze-drying (also known as
lyophilization) and film drying, as stated in Table 1. A study by Konovalova et al. [124]
demonstrated polymeric cryogels formed through freeze-drying, which involves freezing
and thawing the initial solutions to create the gel. In this study, low-methyl-esterified pectin
from apples and Heracleum were used as the main components, capable of forming a gel
with Ca2+ ions. The cryogels are prepared by diffusing pectin into a frozen chitosan solution,
resulting in the formation of a pectin/chitosan polyelectrolyte complex. The freeze-drying
process shapes the unique macroporous structure of the cryogels, contributing to their
special properties and applications. However, the freeze-dying process has been revealed
to affect the microstructure and mechanical properties of pectin cryogels [125]. This method
creates a cellular, less dense structure with a smooth surface and homogeneous honeycomb-
like pores. The freezing temperature influences porosity, with higher temperatures leading
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to decreased porosity. The process also impacts mechanical properties, reducing density
and increasing porosity. Slow freezing produces larger ice crystals, resulting in shorter
drying times and lower hardness in the cryogels. Findings by Groult et al. [120] showed
that freeze-dried pectin cryogels undergo limited sample shrinkage (10–13 vol%) due
to water freezing and ice crystal growth within the sample. However, this creates large
pores and a damaged morphology with cracks and macropores. The resulting freeze-dried
cryogels have a very low density (0.07 g/cm3), high porosity (95%), and high pore volume
(13 cm3/g). Compared to hydrogel, aerogel, and xerogel, pectin cryogels have the lowest
bulk density (0.073 ± 0.003) and volume shrinkage.

Meanwhile, pectin cryogels formed using the film drying method have been demon-
strated in a previous study [126]. The advantage of film drying properties over pectin
cryogel properties is that they allow for the modulation of the releasing rate of drugs, such
as enrofloxacin in this case. By incorporating high-methoxylated pectin into the cryogel
film, the release rate of the antibiotic enrofloxacin was significantly slowed down [126].
Additionally, the two-layer film system, with the top film equilibrated with different NaCl
concentrations, further controlled the release rate of enrofloxacin. This demonstrates the
potential of film drying to tailor the drug release properties of pectin cryogels, making
them suitable for transcutaneous antibiotic delivery applications.

4.3. Aerogels

Aerogels are solid structures composed of colloidal or polymeric networks, known
for their extremely low weight and exceptionally high porosity, reaching up to 99.9% (v/v)
open spaces [139]. Aerogels are fabricated through a drying process where the liquid within
the gel’s pores is substituted with air. These materials can exhibit a wide range of pore sizes,
from macro to micro, resulting in high surface areas and low thermal conductivities. Due to
their tunable properties, aerogels have garnered attention as versatile nanomaterials. Their
unique attributes, such as ultra-low density, high specific surface area, and remarkable
acoustic, mechanical, and thermal insulation properties, make them a special class of
advanced materials with great potential for bioactive encapsulation and controlled release
applications [116]. In addition, bio-aerogel is a remarkable material characterized by its
low density, extensive surface area, and porous structure, offering ample opportunities
for functionalization. This exceptional feature arises from the abundant hydroxyl groups
present on the polymer backbone, enabling straightforward modification and customization
of the material’s properties [140].

Aerogels have emerged as highly desirable materials for supporting single or multiple
component nanoparticles, owing to their adjustable characteristics like pore size, surface
area, and density. The narrow distribution of pore sizes and substantial surface areas enable
excellent dispersion of nanoparticles. This dispersion leads to enhanced control over the
rates of reactant and product diffusion to and from catalytic sites composed of nanoparticles.
By combining robust sol–gel chemistry with various preparation methods, such as supercrit-
ical deposition, researchers have successfully developed aerogel-supported nanoparticles
with exceptional catalytic properties tailored for specific targeted reactions [141]. The
drying step is the most crucial stage in the production of aerogels. The majority of re-
search efforts focused on fabricating polymer aerogels have employed supercritical CO2
drying and freeze-drying techniques, as evidenced by the data presented in Table 1. It
is worth noting that the properties of the final products vary depending on the drying
method employed.

