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Abstract: Magnesium oxide (MgO) was synthesized by three different methods: the sol–gel (SG),
microwave-assisted sol–gel (MW), and hydrothermal (HT) methods for comparing the influence of the
preparation conditions on the properties of the products. The powders were annealed at 450 ◦C. The
samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission
electron microscopy (TEM/HRTEM), selected area electron diffraction (SAED), energy-dispersive
X-ray spectroscopy (EDX), BET specific surface area and porosity, photoluminescence, and UV–Vis
spectroscopy. The samples consisted mainly of periclase as a crystalline phase, and the MW and
HT preparation methods generated particles with higher specific surface areas. The powders had
less-defined morphologies and high levels of aggregation. The optical band gaps of the samples
were determined from UV DRS, and the photocatalytic activities of the magnesium oxides obtained
by the three methods towards the degradation of methyl orange (MO) under UV light irradiation
was evaluated.

Keywords: MgO nanopowders; sol–gel method; microwave-assisted sol–gel method; hydrothermal
method; photocatalytic degradation of methyl orange dye

1. Introduction

New and emerging fields of technology have provided materials prepared in the
form of small particles with remarkable properties, such as being photocatalytic in nature,
possessing a high surface area, being electrostatic, having a tunable pore volume, being
magnetic, being hydrophobic and hydrophilic, etc., with novel potential applications. A
high surface-to-volume ratio, which is characteristic of nano- and micro-particles, controls
the interaction with pollutants and bacteria, conferring an increased efficiency compared to
bulk materials [1,2].

Nanostructured metal oxides have a wide range of applications, including for catal-
ysis and electronic and photonic devices [1,3,4]. They show exceptional potential for the
photocatalytic breakdown of pollutants as they are considered safe, insoluble in water, and
biologically inert [5–7]. Magnesium oxide (MgO), a wide band gap insulator, has been
used primarily as a ceramic material in thermal engineering and heating elements and for
refractory purposes. Fundamental and application studies have developed less conven-
tional ways of exploiting its properties, which include catalysis, in toxic wastes remediation,
and as an antibacterial agent. Micro- and nano-structured oxide powders have different
properties from the bulk material form, and their reactivity capability is due to surface
defects that include low coordination ions and/or vacancies [1,3]. The various defects
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created in magnesium oxide’s structure are considered intermediate energy levels inside
the band gaps. In principle, a decrease in band gap energy suggests the possibility that
photogenerated electrons from the conduction band of MgO are transferred to the defect
centers, thus preventing their recombination with the h+ species. This effect contributes,
along with other properties that can be varied from the synthesis method (porosity, surface
area, morphology, and size), to the high photocatalytic activity of magnesium oxide, as
has been reported in the literature [8–12]. In addition, the ability of MgO nanoparticles
to generate reactive oxygen species, such as ·O2

− and ·OH, confers them antibacterial
properties [9,13,14], and their porous nature makes them suitable for waste remediation,
allowing the adsorption of pollutants [15,16].

Several preparation methods for magnesium oxide have been developed with the
aim of generating nanoscale particles with active surfaces, including dehydration of the
Mg(OH)2, thermal decomposition of various precursors [17], the sol–gel method [18,19],
chemical vapor deposition [20], the hydrothermal method [21], and surfactant methods [22].

Thus, developing a simple procedure for preparing small-sized MgO powders under
mild conditions has remained a challenging topic of investigation [1].

The sol–gel process is a bottom-up synthesis method in which the final product is
formed by several irreversible reactions. The reaction rate depends on various factors such
as pH, concentration, type of solvent, and temperature. Sol–gel-generated MgO powders
have high surface areas and particular morphological and physical properties [23,24].

Hydrothermal precipitation is another promising method because the material result-
ing under mild reaction parameters can be nanostructured, with high crystallinity and
various morphologies. Samples of MgO prepared using hydrothermal synthesis show emis-
sion peaks at 395 nm and 475 nm, and these are due to surface defects since nanoparticles
exhibit a quantum confinement effect [25,26].

