
Citation: Cheng, L.; Guo, Z.; Lin, Y.;

Wei, X.; Zhao, K.; Yang, Z. Bovine

Serum Albumin Molecularly

Imprinted Electrochemical Sensors

Modified by Carboxylated

Multi-Walled Carbon

Nanotubes/CaAlg Hydrogels. Gels

2023, 9, 673. https://doi.org/

10.3390/gels9080673

Academic Editor: Jean-François Gohy

Received: 29 June 2023

Revised: 12 August 2023

Accepted: 15 August 2023

Published: 20 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Bovine Serum Albumin Molecularly Imprinted Electrochemical
Sensors Modified by Carboxylated Multi-Walled Carbon
Nanotubes/CaAlg Hydrogels
Letian Cheng 1, Zhilong Guo 1, Yuansheng Lin 1, Xiujuan Wei 1, Kongyin Zhao 1,* and Zhengchun Yang 2

1 State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University,
Tianjin 300387, China; 2010210601@tiangong.edu.cn (L.C.); zhilong_guo@tjeminent.com (Z.G.);
2131020309@tiangong.edu.cn (Y.L.); 1710210129@tiangong.edu.cn (X.W.)

2 Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology,
Tianjin 300384, China; yangzhengchuntjut@163.com

* Correspondence: zhaokongyin@tiangong.edu.cn; Tel.: +86-022-8395055; Fax: +86-022-8395055

Abstract: In this paper, sodium alginate (NaAlg) was used as functional monomers, bovine serum
albumin (BSA) was used as template molecules, and calcium chloride (CaCl2) aqueous solution
was used as a cross-linking agent to prepare BSA molecularly imprinted carboxylated multi-wall
carbon nanotubes (CMWCNT)/CaAlg hydrogel films (MIPs) and non-imprinted hydrogel films
(NIPs). The adsorption capacity of the MIP film for BSA was 27.23 mg/g and the imprinting efficiency
was 2.73. The MIP and NIP hydrogel film were loaded on the surface of the printed electrode,
and electrochemical performance tests were carried out by electrochemical impedance spectroscopy
(EIS) and differential pulse voltammetry (DPV) using the electrochemical workstation. The loaded
MIP film and NIP film effectively improved the electrochemical signal of the bare carbon electrode.
When the pH value of the Tris HCl elution solution was 7.4, the elution time was 15 min and the
adsorption time was 15 min, and the peak currents of MIP-modified electrodes and NIP-modified
electrodes reached their maximum values. There was a specific interaction between MIP-modified
electrodes and BSA, exhibiting specific recognition for BSA. In addition, the MIP-modified electrodes
had good anti-interference, reusability, stability, and reproducibility. The detection limit (LOD) was
5.6 × 10−6 mg mL−1.

Keywords: calcium alginate hydrogel; protein molecular imprinting; electrochemical sensor;
carboxylated multi-walled carbon nanotubes

1. Introduction

Materials that specifically recognize proteins have a wide range of promising applica-
tions in the fields of biosensing [1], diagnostic analysis [2], proteomics [3], and controlled
drug release [4]. Although natural antibodies were widely used, they suffered from high
production costs, being time-consuming, and having poor stability and reproducibility [5,6].
Molecular imprinting technology is a technique to prepare polymers (molecular imprint-
ing polymers, MIPs) with specific recognition properties for target molecules (template
molecules), which combines the affinity and specificity of antibodies with the durability of
synthetic materials [7,8]. However, relative to the blotting of small molecule templates, the
imprinting of protein molecules encounters great challenges because proteins are variable
in structure, large in size, and contain a large number of active functional groups, making
it difficult to obtain the precise pore and binding sites [9,10]. MIPs with precise recognition
of pores [11] and binding sites by proteins must simultaneously satisfy the following two
conditions: (1) the conformation of the protein is maintained during the self-assembly and
polymerization reaction of the protein and monomer [12] and (2) the protein is sufficiently
removed from the polymer without destroying the structure of the imprinted pores [13].
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However, monomers commonly used in the literature such as acrylamide, methacrylic
acid, and acrylic acid disrupted the structure of proteins [14]. Taking bovine serum al-
bumin (BSA), the most used template for protein molecular blotting, as an example, the
secondary structure of BSA was significantly changed, even with a 200:1 molar ratio of
AM to BSA, such that a 350:1 ratio resulted in a 50% reduction in α-helix content. Because
small molecules of functional monomers easily penetrate inside the protein and break
the hydrogen bonds that maintain a stable protein structure, the molar ratio of functional
monomers to protein in the preparation of MIP usually exceeds 1000:1. So, it obtained
the imprinted pore of the protein after structural alteration or even denaturation [14].
Qian et al. proposed a method to imprint proteins using macromolecular monomers [15].
The results of circular dichroism and simultaneous fluorescence spectroscopy showed that
macromolecular monomers stabilized the structure of proteins, and the obtained MIPs
had higher imprinting efficiency and recognition ability than those prepared from small
molecular monomers [15].