Pectin-based aerogels have been extensively studied using supercritical CO2 drying.
However, this method has some drawbacks compared to freeze-drying, including complex-
ity, expensive raw materials, and high energy and CO2 consumption. A study by Méndez
et al. [117] investigated pectin hydrogels prepared through a sol–gel process followed by
supercritical drying. They analyzed how pectin composition affected the aerogel structure
and release properties when impregnated with vanillin. The developed aerogel particles
exhibited high specific surface areas and low bulk density. Pectin’s affinity with vanillin



Gels 2023, 9, 732 13 of 28

influences shrinkage during aerogel formation and the release profile of vanillin, making
it a promising carrier for active compounds in food and biomedical applications. Horvat
et al. [118] described the synthesis of biodegradable hybrid aerogels using pectin and
polylactic acid as wound-dressing materials. These aerogels were loaded with model drugs
and oxygen-generating compounds to assess their drug-release properties. Pectin’s high
water uptake and swelling ability make it attractive for wound-dressing applications. The
addition of polylactic acid improved the material’s stability in simulated body fluid, which
is crucial for wound healing. The resulting hybrid material exhibited a highly porous
structure with a large surface area, making it advantageous for drug delivery applications.
A study by Groult et al. [120] observed that changing the drying method from freeze-drying
(cryogels) to supercritical drying (aerogels) creates noticeable structural differences, par-
ticularly concerning specific surface area and pore sizes. Supercritical fluids, like CO2,
exhibit properties between liquids and gases, allowing for a gentle drying process without
damaging the network structure. This results in low-density aerogels with high poros-
ity and pore volume, similar to pectin cryogels. However, aerogels have smaller pores,
mainly mesopores and small macropores (50–150 nm in diameter), leading to a significantly
higher specific surface area (SBET) of 360 m2/g, compared to cryogels with a SBET of
10–20 m2/g [120].

Recent studies have shown that freeze drying is a cost-effective method for produc-
ing polymer aerogels, comparable to supercritical drying. A study by Wu et al. [115]
investigated composite citrus pectin combined with cellulose nanofiber to create aerogels
for thymol release. During freeze drying, the emulsion structure around oil droplets is
destroyed, leaving oil droplet-shaped pores as a template for the aerogel structure. This
aerogel maintained thymol activity, reduced susceptibility to oxygen, and provided slow-
release properties. The aerogel was tested on fresh edible mushrooms (Agaricus bisporus),
extending their storage time up to 5 days by adjusting the humidity in the packaging to
97%. In another study, biopolymer aerogel microspheres were fabricated using alginate
and pectin crosslinked with divalent cations (Ca2+) via the sol–gel method followed by
freeze drying [116]. In this study, as the pectin ratio in the aerogels increased, greater poros-
ity and pore size were observed. Moreover, the encapsulated proanthocyanidins within
these aerogel microspheres exhibited controlled release behaviors, conforming to both the
first-order and Korsmeyer–Peppas models. Notably, aerogels with higher pectin content
exhibited stronger antioxidant activity based on radical scavenging and ferric-reducing
antioxidant power results.

4.4. Xerogels

Xerogels are a specific category of gels that are formed into solid structures by slow
drying at room temperature, allowing them to shrink freely during the process [142,143].
Pectin xerogel can be obtained through the removal of the solvent from the hydrogel by
evaporation at room temperature or under vacuum conditions. During this process, the
solvent is gradually removed, causing the gel structure to collapse, resulting in a solid
material with a high content of interconnected pectin chains. Xerogels have a lower water
content compared to hydrogels but retain their 3D network structure. They are commonly
used in food applications for the encapsulation and controlled release of bioactive com-
pounds and flavors. Xerogels are a type of hydrogel that is prepared by drying the gel at
low temperatures to remove the solvent and water, leaving behind a solid porous material.
Evaporative drying commonly results in pore collapse due to elevated capillary pressure,
leading to materials with high density and low porosity [144]. There are two common
methods used to prepare xerogels: oven drying and air drying, as shown in Table 1.