Of the many methods employed for the fabrication of MgO, microwave irradiation
has recently gained interest over conventional methods due to its short duration, small
investment, and its success in manipulating the morphology and architecture of nano- and
micro-structures [27,28]. The effect of particle size, pH, and form of active MgO species
obtained by microwave-assisted synthesis on the oxide’s properties has been demonstrated
by showing its bactericidal performance in an aqueous environment due to the superoxide
formation [24,29].

A brief literature survey regarding the chemical methods of MgO preparation in solu-
tion is presented in Table 1. The hydrothermal and sol–gel methods are well-represented
in the literature, with a variety of precursors and synthesis parameters. The microwave
irradiation method is less common due to its novelty statism but is increasingly used due
to its advantages, as described above.

Table 1. Literature survey of similar synthesis methods.

Methods and Parameters Precursors/Catalysts/Solvents Thermal Treatment Crystalline Phases and
Morphologies Ref.

MW–360 W, 2 min, (on/off
at 30 s)

Mg(CH3COO)2 × 4H2O
benzylamine 550 ◦C for 5 h MgO

nanoparticles [30]

MW–1 kW, 20 min
(convection mode)

Mg(CH3COO)2 × 4H2O
A. paniculata extract 400 ◦C for 2 h MgO

nanorods [13]

MW–15 min Magnesium nitrate, NaOH, H2O 400 ◦C for 4 h MgO
nanoparticles [31]

MW–850 W, 15 min Magnesium nitrate, urea, H2O 500 ◦C for 2 h MgO nanosheets [32]

HT–150 ◦C, 3 h MgCl2 × 6H2O, 1-Propanol, Urea (or NaOH),
2,4,6-trinitrophenol, H2O 600 ◦C for 3 h

MgO
nanorods (urea) and
nanoparticles (NaOH)

[16]

HT–180 ◦C, 24 h magnesium nitrate, NaOH, and H2O 400 ◦C for 2 h MgO
nanoparticles [33]
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Table 1. Cont.

Methods and Parameters Precursors/Catalysts/Solvents Thermal Treatment Crystalline Phases and
Morphologies Ref.

HT–60 ◦C, 3–96 h MgCl2, Na2CO3, and H2O 200 ◦C for 2 h MgO spheroidal and flake (or)
rectangular particles [34]

HT–120 ◦C for 12 h Mg(NO3)2 × 6H2O, CO(NH2)2), sodium
dodecyl sulfate, and H2O 400 ◦C for 5 h MgO nanosheets [35]

HT–180 ◦C for 10 h Mg(NO3)2 × 6H2O, H2O, and ethanol 500 ◦C for 3 h MgO nanowires [36]

HT–80–200 ◦C for 2 h 50 nm MgO particles and H2O 300 ◦C for 1 h,
450 ◦C for 1 h MgO plate-like shape [37]

HT–200 ◦C for 24 h Mg(NO3)2 × 6H2O, urea, and H2O 500 ◦C for 5 h MgO mesoporous [38]

HT–150 ◦C for 24 h Mg(NO3)2 × 6H2O, NaOH, and H2O 400 ◦C for 4 h MgO flower-like shape [31]

HT–130 ◦C for 6 h I. (NH4)2CO3, Mg(NO3)2, and H2O
II. nesquehonite, (NH4)2CO3, and H2O 500 ◦C for 6 h

MgO random flakes,
house-of-cards,
spherical structures

[39]

HT–180 ◦C for 5 h

Mg(CH3COO)2 × 4H2O, urea, and H2O (pH 8)
Mg(CH3COO)2 × 4H2O, urea, acetic acid, and
H2O (pH 5–6)
Mg(CH3COO)2 × 4H2O, urea, ammonia, and
H2O (pH 9–10)

500 ◦C for 5 h

MgO mesoporous ball-like
rhombohedrons (pH 5),
smaller micro-rods (pH 9), and
micro-rod-like (higher pH)

