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Abstract: Millions of tons of wool waste are produced yearly by textile industries, which may become
a serious environmental hazard in the near future. Given this concern, it is crucial to explore strategies
to reduce the amount of wool waste generated worldwide and adopt more sustainable practices for
dissolving and regenerating wool keratin (WK) from textile waste. Most traditional methods involve
the use of expensive, toxic, harmful, and poorly biodegradable compounds. To overcome these
limitations and facilitate the reuse of wool waste through a cascade valorization strategy, researchers
have started testing the use of deep eutectic solvents (DES) as a more sustainable and eco-friendly
alternative for WK dissolution and regeneration. In this study, the potential of two different DES
mixtures, Choline chloride (ChCl): Urea and L-Cysteine (L-Cys): Lactic acid (LA), was explored
for dissolving wool waste. Subsequently, the gels obtained based on DES-WK were blended with
polyvinyl alcohol (PVA) in different ratios to produce nanofibers using the electrospinning technique.
The PVA/L-Cys: LA DES-WK proved to be the most effective DES mixture for fabricating WK
gel-based nanofibers. Furthermore, their antioxidant and antimicrobial abilities were evaluated, thus
confirming their bioactivity. The results obtained revealed that this approach to valorizing textile
waste offers a unique avenue for the development of sustainable functional materials with potential
applications in various biomedical and industrial fields.

Keywords: wool waste; wool keratin; deep eutectic solvent; electrospinning; gel-based nanofibers;
waste valorization

1. Introduction

Keratin is one of the most abundant and underexploited fibrous proteins found in
the epidermis of vertebrates, as well as in some epidermal appendages such as nails, hair,
fur, hooves, feathers, wool, and horns [1,2]. Additionally, keratin is present in numerous
wastes produced by the textile and poultry industries, as well as slaughterhouses, that are
considered environmental pollutants and which pose a serious threat to human health and
the natural ecosystem [1,3,4]. In this context, it is crucial to convert the keratin present in
these wastes into high-value-added products such as biomaterials, composite materials,
films, reinforcements, fertilizers, absorbents, and cosmetics [2–4]. Moreover, these bio-based
products are viewed as more economically sustainable and environmentally friendly due
to their renewable nature, biocompatibility, and biodegradability. As a result, researchers
are focused on reusing and dissolving these wastes [2,3].

Recycling the millions of tons of wool waste produced annually by the textile indus-
tries has become a significant research challenge [3,4]. Wool keratin (WK) is insoluble and
resistant to the most common solvents due to the presence of strong intra- and intermolec-
ular disulfide bonds, hydrogen bonds, and van der Waals forces, making its dissolution
and regeneration difficult [1–3,5,6]. Therefore, various approaches capable of cleaving
the disulfide and hydrogen bonds, such as oxidation, reduction, acid–alkali, sulfitolysis
methods, enzymatic hydrolysis, and the use of ionic liquids, have been explored to extract
WK from wool wastes [1–3,6]. However, many of these methods have issues related to
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time consumption, high temperatures, and rigorous reaction conditions, and some involve
expensive, toxic, harmful, and poorly biodegradable compounds [2,3]. Consequently, in
recent years, green dissolution methods have been proposed. Among them, the use of
deep eutectic solvents (DESs) is gaining attention for the dissolution and regeneration of
WK from wool waste due to their good biocompatibility, biodegradability, non-toxicity,
easy availability, and low price [3,4]. Deep eutectic solvents (DESs) are mixtures of two
or more compounds that act as either hydrogen bond acceptors (HBA) or hydrogen bond
donors (HBD). These solvents have significantly lower melting points than their individual
components, enabling reactions to occur at lower temperatures and establishing hydrogen
and van der Waals bonds with the wool structure [2–5]. Various types of DES have been
investigated for transforming wool waste and regenerating WK.

For example, Moore et al. utilized Choline chloride (ChCl): Urea DES at a molar ratio
of 2:1 to obtain DES-WK. The dissolution of WK was carried out at 170 ◦C for 30 min with
stirring [7]. Similarly, Jiang et al. employed ChCl: Urea DES in a 1:2 molar ratio to dissolve
wool fibers at 130 ◦C for 5 h and regenerate WK [3]. In another study, Wang et al. tested
ChCl: Oxalic acid (OA) DES at a molar ratio of 1:2 for WK dissolution. The results showed
that DES-WK exhibited higher solubility when a 5.0% weight ratio of wool to DES was
used at 110–125 ◦C for 2 h [4]. Additionally, Okoro et al. recently used a mixture of 1.6 g
L-Cysteine (L-Cys) and 20 mL lactic acid (LA) to solubilize wool waste. The effectiveness
of L-Cys: LA DES in WK recovery from wool waste was confirmed without affecting its
structure [2]. However, these studies focused solely on the dissolution and regeneration
of WK using DES, emphasizing the need to develop strategies for reusing this sustainable
biopolymer to achieve high-value materials.

In this study, WK was initially dissolved in two different DES mixtures, specifically,
L-Cys: LA and ChCl: Urea DES mixtures. Subsequently, the resulting gels based on
DES-WK were electrospun into nanofibers. Electrospinning is considered one of the most
versatile, simple, rapid, flexible, and cost-effective techniques for producing functional mi-
cro/nanofiber materials for a wide range of applications [8–10]. However, the preparation
of electrospinning solutions often involves the use of organic solvents that are harmful
to human health and the environment, and generally display a highly volatile behavior,
which impairs the adjust the evaporation rate of the solution and results in the drying of
the jet at the needle tip during their flight towards the collector, before the deposition in
collector as solid nanofibers [11–13]. Green solvents like DESs offer a potential alterna-
tive for electrospinning to overcome the drawbacks associated with traditional solvents,
namely due to their non-toxic and non-volatile nature. Additionally, biopolymers such as
WK are often challenging to electrospun on their own, and require blending with other
polymers [14–18]. Among these polymers, Polyvinyl Alcohol (PVA) has been extensively
investigated for producing nanofibrous materials due to its biocompatibility, biodegradabil-
ity, non-toxicity, enhanced fiber-forming ability, and excellent solubility in benign solvents
such as water [19,20]. Therefore, to the best of our knowledge, this study represents the
first successful blending of PVA with different weight ratios of gels based on DES-WK for
electrospinning into nanofibrous membranes, aiming to valorize wool waste.