Oven drying, also known as conventional drying, is another method for preparing
xerogels. In this process, the wet hydrogel is placed in an oven at a controlled temperature
to facilitate the removal of solvent and water. The controlled environment ensures more
precise drying conditions compared to air drying, but it still requires a longer drying
time than freeze drying. Oven drying offers a cost-effective approach that can be easily
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implemented using standard laboratory equipment. The study conducted by Groult
et al. [120] investigated evaporative drying in the development of citrus pectin xerogel
under vacuum conditions at 60 ◦C. This process led to a significant shrinkage of over
90% in the volume of the material. Consequently, the drying method created a compact
morphology with a high density (~1 g/cm3), a relatively low porosity (approximately 30%),
and a low pore volume (0.3 cm3/g). The pectin xerogels exhibited some degree of porosity
when observed through a scanning electron microscope (SEM), but the specific surface area
could not be measured due to possible closed pores. Notably, loading efficiency was high in
pectin xerogels (94%), indicating that the impregnation time was sufficient to fully load the
pectin alcogel. Another study demonstrated the usage of oven drying at 40 ◦C to produce
xerogel consisting of low-methyl pectin and brea gum [129]. The study found the xerogel
exhibited a compact and dense structure with good compatibility between pectin and brea
gum, and its swelling and erosion behavior were influenced by the external pH, reaching
equilibrium states for water absorption and erosion. These properties of the xerogel have
implications for its potential applications in medical, food, and industrial uses, given its
response to changes in pH and controlled release behavior.

An alternative method was employed by Mata et al. [127,128], which utilized air drying
to remove the solvent from the gels and obtain the desired xerogel structure. These studies
developed sugar-beet pectin xerogels, which were later found to be effective in removing
heavy metals (cadmium, lead, and copper) from effluents and wastewater in continuous
systems. The xerogels show promising potential as a biosorbent for metal recovery due
to their high adsorption capacity and stability. In addition, xerogels also exhibit excellent
reusability after multiple batch sorption–desorption cycles. The biosorption capacity and
mass of the xerogel beads remain largely unchanged even after multiple reuse cycles,
making them suitable for metal remediation technologies.

4.5. Oleogels

An oleogel is a type of gel that is formed by structuring liquid oil using a gelling agent.
Typically, the gelling agent is a hydrophilic material, such as a polymer or a surfactant, that
can interact with the oil molecules to create a 3D network or structure [145]. This network
traps and immobilizes the oil, transforming it into a gel-like consistency. Oleogels are often
used as fat replacers in various food products to reduce the amount of solid fats like butter
or margarine while maintaining desirable texture and sensory properties [146]. They offer
potential benefits by reducing saturated fat content and improving the nutritional profile of
food products. Pectin oleogels have been developed using two methods: freeze-drying and
homogenizing, as demonstrated in Table 1.

In the freeze-drying method, a stable emulsion of pectin and oil is first formed. The
emulsion is then frozen, and the water in it is removed by sublimation, leaving behind
a porous structure of pectin and oil. The oil is trapped within the pores, creating an
oleogel. This method preserves the original emulsion structure and results in a highly
porous and stable oleogel, but it can be time-consuming and requires specialized equip-
ment. A study by Luo et al. [121] investigated the preparation and application of oleogels
made with camellia oil, tea polyphenol-palmitate particles, and citrus pectin using the
emulsion-templated method. The concentration of citrus pectin had a significant impact
on the physical properties of the emulsions, dried products, and oleogels. Higher pectin
concentrations led to more stable and viscoelastic emulsions, as well as dried products with
a denser structure and increased hardness. The oleogels exhibited enhanced oil binding
capacity and gel strength, with a high gel strength (G′ > 17,000 Pa) observed when the
citrus pectin concentration exceeded 1.5% (m/v). These polyphenol-rich oleogels also
demonstrated strong antioxidant activity. When used as a replacement for butter in cakes,
the oleogels achieved a satisfactory overall quality with hedonic scores ranging from 21.49
to 27.58, compared to a score of 32.03 for cakes made with butter. In addition, Pan et al. [123]
developed pectin oleogels combined with tea polyphenol ester particles of different fatty
acid chain lengths, which were further used in cookie production as a fat replacer. The
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study found that the fatty acid chain length influenced the characteristics of the oleogels,
including appearance, firmness, and gel intensity. When using pectin oleogels as a butter
replacement in cookies, the texture and sensory qualities of the cookies changed. At certain
replacement levels, cookies made with specific fatty acid chain lengths in the oleogels
showed similar qualities to traditional butter cookies, making them a potential alternative
for fat replacement in cookies.