[40]

SG 0.1 mM Mg(NO3)2 × 6H2O, 0.1 M NaOH, and
100 mL H2O 400 ◦C for 4 h MgO + Mg(OH)2 [31]

SG Mg(NO3)2 × 6H2O and NaOH
1:2 M ratio of Mg2+ to OH- 400 ◦C for 5 h MgO spherical nanoparticles [14]

SG

8.96 wt. % Mg MeO in MeOH sol., PhMe,
and MeOH
hydrolysis ratio = 2 M
vol. ratio PhMe: MeOH = 0.94

400 ◦C
(vacuum) MgO [41]

modified thermal/SG Mg(C2H3O2)2/Mg(NO3)2, NaOH/NH4OH,
sodium dodecyl sulfate, and H2O

400–700 ◦C
for 2 h

MgO + MgSO4 (traces),
porous, agglomerated, and
uniform semi-spherical flaky
shape MgO

[15]

SG
Mg(CH3COO)2 × 4H2O
C2H2O4 × 2H2O/C4H6O6,
C2H5OH, and H2O (pH 5)

400 ◦C MgO + MgC2O4
[42]

500 ◦C MgO nanocrystals

SG
MgCl2 and C6H8O7 × H2O
Mg2+: C6H8O7 = 1:3
T = 60 ◦C

500 ◦C for 2 h MgO spherical particles [43]

SG
Mg(NO3)2 × 2H2O, Pluronic P123, NH4OH
(28%), and H2O
pH 10 and T = 60 ◦C

600 ◦C for 2 h MgO nanoparticles [44]

SG Mg(NO3)2 × 6H2O, NaOH, and H2O
30 min ultrasonic stirring 400 ◦C for 3 h MgO nanosphere [32]

SG Mg(NO3)2 × 6H2O, NaOH, NH4OH, and H2O
molar ratio Mg2+:OH− = 1:2 500 ◦C for 4 h MgO nanoparticles [24]

SG Mg(NO3)2 × 6H2O, NaOH, and H2O
pH 12 500 and 800 ◦C for 4 h MgO nanoparticles [45]

SG Mg(OCH3)2 and H2O
40 h at RT 500 and 600 ◦C for 4 h MgO [46]

SG Mg(OCH3)2, C2H5OH, HCl, NH4OH, and H2O
pH 9 and 40 h reflux

400, 600 and 800 ◦C
for 2 h MgO particles [47]

In our study, for comparison, MgO was obtained by three methods: sol–gel, hydrother-
mal, in which Mg(NO3)2 × 6H2O was the precursor treated with a precipitating agent, and
microwave-assisted sol–gel, which involved Mg(CH3COO)2 × 4H2O precipitation with
ammonia. The structure and morphology of the oxide powders obtained by these synthesis
methods were characterized. Their photocatalytic activities were evaluated by monitoring



Gels 2023, 9, 624 4 of 19

the photodegradation of methyl orange dye as a model pollutant under UV light irradiation,
and the band gaps were determined. The results were discussed comparatively.

2. Results and Discussion

MgO powders prepared by the sol–gel, hydrothermal, and microwave-assisted sol–gel
methods were investigated. An attempt was made to compare their structural and morpho-
logical properties and correlate them with their photocatalytic activities.

2.1. Phase Composition Investigation

Figure 1 presents the XRD diffractograms of the three thermally treated samples at
450 ◦C, depending on the preparation method. The main crystalline phase in all three
samples was periclase, MgO, according to ICDD file no. 45-0946. The sample prepared
by the microwave method contained single-phase periclase. The samples prepared by the
sol–gel and hydrothermal methods also contained phases of brucite (ICDD file no. 44-1482)
and hydromagnesite (ICDD file no. 25-0513) in addition to the main periclase phase. The
quantitative ratios between the three phases, determined by the RIR (reference intensity
ratio) method, are listed in Table 2.
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Figure 1. XRD patterns of the samples prepared by the microwave, sol–gel, and hydrothermal
methods thermally treated at 450 ◦C.