The use of surface imprinting facilitated the elution and recombination of proteins.
Liu et al. prepared glycoprotein molecularly imprinted polymers conveniently and ef-
ficiently by controlled directed surface imprinting [16]. Zhang et al. prepared the heat-
sensitive surface-imprinted nanoparticles that could specifically capture and release tar-
geted proteins from human plasma [17]. Using polydopamine-like mussel mucin materials,
Qin et al. constructed surface molecularly imprinted polymer-based sensors to achieve
highly sensitive and selective rapid detection of proteins [18]. Shi et al. deposited template
proteins adsorbed on mica sheets [19], and then disaccharides were encapsulated on the
adsorbed protein surface. They used epoxy resin to immobilize the film. Finally, the mica
sheet was peeled off, leaving pores complementary to the template. Surface imprinting tech-
nology had become the main strategy for macromolecular imprinting, which was especially
suitable for the field of sensors. Protein molecularly imprinted electrochemical sensors had
the advantages of good selectivity, high sensitivity, a low detection limit, reusability, and
easy preparation [20].

Our group prepared a series of protein molecularly imprinted hydrogels using sodium
alginate as a macromolecular monomer, which adequately maintained the conformation
of proteins [21]. However, the calcium alginate (CaAlg) hydrogels had low strength,
thus making it difficult to maintain the imprinted pores. Double network hydrogels
containing chemically cross-linked and physically cross-linked structures, such as poly-
acrylamide/calcium alginate hydrogels, have both high strength and toughness [22]. Our
group prepared BSA-imprinted polyacrylamide/calcium alginate hydrogel films with good
recognition selectivity for template proteins, even when the cross-linking agent was six
parts per million of the monomer mass [23]. However, the calcium ions in the hydro-
gel were easily replaced by monovalent cations, leading to swelling and disrupting the
structure of the imprinted pores. In this paper, bovine serum albumin (BSA) was used
as the template molecule; carboxylated multi-walled carbon nanotubes (CMWCNTs) and
sodium alginate (NaAlg) were co-dissolved in water and cross-linked by calcium ions to
prepare BSA molecularly imprinted CMWCNT/CaAlg hydrogel films. The BSA molec-
ularly imprinted carboxylated multi-walled carbon nanotube/CaAlg hydrogel film was
modified onto the screen-printed carbon electrode surface to make a molecularly imprinted
electrochemical sensor, which specifically adsorbed and recognized BSA molecules through
the electrochemical workstation output signal.

2. Results and Discussion
2.1. Characterizations of BSA Molecularly Imprinted CMWCNT/CaAlg Hydrogel Films

Figure 1 shows the SEM images of the CaAlg hydrogel film and the BSA-imprinted
CMWCNT/CaAlg hydrogel film without eluting and after eluting. As shown in Figure 1,
the surface of the CaAlg hydrogel film was relatively smooth. The surface of the uneluted
CMWCNT/CaAlg hydrogel film was smoother than the eluted hydrogel film. The main
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reason was that when the template protein BSA was removed from the MIP hydrogel film,
the imprinted holes were left, which increased the surface roughness of the hydrogel film.
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Figure 1. SEM images of the CaAlg hydrogel film (a), the BSA-imprinted CMWCNT/CaAlg hydrogel
film without eluting (b), and the BSA-imprinted CMWCNT/CaAlg hydrogel film after eluting (c).