2. Results and Discussion
2.1. Dissolution of WK into DES Mixtures

The wool waste was placed in contact with two different DES mixtures, i.e., ChCl:Urea
molar ratio 1:2 and 1.6 g L-Cys in 20 mL of LA, and dissolved at 130 ◦C for 3 h, respectively,
in order to evaluate the influence of the composition of the DES system on the dissolution
of the WK. In this regard, it can be seen in Table 1 that 1.6 g L-Cys in 20 mL of LA displayed
a higher WK dissolution efficiency, reaching a solubility of 68.83 ± 5.10% at 130 ◦C, whereas
for ChCl:Urea in a molar ratio of 1:2, a solubility of 42.88 ± 0.83% was reached at 130 ◦C.
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Table 1. Solubility of wool keratin (WK) in the DES mixtures.

DES Mixture Time (h) T (◦C) Solubility (%)

ChCl:Urea molar ratio 1:2 3 130 42.88 ± 0.83
1.6 g L-Cys in 20 mL LA 3 130 68.83 ± 5.10

Previous studies have reported that both DES mixtures are able to dissolve wool and
regenerate keratin from wool waste. In particular, Okoro et al. reported with respect to the
L-Cys:LA DES that the use of the LA affected the bonds in the wool, forming hydrogen
bonds with peptides and other wool functional groups [2]. These new hydrogen bonds
allowed the L-Cys to easily penetrate and cleave the disulphide bonds, consequently
promoting the formation of thiolate anions, which can promote further cleavage of the
disulphide bonds in keratin chains, thus leading to higher wool solubilization. In turn,
Jiang et al. revealed the potential to dissolve and regenerate WK using the ChCl:Urea DES
by cleavage of disulfide bonds among amino acid side chains [3]. In addition, ChCl, a rich
hydrogen bond acceptor, has been used to break intermolecular or intramolecular hydrogen
bonds. Therefore, both DES mixtures have been demonstrated to be able to successfully
dissolve WK, although the solubility of the wool waste can be significantly influenced by
several factors, like the molar ratio of hydrogen bond acceptor and donor in DES system,
the dissolution time, and the temperature range.

2.2. Determination of the Antibacterial Activity of the DES Mixtures and the Gels Based on
DES-WK

In our study, the lowest concentration of DES mixtures for preventing bacterial growth
was defined as the minimal inhibitory concentration (MIC). The ChCl:Urea DES presented
MIC values of 250 µL/mL for S. aureus and K. pneumoniae, corresponding to a 1:4 dilution;
Figure 1a. In addition, it was found that the gel based on ChCl:Urea DES-WK exhibited a
slightly higher antimicrobial activity, displaying MIC values of 125 µL/mL against S. aureus
and K. pneumoniae, corresponding to a 1:8 dilution; Figure 1a. In turn, conclusive results
were not obtained for the L-Cys:LA DES, since the blue-purple resazurin color changed to a
colorless and/or orange/yellowish hue (Figure 1b), due to the resazurin chemical structural
changes at different pH levels [21]. Ezati et al. reported that resorufin forms the caproyl
ester group in acidic conditions, a colorless and non-fluorescent hexanoyl resorufin [21].
Moreover, Labadie et al. described that resorufin has an intense red fluorescence at neutral
pH, while a yellow fluorescence is observed at pH below 6.6 [22]. Therefore, the resazurin
reduction-based technique for detecting bacterial growth exhibited technical limitations
related to the discoloration/color change in resorufin under acidic conditions due to the
presence of LA in the DES mixture. However, both DES and the gels based on DES-WK
dissolved exhibit recognized antimicrobial properties, as can be seen below in Section 2.4.5.
Additionally, researchers have previously highlighted that DESs generally exhibit a higher
antimicrobial activity than their individual components [23]. In addition, ChCl-based
DESs have demonstrated broad-spectrum antibacterial properties, while L-Cys and LA are
known to have antimicrobial activity [24–26].

However, DESs, as a new generation of green solvents, have attracted research atten-
tion due to their unique characteristics, which include lower toxicity, as well as biodegrad-
ability, environmental safety, and intrinsic bioactive properties [27,28].



Gels 2023, 9, 661 4 of 18
Gels 2023, 9, x FOR PEER REVIEW 4 of 22 
 

 

Figure 1. Determination of the minimum inhibitory concentration (MIC) of the ChCl:Urea DES and 
ChCl:Urea DES-WK (a); L-Cys:LA DES and L-Cys:LA DES-WK (b) against Staphylococcus aureus (S. 
aureus) and Klebsiella pneumoniae (K. pneumoniae), determined by resazurin-based 96well plate 
microdilution assay. 

However, DESs, as a new generation of green solvents, have attracted research 
attention due to their unique characteristics, which include lower toxicity, as well as 
biodegradability, environmental safety, and intrinsic bioactive properties [27,28]. 

2.3. Evaluation of the pH and the Electrospinning Solution Properties 
2.3.1. pH 

The properties of the electrospinning solutions, such as the electrical conductivity 
and the viscosity, can be influenced by the pH value [29]. In this regard, the pH of the 
PVA solution, the DES mixtures, and the PVA/DES-WK weight ratios of 95/5, 90/10, 80/20, 
and 70/30 were measured and recorded (Figure 2). The L-Cys:LA DES exhibited a pH 
value of 2.22 ± 0.17, while the PVA solution displayed a pH value of 5.74 ± 0.12, which is 
in agreement with the pH values reported in the literature for this polymer [30]. However, 
when the gel based on L-Cys:LA DES-WK was blended with the PVA in different ratios there 
was a slight increase in pH values compared to the L-Cys:LA DES mixture, Figure 2a. 

Figure 1. Determination of the minimum inhibitory concentration (MIC) of the ChCl:Urea DES and
ChCl:Urea DES-WK (a); L-Cys:LA DES and L-Cys:LA DES-WK (b) against Staphylococcus aureus
(S. aureus) and Klebsiella pneumoniae (K. pneumoniae), determined by resazurin-based 96well plate
microdilution assay.