Table 2 contains information regarding the crystalline phases present in the samples,
the lattice parameters (only for periclase), the crystallite sizes (DXRD) calculated by the
Scherrer method, and the quantitative ratios.

The sample prepared by the sol–gel method had the largest crystallite sizes for the
periclase phase while the smallest crystallite sizes for the periclase phase were found in the
sample prepared by the hydrothermal method. Regarding the lattice parameters of the unit
cells of the periclase crystals, the smallest values were determined for the sample prepared
by the sol–gel method while the largest values were found in the sample prepared by the
hydrothermal method.
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Table 2. Phase compositions, lattice parameters, crystallite sizes, and quantitative ratios.

Sample Phase(s) Lattice Parameters (Å) Crystallite Size, DXRD (nm) Quantitative Ratio (%)

MW Periclase, MgO 4.22569(5) 10 100

HT

Periclase, MgO 4.23557(17) 6 88.5

Brucite, Mg(OH)2 - - 7.7

Hydromagnesite,
Mg5(CO3)4(OH)2 × 4H2O - - 3.8

SG

Periclase, MgO 4.21986(11) 15 87.7

Brucite, Mg(OH)2 - - 3.3

Hydromagnesite,
Mg5(CO3)4(OH)2 × 4H2O - - 9

2.2. Morphological, Structural, and Elemental Analyses

Figure 2 shows SEM images of the MgO particles prepared by the three above-
mentioned methods. Both the hydrothermally synthesized and the sol–gel MgO powders
consisted of non-uniform particles in terms of their sizes, with no clearly defined shapes
(Figure 2a,b). Unlike them, the powdered sample synthesized using the microwave proce-
dure exhibited well-defined, nearly spherical MgO particles, with sizes ranging between
80 and 120 nm (Figure 2c). To better observe the details regarding the morphological
features and crystallinities of the particles prepared by the three mentioned methods, TEM,
HRTEM, and SAED investigations were performed.
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The bright–field TEM images showed that there were significant morphological differ-
ences depending on the preparation route. The hydrothermally prepared sample consisted
of unevenly sized thin MgO particles, most of which had a tabular and rod-like morphology
(Figure 3a), with their crystallinities confirmed by the long-range ordered fringes revealed
by the HRTEM image shown in Figure 3f. It is worth mentioning that the so-called “tabular
particles” actually represented aggregates with an average size (dTEM) of 106 ± 38 nm, as in-
dicated in the histogram in Figure 3c. These aggregates were formed by a 2D self-assembly
process of very small polyhedral crystallites with sizes well below 10 nm, as the enlarged
image (Figure 3b) corresponding to the dashed red ellipse in Figure 3a reveals. A value for
the average crystallite size in the HRTEM images could be only roughly estimated because
of the tendency of the crystallites to overlap, which prevented a clear identification of
their outlines. Nevertheless, the estimated values of the crystallite sizes (DTEM = 5 ± 1 nm)
(Figure 3e) were close (within the error bar) to those determined from the XRD data, which
indicated the smallest crystallite size (DXRD = 6 nm) for this sample. On the other hand, the
rod-like particles seemed to appear when, towards the end of the hydrothermal treatment,
the spherical structures collapsed and recrystallized preferentially on the c–face of the
crystallites [9]. As with the tabular particles, these rod-like structures of various values of
length, L, and width, l, were also aggregates of small crystallites (the dashed cyan ellipses
in Figure 3a). An average value of the aspect ratio (expressed as L/l and noted as a.r.) of
12 ± 5 was determined from the measurements carried out on ~40 rods from different areas
of the TEM images (Figure 3d). A certain amount of amorphous phase was also present
in this powder as the continuous and slightly diffuse aspect of the concentric rings in the
related SAED image shows (Figure 3g).