Figure 2 shows the swelling rate of the CMWCNT/CaAlg hydrogel film in normal
saline at different times and the equilibrium swelling rate of the films with different
CMWCNT contents. As shown in Figure 2a, the swelling rate of all the samples exhibited
a pattern of first increasing and then flattening. The swelling rate increased significantly
within 60 min. With the increase in the content of CMWCNT, the anti-swelling performance
of the CMWCNT/CaAlg hydrogel significantly improved. In Figure 2b, it can be seen that
the higher the content of CMWCNT, the lower the equilibrium swelling rate. The addition
of CMWCNT can effectively enhance the anti-swelling performance of the CaAlg [24].
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Figure 2. The swelling rate of the CMWCNT/CaAlg hydrogel film in normal saline (0.9 wt.% NaCl)
at different times (a) and the equilibrium swelling rate of the films with different CMWCNT contents
(2 h) (b).

2.2. Mechanical Properties of BSA Molecularly Imprinted CMWCNT/CaAlg Hydrogel Films

As shown in Figure 3, the addition of a small amount of CMWCNT significantly
improved the mechanical properties of the CaAlg hydrogel film. Figure 3a shows the
stress–strain curves of BSA molecularly imprinted CMWCNT/CaAlg hydrogel films with
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different CMWCNT contents. The tensile strength of the CMWCNT/CaAlg hydrogel film
was higher than the CaAlg film. When the CMWCNT content in NaAlg was 2 wt.%, the
maximal tensile strength reached a value of 1440 Kpa. The formation of the Ca2+ cross-
linking synchronously with the COO of CMWCNT and the COO of NaAlg increased the
cross-linking density and improved the strength of the CMWCNT/CaAlg hydrogel film.
The interactions between CMWCNT and NaAlg were investigated by molecular dynamic
(MD) simulation in another paper we published [24].
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Figure 3. The mechanical properties of BSA molecularly imprinted CMWCNT/CaAlg hydrogel
films with different CMWCNT contents. The stress–strain curves of BSA molecularly imprinted
CMWCNT/CaAlg hydrogel films with different CMWCNT contents (a); the relationship curves
between fracture energy (b), elastic modulus (c), critical stretch (d) and CMWCNT content.

When the content of the CMWCNT was 2 wt.% of NaNAlg, the mechanical properties
of the CaAlg hydrogel film were best. At this time, the dispersion of the CMWCNT in
the CaAlg matrix had reached saturation. The dispersion effect of the CMWCNT was
improved after carboxylation modification, but the improvement was limited. When the
content of the CMWCNT exceeded 2 wt.%, the CMWCNT would agglomerate, reducing
the mechanical properties of the CaAlg hydrogel film.

2.3. Adsorption Properties of BSA Molecularly Imprinted CMWCNT/CaAlg Hydrogel Films

Figure 4 shows the effect of elution time on the adsorption properties of MIP and NIP.
As shown in Figure 4, the longer the elution time, the cleaner the protein was eluted. As the
elution time increased, the BSA adsorption capacity of both MIP and NIP films increased.
When the elution time reached 300 min, the adsorption capacity of the MIP and NIP film
was 27.23 and 10.04 mg/g, respectively. When the elution time was greater than 300 min,
both the adsorption capacity and the imprinting efficiency reached an equilibrium state,
and the imprinting efficiency was 2.73.
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Figure 4. The effect of elution time on the adsorption of MIP and NIP film. The relationship between
adsorption capacity and the elution time (a), the imprinting efficiency, and the elution time (b).