2.3. Evaluation of the pH and the Electrospinning Solution Properties
2.3.1. pH

The properties of the electrospinning solutions, such as the electrical conductivity and
the viscosity, can be influenced by the pH value [29]. In this regard, the pH of the PVA
solution, the DES mixtures, and the PVA/DES-WK weight ratios of 95/5, 90/10, 80/20,
and 70/30 were measured and recorded (Figure 2). The L-Cys:LA DES exhibited a pH
value of 2.22 ± 0.17, while the PVA solution displayed a pH value of 5.74 ± 0.12, which is
in agreement with the pH values reported in the literature for this polymer [30]. However,
when the gel based on L-Cys:LA DES-WK was blended with the PVA in different ratios
there was a slight increase in pH values compared to the L-Cys:LA DES mixture, Figure 2a.

In turn, the ChCl:Urea DES revealed a high pH of 10.92 ± 0.08, which resulted in an
increase in the pH values of the PVA/ChCl:Urea DES-WK blend gel solutions relative to
the PVA, Figure 2b.

Therefore, the effect of the pH on the electrical conductivity and viscosity of the
electrospinning solutions, and consequently, on the production and the morphology of the
electrospun nanofibers, is investigated in the following sections of this scientific paper.
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WK mixtures.

2.3.2. Electrical Conductivity

In the electrospinning process, a charged jet is ejected when the electrostatic repulsion
forces, associated with an increase in the high voltage applied, overcome the surface tension
of the electrospinning solution. At this moment, a liquid droplet is elongated into a conical
shape forming a Taylor cone-jet, which is mainly controlled by the Coulombic force between
the charges and the electric field [31–33]. Thus, these forces arise due to the surface charge
on the jet and change according to the conductivity of the solution. As a result, the jet
carries more charge as the electrical conductivity of the solution rises, and consequently, it is
subjected to a greater elongation, resulting in uniform fibers with smaller diameters [31–33].

In this regard, the conductivity of the solutions used in the electrospinning, namely the
gel-based DES-WK mixtures, the PVA solution, and the gel-based PVA/DES-WK blends
with weight ratios of 95/5, 90/10, 80/20, and 70/30 were measured, and the results are
recorded in Figure 3.

The L-Cys:LA DES-WK presented a low conductivity (62.58 ± 11.97 µS/cm) when
compared to the PVA solution (128.43 ± 2.34 µS/cm), which is widely recognized by its
ability to produce uniform nanofibers. Additionally, the PVA/L-Cys:LA DES-WK gel
blends revealed higher conductivity values in comparison with both PVA and L-Cys:LA
DES-WK, Figure 3a. Similarly, the gel based on ChCl:Urea DES-WK exhibited a lower
conductivity (90.71 ± 20.48 µS/cm) than the PVA solution (128.43 ± 2.34 µS/cm), although
the difference is smaller. However, when the gel-based ChCl:Urea DES-WK was blended
with the PVA in different ratios, greatly increased conductivity values were observed,
mainly to the PVA/ChCl:Urea DES-WK 70:30 (10,525.00 ± 229.81 µS/cm), Figure 3b. Thus,
although the nanofiber diameters decrease with the increase in the conductivity of the
electrospinning solution, by promoting the stretching of the jet, a too-high conductivity
value will result in unstable jetting and consequently the formation of nanofibers will not
occur [31].
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(a) and PVA/ChCl:Urea DES-WK blend gel solutions (b), as well as the raw PVA and the gels based
on DES-WK mixtures.

2.3.3. Viscosity

The viscosity of the electrospinning solution, an important measure of the polymer
chain entanglements, is another parameter that has a significant impact on the diameter
and shape of the nanofibers produced through the electrospinning technique. In addition,
it is affected by the temperature, and depends on the concentration of the solution and the
molecular weight of the polymer, since higher values result in densely entangled polymer
chains, and consequently in more viscous solutions. Moreover, highly viscous solutions
can make more difficult the elongation of the jet, thus leading to thick nanofibers, while
low-viscosity solutions can result in jets that break up easily into droplets [32,33]. Therefore,
a proper chain entanglement should be established in order to keep the solution jet coherent
during the electrospinning process. In this sense, to produce high-quality nanofibers, the
viscosity of gels based on DES-WK mixtures, PVA solution, and gel-based PVA/DES-WK
blends in different ratios was measured, and the results are shown in Figure 4.
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As expected, the PVA solution exhibited a high viscosity value (846 mPa.s), which
was quite similar to the viscosity found in another previous study of the PVA when used
to produce electrospun fiber mats (810 mPa.s) [34]. Additionally, L-Cys:LA DES-WK gel
solution revealed a low viscosity (70 mPa.s), and therefore, blends with different weight
ratios of PVA increased the chain entanglements and resulted in improved viscoelastic
force, which can be enough to prevent breakup of the electrically charged jets. In this sense,
the viscosity obtained for the PVA/L-Cys:LA DES-WK gel blends slightly increased with
increasing amounts of PVA, with the maximum being found for the 95:5 ratio (141.2 mPa.s),
Figure 4a. On the other hand, the gel based on ChCl: Urea DES-WK solution presented
the highest viscosity (934 mPa.s), and consequently, after mixing with the PVA solution
at different ratios, the viscosity remained high, particularly for the 95:5 ratio (875 mPa.s),
Figure 4b.

Therefore, the effect of the solution viscosity on the quality of the nanofibers, and their
diameters was explored in Section 2.4.1.