The powdered sample prepared by the sol–gel method exhibited a duplex-type mor-
phology (Figure 4a) where elongated or enlarged thin foils (denoted by A), structured as
nanosized crystallites, coexisted with individual particles (denoted by B) of polyhedral
shapes with well-defined edges and rounded corners. These particles appeared to be single
crystals as they showed no structuring, as can be observed in the higher magnification
TEM image in Figure 4b. For the individual particles, an average size (dTEM) of 40 ± 9 nm
was estimated (Figure 4c). In this case, the crystallites that built up the thin foils appeared
to be slightly larger in size (DTEM = 13 ± 2 nm) (see Figure 4d) than those observed for the
hydrothermal powder discussed above. The HRTEM image in Figure 4e and the SAED
pattern in Figure 4f also reveal an increased crystallinity which showed small bright spots
that formed the diffraction rings.

By microwave irradiation, the basic magnesium oxide particles, acting as nucleation
sites, gradually formed the small and dispersed initial centers that aggregated, generating
microspheres [27]. Indeed, the TEM image in Figure 5a shows that the single-phased
MgO powder prepared by this technique consisted of nearly spherical aggregates with an
average size (dTEM) of 96 ± 14 nm (Figure 5b). A look inside these aggregates revealed
their structuring in small, polyhedral crystallites (Figure 5c), somewhat similar to those
observed in the sol–gel powder. An average crystallite size value of DTEM = 10 ± 2 nm,
similar to that determined from the XRD data (Table 1), was found in this case (Figure 5d).
Therefore, based on the TEM investigations, we concluded that the particles from the SEM
image in Figure 2c were aggregates of crystallites strongly bound together. In addition,
for this powder, the related HRTEM image showed a high crystallinity degree (Figure 5e).
However, the more diffuse aspect of the diffraction rings in the corresponding SAED pat-
tern, consisting of fewer bright spots than the sol–gel powder, indicated an intermediate
crystallinity (somewhat lower than that of the sol–gel powder but higher than that deter-
mined for the hydrothermally processed MgO sample), which was in agreement with the
values estimated for the average crystallite size (Figure 5f).
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Figure 3. Low (a) and high (b) magnification TEM images (dashed red ellipse indicates the tabular
particles and dashed cyan ellipses rod-like structures); size distribution of the tabular aggregates (c);
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histogram (e); HRTEM image (f); SAED pattern (g); and EDX spectrum (h) of the hydrothermally
prepared MgO powder.
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During microwave-assisted combustion synthesis, gaseous products are released that
create cavities in the initially formed oxide microspheres, generating defects that could
act as catalytic sites [27]. Nano- and micro-scale materials (Figure 2) have large surface-
to-volume ratios, resulting in the formation of voids on the surface as well as inside the
agglomerated particles that cause absorption bands in the UV regions [25].

The EDX spectra of all three MgO powders under investigation showed the high
chemical purity degrees of the samples (Figures 3h, 4g and 5g). Apart from the carbon
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and copper atoms related to the TEM grids, only the presence of magnesium and oxygen
species was detected, which suggested that no contamination occurred during the synthesis
processes.

2.3. Textural Characterization

N2 adsorption–desorption measurements were carried out to investigate the textural
features of the MgO samples. All samples exhibited type IV isotherms with H3-type
hysteresis loops, as shown in Figure 6. According to IUPAC classification [48], this type of
isotherm is a characteristic of mesoporous materials while H3 hysteresis loops appear in
materials with flexible pores with a slit or plate-like morphology or those that form particle
agglomerates. Unlike the MgO MW sample, whose pore distribution range had a relatively
narrow interval (0–20 nm), for the MgO HT and MgO SG samples, the pore sizes were
greater than 20 nm and even exceeded the range of mesopores (2–50 nm). As can be seen
in Table 3, MgO HT had the highest BET specific surface area, followed by MgO MW and
MgO SG. Regarding the total volume of the pores, the order was different, namely, MgO
HT > MgO SG > MgO MW. These findings confirmed the presence of porous structures in
the prepared MgO samples.
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Table 3. The BET specific surface areas (SBET), total pore volumes (Vtotal), and band gaps of the samples.