The pH value of the protein elution solution also had a significant impact on the
adsorption performance. Figure 5 shows the adsorption capacity of BSA on MIP and NIP
films after elution with different pH eluents. As shown in Figure 5, the optimal pH of Tris
HCl eluent was 7.4. When the pH of the eluent was less than 7.4, the template protein was
not completely eluted, resulting in a decrease in the imprinted pores and a lower adsorption
capacity. However, when the pH of the eluent exceeded 7.4, the eluent would destroy the
structure of imprinted holes in the CMWCNT/CaAlg film, leading to a decrease in the
adsorption capacity of the MIP film. These results were consistent with the results of our
previously published papers [20].
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2.4. Effect of Alginate on BSA Conformational

The macromolecular monomer sodium alginate was used for the preparation of MIP
in this paper, and sodium alginate did not cause the denaturation of BSA. For further
analysis, the change in BSA secondary structure was studied by circular dichroism (CD)
spectroscopy [25]. The CD spectra of pure BSA and BSA eluted with Tris HCl solution
are shown in Figure 6. As reported in the literature [26–28], the CD spectrum of pure BSA
exhibited two negative elliptical peaks (curve a) in the far ultraviolet region at 208 nm and
222 nm, which were the characteristics of α-spiral structures of BSA. After elution with Tris
HCl solution at pH = 7.4, the intensity of BSA slightly decreased at 208 and 222 nm [29], but
its CD spectral curve did not show significant changes compared to pure BSA, indicating
that the BSA secondary structure was not changed during the elution process. It was also
verified that the structure of BSA was not damaged during the preparation process.
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2.5. Electrochemical Characterization of Different Electrode Surfaces

Figure 7a shows the electrochemical impedance spectroscopy (EIS), where all four
curves were composed of semicircles and straight lines. The semicircle diameter represented
the electron transfer resistance. The smaller the diameter, the smaller the resistance was.
The linear line represented the diffusion-limited part. Compared with the bare carbon
electrode, the resistance of electron transfer of the pure CaAlg-modified electrode increased,
which was due to the fact that the loaded CaAlg hydrogel blocks the electron transfer on the
electrode surface. The resistance of the hydrogel-modified electrode with CMWCNT was
relatively reduced because the carboxylated multi-wall carbon nanotubes contained in the
film had good conductivity and increased the electron transfer ability. The electron transfer
resistance of the MIP-modified electrode after elution was higher than the MIP-modified
electrode without elution, which proved the existence of imprinted holes. Figure 7b shows
the differential pulse voltammetry (DPV) curves. Compared to other electrodes, the BSA
eluted electrode had the highest peak current value. The peak current value of the MIP-
modified electrode after elution was higher than the MIP-modified electrode without
elution, indicating that the imprinted pores were left after removing the template protein
through elution. The imprinted pores provided more channels for [Fe(CN)6]3− to diffuse
to the surface of the MIP-modified electrode.
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2.6. Effect of Eluent Times, Adsorption Times, and Eluent pH on DPV Response Currents of the
MIP-Modified Electrodes

The BSA template was removed from the CMWCNT/CaAlg film in Tris HCl eluate
with pH = 7.4, and the effect of elution time on the DPV response currents of MIP-modified
electrodes was investigated. As shown in Figure 8, when the elution time increased, the
peak current value showed a trend of first increasing and then flattening. After 15 min of
elution, the peak current gradually stabilized, indicating that BSA had been completely
eluted at this time. A shorter elution time could ensure the activity of the electrode, and a
15 min elution time was selected. Compared to the MIP film in Figure 5, the elution time of
the MIP film modified on the electrode was much shorter because the CMWCNT/CaAlg
film on the screen-printed electrode was very thin, with only a few microns. Therefore,
BSA could rapidly release from the CMWCNT/CaAlg film-modified electrode in Tris HCl
eluate with pH = 7.4 [30].
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As shown in Figure 9, when the adsorption time was 0 and no BSA was adsorbed, the
peak current value was the highest, with a value of about 0.22 mA. At this time, there was
no protein adsorption on the MIP film, and the imprinted pores were used as the electron
transfer channels on the electrode. When the adsorption time gradually increased, the
peak current value showed a trend of first decreasing and then flattening. The reason was
that the template protein entered the imprinted pores on the MIP film and recombined
with the imprinting sites, thereby reducing the electron transfer channels on the electrode
and weakening the electrochemical signal. After adsorption for 15 min, the peak current
value did not change significantly with the change in adsorption time. It indicated that
the adsorption of BSA on MIP-modified electrodes had reached equilibrium, so the 15 min
adsorption time was better and was selected.