In the homogenizing method, pectin and oil are mixed to form an emulsion using a
homogenizer. The pectin molecules stabilize the oil droplets within the water phase. The
emulsion is then allowed to cool and set to form the oleogel structure. This method is
relatively simple and scalable, allowing for controlled manipulation of the gel structure by
adjusting homogenization conditions. However, the resulting oleogel may have a lower
porosity and specific surface area compared to freeze-dried oleogels. Dong et al. [122] ex-
plored the effect of the interaction between ovotransferrin fibrils (OVTFs) and citrus pectin
on the properties of oleogel-based pickering emulsions. OVTF–citrus pectin complexes with
better stability were obtained at a mass ratio of 3:1 and pH 5.0, exhibiting pearl chain-like
structures. Subsequently, oleogel-based OVTF-stabilized pickering emulsions (OEs) and
oleogel-based OVTF–CP complex-stabilized pickering emulsions (OCPEs) were developed.
In comparison to OE, the combination of OVTFs with citrus pectin in OCPE resulted in
greater stability, smaller droplet sizes, a more noticeable gel-like structure, higher viscosity,
and superior textural qualities. The OCPE was also employed as a curcumin delivery
method, with superior curcumin preservation, a higher rate of lipolysis, and improved
bioaccessibility. This novel strategy sheds new insight on how to customize the characteris-
tics of oleogel-based pickering emulsions by leveraging the interaction between protein
fibrils and polysaccharides, which might lead to the precise production of emulsions with
preferred shapes and properties.

5. Crosslinking in Hydrogel

The crosslinking of hydrogels encompasses three main processes: physical, chemical,
and interpenetrating polymer networks (IPNs), as depicted in Figure 5. Each process
imparts distinct characteristics to the hydrogel, making it suitable for specific applications.
The choice of crosslinking methods plays a crucial role in determining the hydrogel’s
properties, and different crosslinking approaches are employed based on the desired
characteristics and applications.
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5.1. Physical Crosslink Hydrogels

Physical hydrogels are formed through non-covalent interactions, such as electro-
static, hydrogen bonding, and hydrophobic forces, between oppositely charged biopoly-
mers [18,147,148]. These interactions allow for the creation of polyion complexes, where
multiple macromolecules come together to form a stable network. The polymer chains in
physical hydrogels have strong inter-chain interactions, leading to a cohesive molecular
network. At the same time, these hydrogels possess a high affinity for water, encouraging
water molecules to access and reside within the gel structure. Due to their reversible and
water-sensitive nature, physically crosslinked hydrogels have a short lifespan, typically
lasting from a few days to a month when exposed to physiological conditions [18]. This
property makes them advantageous for applications where short-term drug release is
required, especially in clinical settings, as they do not rely on toxic covalent crosslinking
molecules for gelation. In the case of physical crosslinking, the modification process in-
volves interactions that are reversible and do not involve the formation of new covalent
bonds. Instead, existing forces such as electrostatic interactions, hydrogen bonding, or
hydrophobic interactions are utilized to create the network structure. As an example, a
study [149] found that the combination of gelatin and low-methoxyl pectin leads to the
formation of a physical co-gel. Electrostatic forces between gelatin and pectin facilitate the
interactions, resulting in a reversible physical polyion complex. Gelatin forms the primary
network, while pectin is dispersed within. Electrostatic forces facilitate interactions between
gelatin and pectin molecules, forming a reversible physical polyion complex with enhanced
performance [147]. Furthermore, the study also incorporated glutaraldehyde to achieve 3D
crosslinking, which involves the formation of strong and enduring connections through
covalent bonds between polymer chains. Upon introduction to the physical polyion com-
plex of gelatin and pectin, glutaraldehyde reacts with specific polymer functional groups,
generating new covalent bonds. This process establishes a stable and enduring hydrogel
structure characterized by enhanced mechanical strength and water resistance. While
physically crosslinked hydrogels may exhibit reduced strength compared to chemically
crosslinked ones, they can offer limited stability and durability.