2.4. Characterization of the Gel-Based Electrospun PVA/DES-WK Nanofibrous Membranes
2.4.1. Characterization of the Gel-Based Nanofibers’ Surface Morphology through
Scanning Electron Microscopy (SEM) Analysis

In recent years, electrospun nanofibers have become the main target of different
studies for the development of nanofibrous materials for a wide a range of applications. In
this study, an electrospinning technique (the needle-free NanospiderTM technology) was
used to produce gel-based nanofibers based on WK dissolved in DES mixtures as a novel
and sustainable approach for wool waste valorization. For that purpose, the effect of the
pH and the properties of the electrospinning solutions (e.g., electrical conductivity and
viscosity) were evaluated. However, in addition to the solution properties (e.g., electrical
conductivity, concentration, viscosity, and surface tension), there are other parameters that
can influence the electrospinning process, and consequently the features of the produced
nanofibers, namely the processing variables (e.g., applied voltage, the distance between the
electrode and the collector, electrode type, and flow rate) and the environmental conditions
(e.g., temperature and humidity). In this regard, the electrospinning was performed under
controlled processing conditions, namely by applying a high voltage of 80 kV, a collecting
distance of 13 cm, and an electrode rotation rate of 55 Hz (electrode spin = 8.8 r/min).

In fact, both gels based on DES-WK showed poor electrospinnability, since L-Cys:LA DES-
WK exhibited a low viscosity (70 mPa.s) and electrical conductivity (62.58 ± 11.97 mS/cm),
which can lead to the formation of the unstable jets. In turn, the ChCl:Urea DES-WK revealed
the highest viscosity (934 mPa.s) and a conductivity of 90.71 ± 20.48 mS/cm; however, it
was not enough to also produce a stable electrospinning jet. Moreover, the wool, which
is rich in many different functional groups, can establish diverse inter- and intramolecular
bonds (e.g., ionic interactions, hydrogen bonds, van der Waals forces), and consequently,
several complications may arise in forming the Taylor cone and drawing the nanofibers,
given that a higher voltage is required to stretch the solution jet [35]. In this sense, the
addition of the PVA circumvented the difficulty of directly electrospinning the gel-based
DES-WK solutions, due to their suitability for application as a base polymer for designing
electrospun nanofibrous structures. Predominantly, PVA has been extensively investigated
due to the use of water-based solvents, along with their good processability, biocompatibility,
biodegradability, chemo-thermal stability, mechanical performance, and low cost [36].

Hence, the formation and morphology of the electrospun nanofibers were analyzed
through SEM, and the fiber diameters were determined using the ImageJ software, Figure 5.
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Figure 5. SEM images and fiber diameter distribution of the produced gel-based electrospun
PVA/DES-WK nanofibrous membranes.

The PVA showed a highly interconnected structure composed of fibers with a mean
diameter of 346.68 ± 123.73 nm. In addition, when the PVA was added to the gel-based DES-
WK solutions, the ability to form high-quality nanofibers was improved; in particular, the
electrospinning solution composed of PVA/L-Cys:LA DES-WK 95/5 resulted in uniform
fibers with a mean diameter of 219.14 ± 61.83 nm. Additionally, when the L-Cys:LA DES-
WK ratio in the gel blends was increased to 80/20 and 70/30, this resulted in the formation
of nanofibers without a smooth surface and with a wide distribution of fiber diameters due
to the increase in the conductivity of the electrospinning solutions and slight decrease in
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the viscosity when increasing the content of L-Cys:LA DES-WK in the blends with the PVA
(please see Section 2.3). On the other hand, the gel based on ChCl:Urea DES-WK was unable
to produce nanofibers when the ratio of ChCl:Urea DES-WK increased to 80/20 and 70/30.
However, the PVA/ChCl:Urea DES-WK 95/5 and the PVA/ChCl:Urea DES-WK 90/10
resulted in low fiber deposition. Therefore, under these conditions, the electrospinning
solutions presented extremely high conductivity values, which prevented the formation of
the stable jets, mainly under non-spinnable conditions (80/20 and 70/30).

Overall, the SEM images revealed that L-Cys:LA DES-WK was a more promising
alternative for producing gel-based WK nanofibers from the wool waste.

Similarly, previous studies obtained WK nanofibers from the blends with polymers
with a good fiber-forming capability, such as PVA, Polyethylene oxide (PEO), and Poly-
caprolactone (PCL). Nonetheless, the extraction of keratin from the wool has mainly been
performed through sulfitolysis and by using toxic and harmful chemical reagents [15,16,18].
Thus, this is a more sustainable approach, which requires the use of DES as a kind of green
solvent for WK dissolution. In addition, the present study directly uses wool dissolved in
the DES mixtures in the electrospinning, without performing the WK extraction step, which
makes the process more efficient, fast, and cost effective. Hence, this approach opens nu-
merous possibilities for the development of gel-based electrospun nanofibrous membranes
with potential in many biomedical and other industrial applications, and contributes to a
sustainable future, in alignment with UN sustainability goals.

2.4.2. Fourier-Transform Infrared Spectroscopic (FTIR) Analysis

The chemical composition of the gel-based electrospun nanofibers produced using the
blends of PVA and the gel based on L-Cys:LA DES-WK, which arose as a highly promising
choice, was examined by FTIR analysis. In this regard, the acquired FTIR spectra of the
raw PVA and the gel based on L-Cys:LA DES-WK, as well as the produced PVA/L-Cys:LA
DES-WK gel blends, are presented in Figure 6.
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Figure 6. FTIR of the produced electrospun nanofibrous membranes and their raw materials: PVA
(a), PVA/L-Cys:LA DES-WK 95/5 (b), PVA/L-Cys:LA DES-WK 90/10 (c), PVA/L-Cys:LA DES-WK
80/20 (d), PVA/L-Cys:LA DES-WK 70/30 (e), and L-Cys:LA DES-WK (f).

The spectrum of the PVA exhibits characteristic peaks at 3305.99 cm−1 (-OH stretching
vibration), 2914.44 cm−1 (CH stretching vibration), 1421.54 cm−1 (CH2 bending vibration),
and 1087.85 cm−1 (C-O stretching vibration); Figure 6a [37]. In addition, the gel based on
L-Cys:LA DES-WK shows the typical bands of the wool waste at 1647.21 cm−1 (amide I),
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1521.84 cm−1 (amide II), and 1041.56 cm−1 due to the presence of cysteine-S-sulfonated
residues [2], as well as a characteristic peak of the LA at 1728.22 cm−1 (C=O stretching
vibration), one of the main constituents of the DES mixture, Figure 6f [38].