As shown in Figure 10, when the pH value of the eluent increased, the peak current
showed a trend of first increasing and then decreasing. When pH < 7.4, as the pH value of
the eluent increased, the peak current also increased accordingly. When pH > 7.4, as the
pH value of the eluent increased, the peak current value did not increase but decreased.
When the pH value was higher than 7.4 and continued to increase, the peak current value
of the MIP-modified electrode decreased, because the pH value was too high and the
CMWCNT/CaAlg hydrogel film loaded on the electrode surface swelled too much, thus
affecting the electrochemical response of the MIP-modified electrode. On the other hand,
the change in pH value had almost no effect on the peak current values of NIP-modified
electrodes, and the peak current values remained around 0.04 mA. The reason was that the
NIP film had no imprinted pores, and after elution with the eluent, the surface and interior
of the CMWCNT/CaAlg film did not produce imprinted pores that match the template
molecules, which had little impact on the electrochemical signal. When the pH value was
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7.4, the peak current value was relatively high, indicating that the conditions for eluting
template proteins at this pH were relatively mild and could effectively protect the stability
of imprinted holes in the MIP film.
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2.7. Selective Detection and Imprinting Efficiency of the MIP- and NIP-Modified Electrodes

The results of the selective detection of BSA by MIP-modified electrodes and NIP-
modified electrodes were shown in Figure 11. In this experiment, bovine hemoglobin
(BHb), ovalbumin (OVA), and lysozyme (Lys) were selected for comparison proteins. In
Figure 11 it could be found that after the MIP-modified electrode was combined with BSA,
its current change value (∆I) was significantly higher than other proteins. When the protein
was BSA, the BSA could enter the imprinted pores and recombine with the polymer. When
the adsorbed protein was not BSA, the protein could not enter the imprinted pores, and
its structure, size and shape were significantly different from BSA. Comparing the peak
current values of NIP-modified electrodes with other proteins, it is found that there was
no significant difference, which was mainly due to the absence of imprinted pores in the
NIP-modified electrodes.
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To further validate its selectivity, the imprinting efficiency (IF = ∆IMIPs/∆INIPs) of vari-
ous proteins was calculated [31]. Among them, ∆IMIPs and ∆INIPs referred to the response
current changes generated by MIP-modified electrodes and NIP-modified electrodes after
protein adsorption. As shown in the figure, the IF value of BSA was much higher than
other substances, which fully demonstrated the good specificity recognition ability of
MIP-modified electrodes for BSA.

2.8. Reusability, Stability, and Reproducibility of MIP-Modified Electrodes for BSA Detection

Selectivity is a significant indicator to evaluate the success of MIP electrochemical
sensor preparation. As shown in Figure 12a, the peak current value of DPV was obtained
from the same MIP electrochemical sensor. It is found that the DPV peak current values
measured after five elutions and re-adsorption remain around 0.2 mA, indicating that the
MIP-modified electrode has good reusability.
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In Figure 12b, it can be seen that there was no significant change in the electrochemical
response of the coating after 12 days, and the coating still maintained an electrochemical
response of about 80% after 30 days, indicating that the MIP-modified electrode had good
stability because carboxylated multi-walled carbon nanotubes can improve the structural
stability of the electrode and fix imprinted pores.