5.2. Chemical Crosslink Hydrogels

In contrast to physical hydrogels, chemical hydrogels are formed through the cova-
lent crosslinking of biopolymers at specific sites [147,150]. This crosslinking is achieved
using crosslinkers, which act as bridges between polymer chains, resulting in a stable
and homogenous network. Unlike physical hydrogels, the synthesis and properties of
chemical hydrogels are not solely dependent on pH but can be easily controlled by ma-
nipulating the crosslinking process. Chemical crosslinking allows for the modification of
various hydrogel properties, including swelling behavior, biodegradability, and mechanical
strength. Different approaches, such as the inclusion of small molecules, ionizing radiation,
and free radical mechanisms, can be employed for covalent crosslinking [18]. Chemically
crosslinked hydrogels offer enhanced stability and durability, making them suitable for
longer-term applications. The process of modifying pectin to create its derivatives also
encompasses ionic gelation between pectin and another polymer. A study on the combina-
tion of pectin and chitosan was investigated by Maciel et al. [151] and Shishir et al. [152].
The study prepared pectin-chitosan hydrogel through the formation of a polyelectrolyte
complex. This complex arises from the electrostatic interaction between the negatively
charged carboxyl groups (COOH) of pectin and the positively charged amino groups (NH2)
of chitosan, resulting in the development of a chemically stable hydrogel. In addition, the
prepared hydrogel exhibited remarkable moisturizing properties, was biocompatible, and
provided a protective effect on skin wounds [110]. Furthermore, an investigation into the
synergy of pectin and cellulose integration was undertaken by Chen et al. [153] using an
ionic liquid approach, resulting in the development of a chemically crosslinked hydrogel.
This research synthesized a natural composite hydrogel by combining flexible pectin and
cellulose within an ionic liquid environment. Ionic liquids are often used as solvents to
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dissolve cellulose due to their ability to disrupt the strong hydrogen bonding network in
cellulose [154]. When pectin, which carries negative charges on its carboxyl groups, is
combined with cellulose in the ionic liquid, an electrostatic attraction occurs between the
positive charges on the cellulose and the negative charges on the pectin. This interaction
leads to the formation of a stable composite hydrogel through chemical crosslinking, which
involves the creation of ester bonds between cellulose and pectin molecules. This process
leads to the development of a hydrogel with a dense network structure and enhanced
properties, as described in the study [153].

5.3. IPN (Interpreting Polymer Network) Crosslink Hydrogels

IPNs are a unique type of hydrogel that involves the physical entanglement of two or
more polymer networks, each with its own distinct properties [147,150]. These networks
are interlaced at a molecular scale but not covalently bonded to each other, and they
cannot be separated unless chemical bonds are broken. IPNs can be semi-IPNs or full-
IPNs, depending on the level of crosslinking between the polymers [18]. In semi-IPNs,
one polymer network is crosslinked, while the other is physically associated with the
crosslinked network. On the other hand, full-IPNs occur when both polymer networks
are crosslinked [104]. IPNs provide a way to combine different polymers, such as natural
polysaccharides, proteins, or synthetic hydrophilic polymers, to complement each other’s
deficiencies. By utilizing this entangled structure, IPNs offer unique mechanical, swelling,
and biocompatible properties, making them valuable in various applications, including
drug delivery and tissue engineering. IPNs can be prepared through different routes by
combining natural and synthetic polymers, offering versatility and control in hydrogel
design. Yan et al. [155] explored the potential use of IPNs consisting of soy protein isolate
(SPI) and sugar beet pectin as carriers for probiotic delivery. The researchers employed an
enzymatic approach to create the IPN hydrogels and investigated the influence of laccase’s
amount as well as the concentrations of SPI and sugar beet pectin on the swelling, textural,
and rheological properties of the hydrogels. The authors observed that by altering the
laccase quantity and the concentrations of SPI and sugar beet pectin, it was possible to
regulate the swelling, texture, and rheological characteristics of the IPN hydrogels [155].

6. Potential Application of Pectin Hydrogel in Food Industry

Pectin hydrogels present a wide range of potential applications in the food industry,
offering innovative solutions to address various challenges. One of the characteristics of
hydrogels is their ability to retain a subsequent amount of water, making them appealing
for innovative use in the food industry. Their eco-friendly nature, coupled with inherent
biocompatibility, positions pectin hydrogels as an attractive choice for applications focused
on minimizing environmental impact and addressing consumer demand for cleaner and
healthier food products. The application of pectin hydrogels as agent carriers, fat replacers,
3D-printed food, and food packaging and coating material is depicted in Figure 6 and
further explained in this section.