Similarly the spectra of the PVA/L-Cys:LA DES-WK gel blends display the typical
peaks of the PVA at around 3300 cm−1, 2930 cm−1, 1421 cm−1, and 1087 cm−1, as well as the
characteristic bands of the gel based on L-Cys:LA DES-WK at around 1720 cm−1, 1645 cm−1,
1520 cm−1, and 1041 cm−1, which indicates that the protein functional groups/structure
of the wool was preserved even after WK dissolution in the L-Cys:LA DES mixture. In
addition, the peaks of wool waste at around 1640 cm−1 and 1518 cm−1 are more evident
when increasing of L-Cys:LA DES-WK ratio, while the intensity of the broad absorption
peak at 3319 cm−1 that belong to PVA decrease, Figure 6.

Furthermore, after cross-checking the acquired FTIR spectra with the LabSolutionsIR
library (Table 2), it was observed that the PVA/L-Cys:LA DES-WK 95/5 and the PVA/L-
Cys:LA DES-WK 90/10 were matched with the PVA, while the PVA/L-Cys:LA DES-
WK 80/20, the PVA/L-Cys:LA DES-WK 70/30, and the gel based on L-Cys:LA DES-WK
were matched with the ethyl lactate, probably due to the higher L-Cys:LA ratio in these
nanofibers. Thus, it can be concluded that some characteristic peaks of the PVA/L-Cys:LA
DES-WK nanofibers can overlap with bands of L-Cys:LA DES mixture and PVA.

Table 2. Matches found using the LabSolutionsIR library for all nanofibers produced.

Sample Degree of Confidence Corresponding Polymer/Solvent

PVA 855—Medium PVA
PVA/L-Cys LA DES-WK 95/5 825—Medium PVA

PVA/L-Cys LA DES-WK 90/10 786—Medium Ethyl Lactate
PVA/L-Cys LA DES-WK 80/20 805—Medium Ethyl Lactate
PVA/L-Cys LA DES-WK 70/30 752—Medium Ethyl Lactate

L-Cys LA DES-WK 758—Medium Ethyl Lactate

2.4.3. Characterization of the Gel-Based Nanofibers’ Mechanical Properties

In this study, the mechanical properties, namely the Young’s modulus, tensile strength,
and elongation at break, were evaluated in dry conditions for the raw PVA and the gel-based
electrospun PVA/L-Cys:LA DES-WK nanofibrous membranes. The values are presented
Table 3.

Table 3. Characterization of the mechanical properties of the produced gel-based electrospun PVA/L-
Cys:LA DES-WK nanofibrous membranes and associated PVA raw material.

Tensile Strength
(MPa)

Young’s Modulus
(MPa)

Elongation at Break
(%) Thickness (mm)

PVA 8.18 ± 1.25 45.04 ± 3.58 18.34 ± 3.97 0.174 ± 0.02
PVA/ L-Cys:LA DES-WK 95/5 4.19 ± 0.96 22.24 ± 3.00 19.28 ± 8.05 0.292 ± 0.01

PVA/ L-Cys:LA DES-WK 90/10 4.43 ± 1.14 27.01 ± 0.18 16.40 ± 5.99 0.210 ± 0.02
PVA/ L-Cys:LA DES-WK 80/20 * - - - -
PVA/ L-Cys:LA DES-WK 70/30 * - - - -

* It was not possible to remove the nanofibers from the collector due to their poor quality.

PVA, a synthetic polymer well known by its mechanical strength, showed a higher
Young’s modulus (45.04 ± 3.58 MPa) and tensile strength (8.18 ± 1.25 MPa) than the PVA/L-
Cys:LA DES-WK gel blends, which had a weaker mechanical performance. However, the
tensile strength and Young’s modulus of the PVA/L-Cys:LA DES-WK gel blends were
not significantly affected when the ratio of gel based on DES-WK increased from 95/5 to
90/10, resulting in tensile strengths of 4.19 ± 0.96 MPa and 4.43 ± 1.14 MPa and Young’s
Modulus of 22.24 ± 3.00 MPa and 27.01 ± 0.18 MPa, respectively. On the other hand, the
elongation at break assays revealed that the PVA, the PVA/L-Cys:LA DES-Wool 95/5, and
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the PVA/L-Cys:LA DES-Wool 90/10 could bear strains of 18.34 ± 3.97%, 19.28 ± 8.05%,
and 16.40 ± 5.99, respectively. Thus, the produced gel-based electrospun nanofibrous
membranes presented similar elongation to break values, although a slight increase (not
significant) was noted when increasing the PVA content from 90/10 to 95/5.

Therefore, the mechanical properties exhibited by the gel-based electrospun PVA/L-
Cys:LA DES-WK nanofibrous membranes emphasized their suitability for use in biomedical
and other industrial applications.

2.4.4. Evaluation of the Gel-Based Nanofibers’ Antioxidant Activity

The antioxidant activity of the produced gel-based electrospun PVA/L-Cys:LA DES-
WK nanofibrous membranes was explored through ABTS assay. ABTS+ is a stable free
radical commonly used for assessing the total antioxidant capacity of natural compounds,
and displays a maximum absorption peak at 734 nm [39,40].

The results presented in Figure 7 show that the antioxidant activity improved with
increasing L-Cys:LA DES-WK ratio. The PVA/L-Cys:LA DES-WK 95/5 exhibited a value of
59.25 ± 0.01%, while the PVA/L-Cys:LA DES-Wool 70/30 exhibited a value of 77.07 ± 0.01%.
The improvement in the antioxidant activity of the gel-based electrospun nanofibrous
membranes is attributed to the components of the DES mixture, namely to the L-Cys
and LA, as well as the WK. In fact, in the literature, Nogueira et al. highlighted the
antioxidant activity of the L-Cys [25], while Hu et al. revealed that LA-producing bacteria
have prominent antioxidant properties [41]. Moreover, the WK displays a high cysteine
content, antioxidant functions of which have been demonstrated previously [26]. Therefore,
the promising antioxidant capability of the produced gel-based electrospun PVA/L-Cys:LA
DES-WK nanofibrous membranes arises from the ability of the DES mixture and the WK
to donate a hydrogen atom to free radicals, reducing the ABTS+ radical to a colorless
compound [40].
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2.4.5. Evaluation of the Gel-Based Nanofibers’ Antimicrobial Properties

In this study, the antimicrobial properties of the produced gel-based electrospun
PVA/L-Cys:LA DES-WK nanofibrous membranes were characterized by using S. aureus
and K. pneumoniae as Gram-positive and Gram-negative bacteria models, respectively.