Figure 12c shows the peak current values of DPV obtained after eluting template
molecules with six different MIP-modified electrodes. It can be seen that the DPV peak
current values of six different MIP-modified electrodes remain around 0.2 mA. After
calculation, the relative standard deviation between different MIP-modified electrodes was
about 4.3%, indicating that the MIP-modified electrodes have good reproducibility.

2.9. Linear Range, Detection Limit of the Sensor, and Comparison with Other Materials

The main parameters of this sensor were described and addressed, e.g., sensitivity
and detection limit. As shown in Figure S1, the favorable linear relationship between
BSA concentration and peak current value is in the range of 5.6 × 10−6 mg mL−1 to
1.2 × 10−3 mg mL−1, with the linear equation ∆I (µ A) = 0.94CBSA + 4.21. The linear
correlation coefficient R2 was 0.998 and the detection limit (LOD) was 5.6 × 10−6 mg mL−1

(S/N = 3).
A brief comparison study between the results of previous works is in Table 1. It was

found that the MIP electrochemical sensor prepared in this work has higher sensitivity and
lower detection limits compared with previous reports.

Table 1. Comparison of the performance of the MIP sensors in this work with other materials.

Materials Linear Range (mg mL−1) Detection Limit
(mg mL−1) References

MIP microspheres 1.0 × 10−5–5.0 × 10−3 1.5 × 10−6 [32]
MIP/Cd Te quantum dots 3.3 × 10−2–0.66 1.0 × 10−3 [33]

Carbon dot 2.0 × 10−2–0.1 8.5 × 10−4 [34]
CaAlg/CMWCNT

hydrogel MIP 1.0 × 10−6–1.15 × 10−3 5.6 × 10−6 This method

3. Conclusions

In this study, CMWCNT was introduced into the CaAlg hydrogel to form a composite
hydrogel. The mechanical and anti-swelling properties of the CaAlg hydrogel were im-
proved. The BSA imprinted CMWCNT/CaAlg hydrogel (MIP) film and non-imprinted
CMWCNT/CaAlg hydrogel (NIP) film were prepared. The adsorption capacity of the
MIP film for BSA was 27.23 mg/g, and the imprinting efficiency reached 2.73. The MIP
and NIP hydrogel films were loaded on the surface of the printed electrode to prepare
the electrochemical sensor, and electrochemical performance tests were carried out. There
was a specific interaction between MIP-modified electrodes and BSA, exhibiting specific
recognition for BSA. The MIP-modified electrodes had good anti-interference, reusability,
stability, and reproducibility. The detection limit (LOD) was 5.6 × 10−6 mg mL−1, with a
detection range of 5.6 × 10−6 mg mL−1 to 1.2 × 10−3 mg mL−1. In addition, the preparation
and research method of the electrochemical sensor was simple and used non-toxic and
harmless substances, which was convenient for large-scale production.

4. Materials and Methods
4.1. Materials

The Supplementary Information contains descriptions of the materials.

4.2. Preparation of BSA Molecularly Imprinted CMWCNT/CaAlg Hydrogel Films

Different concentrations of CMWCNT (0%, 0.5%, 1%, 2%, 3%) were added to each
beaker, along with 20 mL of deionized water. To achieve uniform distribution of the
CMWCNT in the solution, the beakers were subjected to ultrasonic cleaning for 30–40 min.
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Next, we added 0.02 g of BSA and 0.52 g of NaAlg to each beaker and stirred the mixture
until it reached a homogeneous consistency. The resulting cast solution was then refriger-
ated to facilitate defoaming. To create the gel film, we used a glass rod with copper wires
of varying diameters (0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm) to scrape the solution onto a glass
plate. Following the scraping process, the film was cross-linked in a 2.5 wt.% CaCl2 solu-
tion for 5 min. Subsequently, the gel film was carefully detached from the glass plate and
transferred to a container filled with 2.5 wt.% CaCl2 solution, where it underwent further
cross-linking for a duration of 4 h. This process led to the formation of BSA molecules
within the CMWCNT-doped calcium alginate hydrogel films, referred to as MIPs. The
preparation of NIP hydrogel films followed a similar procedure to the BSA molecularly
imprinted CMWCNT/CaAlg hydrogel films (MIPs), with the exception that BSA, which
was not added.