6.1. Carrier for Active Compound

One of the primary uses of food hydrogels is the encapsulation of bioactive molecules,
including food ingredients, additives, antioxidants, vitamins, probiotics, and drugs. Since
hydrogels offer regulated release by virtue of their 3D network, they assure the safety and
stability of bioactives during food preparation and storage. Peng et al. [156] achieved the
encapsulation of vitamin C in citrus peel pectin hydrogel conjugated with bovine serum
albumin. The study observed a 65.31% encapsulation efficiency for vitamin C in pectin
hydrogel as a carrier. Another study conducted by Zhou et al. [157] investigated nanohy-
drogel development involving the combination of pectin with low-density lipoprotein as a
carrier for curcumin. The nanogels withstood the challenges posed by stomach acid and
various digestive enzymes and facilitated an efficient, controlled release of curcumin over a
period of time, enhancing its bioavailability and targeted delivery. In another study, Jung
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et al. [158] explored the potential of various hydrogel sources derived from low-methoxyl
citrus pectins and citrus pectin methylesterase (PME)-modified pectin as carriers for the
drug indomethacin. Impressively, the study achieved favorable results in terms of drug
encapsulation efficiency, particularly for applications in a drug delivery system targeting
the colon through oral administration. Additionally, a novel pH-responsive biopolymer
mixture known as Al-P, comprising alginate and pectin, was designed to form a hydrogel at
pH levels below 3.0. This innovative approach was demonstrated in the study by Guo and
Kaletunç [159]. Notably, the production of disc-shaped particles using this approach was
innovative and had the potential to enhance adhesion within the intestines. The hydrogel’s
dissolution characteristics adapt to changes in pH within the environment, enabling the
controlled and efficient release of bioactive compounds that align with specific physiologi-
cal conditions. The study aimed to elucidate the factors impacting the dissolution kinetics
of Al-P hydrogel and to create mathematical models describing the degradation behavior
of these hydrogels under conditions similar to product storage and the lower gastrointesti-
nal tract. Overall, it is evident from the aforementioned studies that pectin hydrogel has
the potential to serve as an effective mechanism for delivering active bioingredients into
food delivery systems. This property is very effective for increasing the bioavailability of
nutrients and functional components, potentially offering consumers health benefits.
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6.2. Fat Replacement and Emulsifiers

Pectin hydrogel particles emulate the texture and deformability of fat particles, effec-
tively mimicking the sensory and physical properties of emulsified fats. Notably, pectin-
based fat substitutes have emerged, employing various pectin variants with distinct degrees
of esterification. For instance, low-methoxyl pectin (LMP), harnessed through calcium
gelation, has found application as a fat mimic in products like mayonnaise [160]. On the
other hand, high-methoxyl pectin (HMP) played a pivotal role in crafting oil-filled hydrogel
granules through controlled phase separation via hydrophobic interactions and hydrogen
bonding. This strategic use of HMP serves the purpose of both fat substitutes and emulsi-
fiers [161]. Their flexible and soft nature makes them a healthier alternative to typical fats
without compromising taste or texture. Pectin hydrogels can also be used to improve the
nutritional profile of meals by increasing the mouthfeel of low-fat products and developing
fat-barrier functions. A study by Kavya et al. [162] demonstrated the utilization of pectin
sourced from passion fruit rind to produce an emulsion with varying oil content (20–40%
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oil v/v). This was carried out to investigate the transformation process from emulsion to
emulgel and its consequent impact on the structural and rheological properties. Passion
fruit rind pectin demonstrated impressive emulsifying capabilities by significantly lowering
the interfacial tension between water and oil. Furthermore, the study highlights passion
fruit rind pectin emulgel as a sustainable fat substitute for commercial use, showcasing the
potential of pectin hydrogel as a viable fat replacer. In all, the application of pectin hydrogel
as a fat replacer and emulsifier is yet to be fully explored and requires more studies for a
consistent report.