The results presented in Figure 8 and Table 4 show that the PVA/L-Cys:LA DES-WK
gel blends exhibited an inhibitory effect of 100% (reaching a 6 Log reduction) on S.aureus
and K. pneumoniae growth, indicating a significant statistical difference with the control
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group, where the raw PVA was used. Therefore, the synergistic effect of the intrinsic
antimicrobial activity of the L-Cys:LA DES and WK resulted in the production of gel-based
nanofibers with exceptional antibacterial properties. In addition, these results support
the antibacterial activity of the gels based on DES-WK obtained in Section 2.2, revealing
inhibition of S. aureus and K. pneumoniae growth due to the antimicrobial properties of
L-Cys:LA DES and WK.
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Figure 8. Schematic representation of the antibacterial activity of the produced gel-based electrospun
PVA/L-Cys:LA DES-WK nanofibrous membranes (n.s. p > 0.05).

Table 4. Antibacterial efficiency of the electrospun gel-based PVA/L-Cys:LA DES-WK nanofibrous
membranes against S. aureus and K. pneumoniae expressed as percentage of bacterial reduction (%R).

S. aureus K. pneumoniae

Samples CFU/mL Growth Reduction (%) CFU/mL Growth Reduction (%R)

PVA
0 h 7.25 × 103 - 0 h 3.63 × 104 -
24 h 3.02 × 108 - 24 h 2.94 × 108 -

PVA/L-Cys:LA DES-WK 95/5 0.00 × 100 100.00% 0.00 × 100 100.00%

PVA/L-Cys:LA DES-WK 90/10 0.00 × 100 100.00% 0.00 × 100 100.00%

PVA/L-Cys:LA DES-WK 80/20 0.00 × 100 100.00% 0.00 × 100 100.00%

PVA/L-Cys:LA DES-WK 70/30 0.00 × 100 100.00% 0.00 × 100 100.00%

In the literature, it has already been described that the sulfhydryl functional groups
(-SH) of the L-Cys interact with the -SH groups present at the cell membrane proteins,
leading to a great decrease in enzymatic activity and bacterial metabolism [25]. Likewise,
LA is lethal to microorganisms when undissociated molecules enter the cell through the
cell membrane and ionize inside. Moreover, the acidic pH compromises enzymatic and
protein activities, as well as inducing DNA damage, disrupting the integrity of the bacterial
membrane. Additionally, the LA can cause changes in the cell membrane structure and
permeability, leading to the leakage of the cellular content [26]. Additionally, the WK is
known for displaying a high cysteine content, and thus the wool waste also contributes to
the antibacterial activity presented by the produced gel-based nanofibrous membranes [26].

Furthermore, it is important to emphasize that the percentages of bacterial reduction
obtained are in accordance with the indications of the US FDA and their European counter-
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parts, which consider that a bacterial reduction of at least 99.99% should be achieved for it
to be considered as having antimicrobial properties [40]. Moreover, Wang et al. extracted
WK from wool waste following the reduction-C method, which uses organic solvents, and
blended it with PCL to produce nanofibers through electrospinning. The data obtained
in this study showed a similar antibacterial effect against S. aureus and Escherichia coli
(E. coli) (100% bacterial reduction) only when the electrospun PCL/WK nanofibers were
chlorinated in diluted sodium hypochlorite solution, emphasizing the suitability of the
produced PVA/L-Cys: LA DES-WK nanofibers for application as an antimicrobial material
in various fields [18].

3. Conclusions

Despite the tremendous efforts made in the textile industry, the generation of textile
waste remains a serious problem. To overcome this situation, several studies have been
performed focusing on recycling and remanufacturing this waste in order to produce new
materials. Herein, a green and sustainable approach was used to dissolve the WK from
textiles with DES, a new class of natural, non-toxic, eco-friendly, and biodegradable solvents
that have the unique ability to dissolve and regenerate WK. In addition, after confirming the
potential of both ChCl:Urea and L-Cys:LA DES mixtures in the dissolution of the WK, the
gels based on DES-WK were for the first time directly prepared by electrospinning, without
further extraction steps. For that purpose, and to overcome the challenge of electrospinning
the WK biopolymer, PVA, a water-soluble and biodegradable polymer widely used for
nanofiber production, was blended with the gels based on DES-WK in different ratios.
The pH and the properties of the electrospinning solutions, such as electrical conductivity
and viscosity, were measured in order to evaluate their influence on the morphology
and properties of the electrospun nanofibers. The results revealed that the L-Cys:LA DES
containing dissolved WK was more suitable for electrospinning with the PVA, with uniform
fibers being observed, particularly for the PVA/L-Cys:LA DES-WK 95/5. Additionally,
the FTIR spectra of the produced nanofibrous membranes presented the characteristic
peaks of both PVA and the gel based on L-Cys:LA DES-WK, which indicates that the WK
was preserved even after dissolution in the L-Cys:LA DES mixture. Moreover, the gel-
based electrospun PVA/L-Cys:LA DES-WK nanofibrous membranes displayed remarkable
antioxidant and antimicrobial properties. Hence, in this study, we intended to find solutions
promoting textile sustainability and to propose a cascading approach valorization strategy
for dissolving WK and fabricating WK gel-based nanofibers through electrospinning with
potential in many biomedical and other industrial applications, such as in cell-growth
scaffolds, tissue engineering and regeneration, intelligent electronic components, and in
agricultural applications.