Sample SBET
(m2g−1)

Vtotal
(cm3g−1) Bandgap Energy (eV)

MgO MW 101.1 0.157 3.94

MgO HT 132.1 0.562 4.48

MgO SG 26.3 0.289 5.32

2.4. UV–Vis Spectroscopy Analysis

The optical properties of the MgO samples synthesized by the three different methods
were evaluated using UV–Vis spectroscopy, and the recorded spectra are shown in Figure 7. For
all three samples, the absorption bands with the maximum values located at ~206 nm were
assigned to the excitation of five coordinated oxygen anions from the periclase structure [49].
Additional absorption bands located at higher wavelengths could be assigned to various
F-type defects generated during synthesis. The most intense absorption bands were noticed
in the case of the magnesium oxide prepared by the microwave method. Thus, the peak
located at ~255 nm suggested the presence of F+ and F centers while the peaks recorded at
wavelengths around 300 nm indicated the formation of some F2

2+ centers [49]. The same
absorption bands were also observed for the MgO sample obtained by the hydrothermal
method, indicating the formation of several structural defects. It has been previously
reported [50] that during hydrothermal treatment, the generation of water molecules
between neighboring hydroxyl ions and their losses cause the occurrence of defects in the
MgO’s structure. Furthermore, the formation of inter-crystallite channels and cracks and
their contributions to higher specific surface areas than in the case of the sol–gel method
(as was evident in the present study, see Table 3) was discussed [50].
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The band gap energy for each sample was estimated by Tauc plots of the Kubelka–Munk
function for direct transitions. The obtained results shown in Table 3 evidenced the effects of
the synthesis methods on the bandgap energies of the MgO. Although magnesium oxide is
a wide band-gap material (7.8 eV) [51], the synthesis methods proposed in the present work
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lowered the band gaps due to the formation of different defects that acted as intermediate
levels available for the transfer of excited electrons [49]. The values of the obtained band
gaps are shown in Table 3. Thus, the lowest value was obtained for magnesium oxide
prepared by the microwave method (3.94 eV), indicating that this preparation method is
the most suitable for obtaining magnesium oxide with improved photocatalytic properties.

2.5. Photoluminescence (PL) Studies

The photoluminescence (PL) spectra recorded for the samples prepared by the three
different methods are shown in Figure 8. For all the samples, the PL results showed broad
emission bands in the violet and blue regions of the visible spectrum (410–490 nm) and a
more intense and sharper peak in the green region (580 nm). These were mainly related to
the presence of several defects in the MgO structures, depending on the synthesis method.
Thus, the first emission peak located at 416 nm was associated with F centers resulting
from the removal of neutral O atoms in the magnesium oxide structure while the peak that
appeared at 440 nm could be attributed to the dimmers of the F center, such as F2

2+ [52,53].
The green emissions recorded for all the samples were mainly due to oxygen deficiencies
in the structures of the synthesized magnesium oxides, as has been suggested in other
studies [54,55].
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2.6. Photocatalytic Activity

The photocatalytic activities of magnesium oxide samples were investigated by carry-
ing out the degradation of methyl orange (MO) dyes. The variations in MO degradation
efficiencies over time in the presence of the MgO photocatalysts are shown in Figure 9. The
highest photocatalytic activity was found for the MgO prepared by the microwave method
due to the obtained properties, which were beneficial for photocatalytic applications. The
large specific surface area, the low band gap energy, the presence of defects that contributed
to delaying the recombination of the photogenerated charges, and the spherical morphol-
ogy obtained by the microwave method were properties that had beneficial effects on its
photocatalytic efficiency.
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(λirrad. = 254 nm, 1 × 10–5 M MO, and 5 mg of photocatalyst).