6.3. Three-Dimensionally-Printed Food

Another useful property of pectin is its gelation ability, which allows for the creation
of structured meals with certain textures and uses. This feature not only enhances sensory
characteristics but also allows for the creation of distinctive meals tailored to consumer
preferences. Pectin hydrogels are a significant combination for innovative technologies such
as 3D printing. Their structural stability makes them suitable for 3D printing applications
in food design, enabling the precise fabrication of complex shapes and customized food
products. Among the pectin types, LMP has been proposed by a few studies as a suitable
food-ink material for the 3D printing of customizable food simulants. A study by Lu
et al. [163] formulated polysaccharide-based hydrogel food inks using ionic crosslinked
LMP and cellulose nanocrystalline (CNC). LMP, characterized by its lower degree of
methoxylation, typically forms gels through electrostatic interactions with cations like Ca2+.
The formation of a polymeric network by crosslinking LMP with calcium ions contributed
to maintaining the 3D structure of the hydrogels formulated for the food ink in this study.
In another investigation conducted by Vancauwenberghe et al. [164], the adjustment of
pectin, sugar syrup, and bovine serum albumin (BSA) concentrations was explored to
manipulate the desired texture and structural properties of the printed food. The results
showed that the viscosity and mechanical properties of the printed food were primarily
influenced by pectin and sugar concentrations, while BSA enhanced the gel’s porosity.

6.4. Food Packaging

In food packaging, hydrogels are applicable due to their unique properties, such as
water retention and controlled release. They prolong the shelf life of perishables, notably
fruits and vegetables, by regulating moisture and gas exchange, reducing food waste, and
ensuring fresher products. Moreover, hydrogels can also be tailored to release antimicrobial
agents or antioxidants, enhancing food preservation and safety. Importantly, they contribute
to sustainability by reducing single-use plastics. This section summarizes their various
film- and coating-based approaches.

6.4.1. Film-Based Applications

Pectin-based films incorporated with essential oils and plant extracts, such as clove
essential oil [165], copaiba oil [166], marjoram [167], and tea polyphenols [168], have been
demonstrated to exhibit good antioxidant and antimicrobial activity while also enhancing
the film’s water barrier properties, which led to longer preservation of intended food
products. In another instance, Torpol et al. [109] successfully encapsulated antimicrobial
compounds like garlic and holy basil essential oils in chitosan-pectin hydrogel beads,
combating various pathogens. The beads demonstrated the capacity to hinder the growth
of Bacillus cereus, Clostridium perfringens, Escherichia coli, Pseudomonas fluorescens, Listeria
monocytogenes, and Staphylococcus aureus. Another finding by Nešić et al. [119] demonstrated
the promising potential of pectin-TiO2 nanocomposite aerogels as an environmentally
friendly and effective material for food packaging. These aerogels, prepared through
a sol–gel process and supercritical drying, exhibit improved mechanical, thermal, and
antimicrobial properties compared to traditional pectin aerogels. Notably, their thermal
conductivity is lower than that of air, which is a valuable attribute for temperature-sensitive
food storage. The study by Otálora González et al. [169] successfully developed functional
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composite edible films based on pectin with beetroot and red cabbage powder fillers.
These films exhibited favorable physico-chemical, mechanical, and thermal properties
and demonstrated color stability over a 30-day storage period, suggesting their potential
as smart indicators for edible food packaging applications. Another study by Dudnyk
et al. [170] developed a pectin-based sensor incorporating red cabbage as a food-derived
material, which represents an innovative and edible solution for food packaging. This
sensor operates as a colorimetric indicator of food freshness, demonstrating high sensitivity
to gaseous amines. It effectively detects degradation in various food samples, including
beef, chicken, shrimp, and fish, with colorimetric changes aligning well with standard
degradation markers. The sensor’s ability to correlate visual and measured changes
with established freshness indicators like total volatile basic nitrogen and aerobic colony
counting highlights its potential as a smart indicator for food packaging, offering both
safety and utility.