4. Materials and Methods
4.1. Materials

Wool waste was obtained from “A Transformadora, Lda”, a wool finishing manu-
facturer in Covilhã, Portugal. L-Cysteine (L-Cys), Urea, Mueller–Hinton Broth (MHB),
Nutrient Agar (NA), Nutrient Broth (NB), Resazurin (7-hydroxy-3H-phenoxazin-3-one
10-oxide) dye, Tween 80, and Sodium chloride (NaCl) were purchased from Sigma-Aldrich
(Sigma-Aldrich, St. Louis, MO, USA). DL-Lactic acid 90% (LA), Choline chloride 99% (ChCl)
were acquired from Fisher Scientific (Fisher Scientific, Leicestershire, UK). Poly(vinyl alco-
hol) PVA (115,000 g/mol) was provided from VWR Chemicals (VWR Chemicals, Leuven,
Belgium). ABTS was purchased from Panreac (Panreac, Barcelona, Spain). Potassium
persulfate was acquired from Acros Organics (Acros Organics, Geel, Belgium).

4.2. Preparation of DES Mixtures

The L-Cys:LA DES was prepared as previously described by Okoro et al. [2]. Briefly,
1.6 g of L-Cys and 20 mL of LA were stirred at 105 ◦C into a lab flask until a homogeneous
DES mixture was obtained. In turn, the ChCl:Urea DES was produced by mixing the
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two components at a 1:2 molar ratio, under stirring at 80 ◦C, until a transparent and
homogenous liquid was obtained, as described by Jiang et al. [3].

4.3. Dissolution of WK into DES Mixtures

The WK dissolution was carried out through the immersion of 2.0 g of wool waste in
the previously prepared L-Cys:LA DES. In turn, 0.16 g of wool waste was immersed into
ChCl:Urea DES by adapting a protocol previously reported by Jiang et al. [3]. Both DES
mixtures were stirred at 130 ◦C for 3 h, until dissolution was complete and homogenous
gel solutions were obtained. The solubility of the gels based on DES-WK was determined
through Equation (1):

Solubility(%) =
W0 − W1

W0
× 100 (1)

where W0 is the weight of wool waste before dissolution and W1 is the weight of wool
waste after dissolution.

4.4. Determination of the Antibacterial Activity of the DES Mixtures and the Gels Based on
DES-WK

The antibacterial activities of the DES mixtures and the gels based on DES-WK solu-
tions were characterized by broth microdilution assay according to CLSI M07-A6 guidelines
using Staphylococcus aureus (S. aureus) (ATTC 6538) and Klebsiella pneumoniae (K. pneumoniae)
(ATCC 4352) as model bacterial. Briefly, sequential dilutions of the DES mixtures and
the DES-WK gel solutions (e.g., ChCl:Urea DES, L-Cys:LA DES, L-Cys:LA DES-WK, and
ChCl:Urea DES-WK) were prepared in sterile MHB. Then, overnight liquid suspensions
of S. aureus and K. pneumoniae were adjusted in sterile water to 1 × 108 CFU/mL (0.5 Mc-
Farland turbidity) and further diluted 1:10 in MHB to prepare bacteria work suspensions
of 1 × 107 CFU/mL. After that, a volume (50 µL) of the work suspension of the S. aureus
and K. pneumoniae and 50 µL of the serial dilutions of DES and the DES-WK gel solutions
were pipetted into 96-well plates and incubated for 24 h at 37 ◦C. After incubation, 30 µL of
the 0.02% (w/v) resazurin solution were added to the 96-well plates and further incubated
for 4 h. The lowest concentration of the prepared dilutions that inhibit the bacteria growth
was defined by a resazurin color change from blue to pink. In this sense, a reduction by
viable cells of the resazurin blue dye in its oxidized state to a pink, fluorescent resorufin
product indicated bacterial growth. Wells containing only MHB medium were included
as a negative control (K−), whereas wells filled with MHB medium and bacterial work
suspensions were used as positive control (K+).

4.5. Production of the Gel-Based Electrospun PVA/DES-WK Nanofibrous Membranes
4.5.1. Preparation of the Electrospinning Solutions

For the electrospinning solutions, 10% PVA (w/v) with a molecular weight of
115,000 g/mol was dissolved in distilled water at 90 ◦C and kept under magnetic stir-
ring overnight until complete dissolution. After that, the PVA was added to DES-WK gel
solutions with PVA/DES-WK blending ratios of 95/5, 90/10, 80/20, and 70/30. The blends
were stirred continuously for an additional 2 h to obtain homogeneous PVA/DES-WK
blend gel solutions.

4.5.2. Measurement of pH of the Electrospinning Gel Solutions

The pH of the PVA, the gels based on DES-WK, and the PVA/DES-WK blend gel
solutions was monitored throughout using a digital pH meter (Mettler Toledo Seven Easy
pH Meter). The pH value was read after reaching a constant state. All determinations were
performed in triplicate.

4.5.3. Measurement of the Electrical Conductivity of the Electrospinning Gel Solutions

The electrical conductivity of the PVA, the gels based on DES-WK, and each PVA/DES-
WK blend gel solution was measured at room temperature using a digital conductivity
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meter (Mettler Toledo FiveEasy Conductivity Meter, Columbus, OH, USA). The conductiv-
ity values were read from the digital screen of the conductivity meter when it stabilized.
The measurements were carried out in triplicate.

4.5.4. Measurement of the Viscosity of the Electrospinning Gel Solutions

The viscosity of the PVA, the gels based on DES-WK, and the PVA/DES-WK blend
gel solutions were determined with a rotational viscometer (VR 3000 MYR, model V1-L,
Viscotech Hispania SL., Tarragona, Spain). For each solution, several types of spindles (TL5,
TL6, and TL7) were used with different rotation speeds to accurately measure the solutions’
viscosity. Both the temperature of the solutions and room temperature were checked before
and after each measurement. All measurements were carried out in triplicate.

4.5.5. Electrospinning of the PVA/DES-WK Blend Gel Solutions

The raw PVA and the PVA/DES-WK blend gel solutions were electrospun using
a modified electrospinning technique, Nanospider Technology (Nanospider laboratory
machine NS LAB 500S from Elmarco s.r.o., Liberec, Czech Republic, http://www.elmarco.
com, accessed on 12 August 2023). Electrospinning was carried out with a working distance
(distance from the spinning electrode to the collector) of 13 cm, an applied voltage of 80.0 kV,
and an electrode rotation rate of 55 Hz. The collection time was ~30 min on polypropylene
nonwoven fabric at 25 ◦C.