4.3. Preparation of BSA Molecularly Imprinted CMWCNT/CaAlg Hydrogel-Modified
Electrochemical Sensors

Figure 13 illustrates the experimental procedure for preparing the bare carbon elec-
trode for modification. The electrode underwent a thorough cleansing process, involving
washing with distilled water to remove impurities. Subsequently, the electrode was placed
in a glass dish and soaked in ethanol for 1 h to further eliminate surface contaminants.
Following the ethanol treatment, a 5% volume ratio of KH550 silane, containing amino
active groups, was added to the glass dish, enabling the activation of the electrode surface
through chemical couplings with the highly nucleophilic amine system present in the
substrate. The soaked bare carbon electrodes were then dried in the bake oven and set
aside, where it was observed that the hydrogel adhered effectively to the electrode surface.
To complete the modification process, the MIP-modified electrode was cross-linked in a
2.5 wt.% CaCl2 aqueous solution for 4 h. Afterward, the BSA was eluted from the electrode
using Tris-HCl solution, resulting in the formation of the MIP-modified electrode. For
preservation and future testing, it was crucial to store the prepared electrodes in a 2.5 wt.%
CaCl2 aqueous solution.
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Figure 13. Schematic diagram of the preparation process of a BSA molecularly imprinted
CMWCNT/CaAlg hydrogel-modified electrochemical sensor.

4.4. Characterizations

The CaAlg, BSA molecularly imprinted CMWCNT/CaAlg (MIP) hydrogel film and
NIP film were characterized by a scanning electron micrograph (SEM) and Fourier-transform
infrared spectroscopy (FT-IR). The conformation changes of the BSA solution and after
elution were characterized by a circular dichromatic spectrum (CD).
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The swelling and mechanical properties of BSA molecularly imprinted CMWCNT/CaAlg
hydrogel films were tested.

The adsorption properties of BSA molecularly imprinted CMWCNT/CaAlg hydrogel
films were tested according to the literature [20,22].

The Supplementary Materials contain detailed information on characterizations and
measurements.

4.5. Electrochemical Testing

The samples were tested electrochemically using an electrochemical workstation
(LANlIKE). The MIP film or NIP film-modified electrode was used as the working electrode,
a platinum sheet as the auxiliary electrode, and a bare carbon electrode as the reference
electrode. Finally, the bottoms of the three electrodes were immersed in the prepared buffer
solution (deionized water: 150 mL, potassium ferricyanide: 0.049 g, potassium ferricyanide:
0.063 g, potassium chloride: 4.473 g), and the tops of the three electrodes were connected
to the test apparatus for electrochemical experiments. The differential pulse voltammetry
(DPV) experiment was carried out at a scanning rate of 100 mV/s within the potential
range of −0.3 V~0.3 V. The pulse amplitude is 50 mV, the pulse width is 50 ms, the pulse
period is 0.2 s, and the potential increment is 4 mV.

Solubilization properties of the BSA molecularly imprinted CMWCNT/CaAlg hydro-
gel film-modified electrochemical sensor were tested, and detailed information is in the
Supplementary Materials.

The linear range and detection limit of the BSA molecularly imprinted sensor were
tested according to the literature [32,33].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/gels9080673/s1, Figure S1: Calibration plot between DPV peak current
and BSA concentration for the MIP electrode.
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Abbreviations

NaAlg sodium alginate
BSA bovine serum albumin
CMWCNT carboxylated multi-wall carbon nanotube
CaAlg calcium alginate
MIP molecularly imprinted polymer
NIP non-imprinted polymer
EIS electrochemical impedance spectroscopy
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DPV differential pulse voltammetry
CD circular dichroism
Tris three (hydroxymethyl) aminomethane
BHb bovine hemoglobin
OVA ovalbumin
Lys lysozyme
IF imprinting efficiency
∆I current change value
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