6.4.2. Coating Applications

Hydrogel coatings have the ability to protect fresh food from deterioration by pro-
viding semi-permeable barriers against harmful factors, reducing enzymatic browning
and water loss, and can be fortified with minerals, antioxidants, nutrients, vitamins, or
probiotics. A study by Muñoz-Labrador et al. [171] investigated the potential use of citrus
pectin gels applied as edible coatings for fresh strawberries. The results demonstrated that
these pectin gels effectively enhanced the quality of strawberries during storage, reducing
moisture loss, changes in acidity, and alterations in color. Furthermore, the utilization
of pectin derived from crude cacao shells as a coating for tomatoes demonstrated the
capability to postpone quality deterioration, thereby extending the shelf life of the coated
samples to 27 days at 4 ◦C [172]. This underscores the potential of pectin-based coatings to
extend the shelf life and preserve the quality of perishable food products like fresh produce
and fruits. Additionally, pectin-based coatings enriched with essential oils have been
studied to exhibit both antioxidant and antimicrobial effects. These coatings preserve food
quality and safety by preventing oxidative degradation and inhibiting microbial growth,
offering a natural and eco-friendly alternative to synthetic preservatives. Pectin-based
coatings, enriched with essential oils like oregano, rosemary, Mentha piperita, and lemon,
have demonstrated efficacy in enhancing the shelf life of various food items, including
broccoli, shrimp, and rainbow trout fillets, by mitigating the growth of spoilage microor-
ganisms [173–175]. Similarly, research by Nisar et al. [176] also highlighted the remarkable
potential of pectin-based coatings enriched with clove essential oil as potent edible coatings
for preserving bream fillets during refrigeration. These coatings, with their demonstrated
antimicrobial properties, effectively extend the shelf life of the fillets by inhibiting lipid
oxidation and suppressing bacterial growth while simultaneously improving the weight
loss, water holding capacity, and textural and color attributes of the bream samples. In
addition, research also indicates that active compounds can migrate from pectin-based
packaging, influencing sensory characteristics. For example, coating carrots with pectin
reduced the accumulation of substances such as lignin precursors and flavonoids, which
can contribute to undesirable flavors, resulting in improved overall taste and sensory
qualities of the carrots [177]. This demonstrates how pectin coatings can positively impact
the way food tastes and feels when consumed.

7. Conclusions

This comprehensive review uncovered the distinct gelling mechanisms of pectin,
classified into high-ester and low-ester pectins. High-methoxyl pectins form gels through
hydrophobic interactions and hydrogen bonding under specific conditions, while low-
methoxyl pectins create continuous gel networks through calcium-mediated “egg-box”
formations. Both types of pectin hydrogels offer unique properties with vast potential for
various food applications. The review has highlighted that pectin’s gelling behavior is
influenced by several factors, including degree of esterification (DE), molecular weight,
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acetylation, pH, ionic strength, and water activity. Understanding these factors and their
impact on gel properties is crucial for optimizing the applications of pectin hydrogel in
food design.

Furthermore, the review explored the wide array of pectin gel types, including cryo-
gels, aerogels, xerogels, and oleogels, each offering distinct characteristics with vast poten-
tial in diverse fields. Cryogels and aerogels, characterized by their high surface area and
porous structures, demonstrate considerable potential for drug delivery and wound dress-
ing applications. Xerogels, with reduced water content while retaining the 3D network, are
valuable for encapsulating and releasing bioactive compounds in food applications. On the
other hand, oleogels, formed by structuring liquid oil with pectin, serve as fat substitutes in
food items, contributing to formulations that are both healthier and nutritionally enhanced.
The review also highlighted the significant influence of processing factors, such as ionic
interactions, ionotropic gelation, filtration, and drying methods, on the properties of pectin
gels. Understanding and optimizing these factors is essential for tailoring gel properties
to specific applications and enhancing the efficiency of gel preparation techniques. How-
ever, there are still knowledge gaps, particularly in optimizing preparation methods and
functionalizing gels with nanoparticles or bioactive compounds. Interdisciplinary collabo-
rations and eco-friendly approaches are recommended to advance the field and unleash
the full potential of pectin-based gels in diverse industries, benefiting both consumers and
the environment.

In addition to pectin gel exploration, this paper also discussed the crosslinking mecha-
nisms in hydrogels, including physical, chemical, and interpenetrating polymer networks
(IPNs). Physical hydrogels are formed through non-covalent interactions and are suitable
for short-term drug release, while chemical hydrogels, formed through covalent crosslink-
ing, offer enhanced stability and control over properties for longer-term applications. IPNs
combine different polymer networks to achieve unique properties, but gaps in understand-
ing cooperative gelation mechanisms and the influence of amidation on gel properties
remain. Innovative methods, interdisciplinary collaboration, and synergy between differ-
ent hydrogel preparation techniques offer potential avenues for advancing the field and
unlocking new applications in targeted drug delivery, tissue engineering, and food design.
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