The fabrication of the gel-based electrospun PVA/DES-WK nanofibrous membranes is
overviewed in Figure 9.
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nanofibrous membranes.

4.6. Characterization of the Gel-Based Electrospun PVA/DES-WK Nanofibrous Membranes
4.6.1. Characterization of the Gel-Based Nanofibers’ Surface Morphology through
Scanning Electron Microscopy (SEM) Analysis

The surface morphology of the gel-based electrospun PVA/DES-WK nanofibrous
membranes was characterized through SEM. Briefly, all samples were placed on aluminum
stubs, fixed with Araldite adhesive, and sputter coated with a thin layer of gold using a
Quorum Q150R ES sputter coater (Quorum Technologies Ltd., Laughton, East Sussex, UK)
prior to SEM observation. After that, the SEM images were taken with a Hitachi S-3400N
Scanning Electron Microscope (Hitachi, Tokyo, Japan) using an acceleration voltage of
20 kV. The morphology of the nanofibers was analyzed by SEM images, and the fibers’
diameters were measured using an image analysis software, ImageJ (NIH Image, Bethesda,
MD, USA). The raw PVA was also analyzed for comparative purposes.

http://www.elmarco.com
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4.6.2. Fourier-Transform Infrared Spectroscopic (FTIR) Analysis

Fourier-transform infrared spectra of the raw materials (PVA and the gel based on
L-Cys:LA DES-WK) and the gel-based electrospun PVA/L-Cys:LA DES-WK nanofibrous
membranes were acquired on an IRAffinity-1S FTIR spectrophotometer (Shimadzu, Kyoto,
Japan). Data were collected with an average of 64 scans, in the range of 4000–600 cm−1,
and a spectral resolution of 4 cm−1. All the samples were then analyzed and compared
against the LabSolutionsIR (Version 2.11, Shimadzu, Kyoto, Japan) library.

4.6.3. Characterization of the Gel-Based Nanofibers’ Mechanical Properties

The mechanical performance of the PVA and gel-based electrospun PVA/L-Cys:LA
DES-WK nanofibrous membranes was analyzed with a universal tensile test machine
(DY-35, Adamel Lhomargy, Roissy en Brie, France) operated at room temperature, under
dry conditions, equipped with a 100 N static load cell. For the test, electrospun nanofiber
samples were cut into strip-shaped specimens with a width of 1 cm and a gauge length of
4 cm, and their thickness, ranging from 0.174 to 0.292 mm, was measured with a micrometer
(Adamel Lhomargy MI20, Draveil, France). The length between the clamps and the speed
of testing were set to 1 cm and 1 mm/min, respectively. On each sample, measurements
were repeated three times, and the average value was recorded.

4.6.4. Evaluation of the Gel-Based Nanofibers’ Antioxidant Activity

The antioxidant activity of the gel-based electrospun PVA/L-Cys:LA DES-WK nanofi-
brous membranes was assessed using the ABTS radical decolorization assay. Briefly, the
ABTS radical cation (ABTS+) was initially formed by mixing 5 mL of ABTS (7 mM) stock
solution with 88 µL of potassium persulfate (2.4 mM). The reaction mixture was then incu-
bated in the dark for 12–16 h at room temperature. Prior to the beginning of the assay, the
ABTS+ solution was diluted with phosphate buffer (0.1 M, pH 7.4) to reach an absorbance of
0.700 ± 0.025, at 734 nm. Then, the reaction occurred for 30 min in the dark after emerging
10 mg of each gel-based electrospun nanofibers sample in 10 mL of ABTS+ solution. The
scavenging capability of ABTS+ at 734 nm was determined through Equation (2):

Antioxidant activity (%) =
Acontrol − Asample

Acontrol
× 100 (2)

where Acontrol is the absorbance of the remaining ABTS+ in the control sample (e.g., PVA)
and Asample is the absorbance of the remaining ABTS+ when incubated with the nanofiber’s
samples (e.g., gel-based electrospun PVA/L-Cys:LA DES-WK nanofibrous membranes).
All experiments were conducted in triplicate.

4.6.5. Evaluation of the Gel-Based Nanofibers’ Antimicrobial Properties

The ability of the produced gel-based electrospun PVA/L-Cys:LA DES-WK nanofi-
brous membranes to inhibit bacteria growth was characterized using S. aureus (ATCC
6538) and K. pneumoniae (ATCC 4352) on the basis of Japanese Industrial Standard JIS L
1902:2002. For this purpose, bacterial suspensions (1 × 105 CFU/mL) were prepared by
transferring fresh colonies from overnight cultures into sterile NB and inoculating them
over the nanofibers’ samples. For this purpose, the samples were evaluated immediately
after adding the inoculum (T0h) and after 18–24 h in contact with the inoculum at 37 ◦C
(T24h). Then, each sample was subjected to vigorous vortexing for 30 s in a neutralizing
solution composed of 0.85 (w/v) NaCl and 2 mL/L of Tween 80, and serial dilutions were
prepared with 0.85 (w/v) NaCl and seeded on NA plates. The bacterial colonies were
counted after overnight incubation at 37 ◦C and expressed as CFU/mL. The percentage of
bacterial growth inhibition was determined accordingly with Equation (3):

Antibacterial activity(%) =
C − S

C
× 100 (3)
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where C and S represent the CFU/mL of control (e.g., PVA) and experimental group (e.g.,
gel-based electrospun PVA/L-Cys:LA DES-WK nanofibrous membranes), respectively.

4.6.6. Statistical Analysis

The statistical data analysis was conducted using GraphPad Prism 6 software (Graph-
Pad Software, La Jolla, CA, USA) through a one-way analysis of variance (ANOVA),
followed by Tukey’s multiple comparison test. A p value lower than 0.05 (p < 0.05) was
considered statistically significant. All experiments were conducted in triplicate unless
otherwise stated, and the data expressed as a mean ± standard deviation (SD).
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