In the case of the other two samples obtained by the sol–gel and hydrothermal meth-
ods, although the efficiencies of methyl orange degradations were slightly lower, the
photocatalytic results were comparable to those reported in the literature. A comparative
analysis of these results is summarized in Table 4.

Table 4. A comparison of the photocatalytic results under UV light irradiation of MgO samples
synthesized by different methods.

Method Phase Band Gap (eV) Degradation Efficiency (%) Ref.

Thermal decomposition of
Mg(OH)2 by the wet
chemical method

Polycrystalline MgO with a
cubic structure 5.54 50% of methyl orange (10 mg/L) [56]

Green synthesis Cubic MgO structure 4.17 81% of methylene blue (20 ppm) [57]

Reflux condensation
approach Cubic MgO structure

5.63 92% of methyl orange
95% of methylene blue

[1]
5.67 96% of methyl orange

99% of methylene blue

Combustion method Polycrystalline cubic structure
of MgO nanoparticles - 75% of methylene blue [4]

Sol–gel method

Periclase, MgO
brucite, Mg(OH)2
hydromagnesite, and
Mg5(CO3)4(OH)2 × 4H2O

5.32 82% of methyl orange (1 × 10−5 M)

Present work
Hydrothermal method

Periclase, MgO
brucite, Mg(OH)2
hydromagnesite, and
Mg5(CO3)4(OH)2 × 4H2O

4.48 61% of methyl orange (1 × 10−5 M)

Microwave-assisted
sol–gel method Periclase, MgO 3.94 85% of methyl orange (1 × 10−5 M)

2.7. Identification of Reactive Species

To understand the action pathway of each MgO sample, photocatalytic experiments
were carried out in the presence of ·O2

−, ·OH, and e− and h+ scavengers. The results
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obtained are shown in Figure 10. A higher degradation efficiency was obtained in the case
of adding the e− and h+ scavengers. This behavior could be explained by the delay in
the recombination of the e−/h+ pairs, which ensured a larger number of photo-generated
species available for the degradation of the methyl orange. A slight increase in the photocat-
alytic efficiency was also obtained by adding ·OH and ·O2

− scavengers, which suggested
an equal contribution of these reactive species to the degradation of the methyl orange.
Therefore, when the superoxide anions were captured from the reaction medium, hydroxyl
radicals (·OH), which are known as the most reactive oxygen species [58], became directly
responsible for the degradation of the methyl orange molecules.
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samples under UV light irradiation: (a) the sol–gel sample; (b) the hydrothermally prepared sample;
and (c) the microwave-assisted sol–gel sample.

Based on these results, it could be concluded that all the investigated active species
had important contributions to the photocatalytic degradation of the methyl orange. Thus,
by quenching a reactive species, its resultant lack was compensated by all the others in the
system. A schematic representation of the possible degradation mechanism of the methyl
orange by the MgO powders and the relevant reactive species can be found in Figure 11.
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3. Conclusions

The present study aimed to correlate the structural and morphological properties of
MgO powders generated by different synthesis methods with their photocatalytic activities.
All the samples had porous, nanoscale, and microscale structures. The particles obtained by
the sol–gel method had the lowest specific surface areas and the highest optical band gaps.
The powders prepared by the microwave method had higher specific surface areas, narrow
nanopore distributions, and the lowest band gaps. Additional UV-Vis absorption bands
in the case of the MgO powders prepared by the microwave and hydrothermal methods
indicated that defects were generated during the synthesis.

The best photocatalytic activity (~85% degradation efficiency) was obtained after 5 h
of irradiation for the MgO synthesized by the microwave-assisted sol–gel method, for
which the lowest band gap energy (3.94 eV) was obtained and spherical morphology. The
microwave method induced the formation of several structural defects that prevented
e−/h+ recombination. Thus, the photocatalytic process was improved by providing a high
number of photogenerated charges responsible for the degradation of the MO.

4. Materials and Methods
4.1. Powder Preparation

The MgO powders were obtained by the sol–gel method using Mg(NO3)2 × 6H2O
as a precursor in an ethanolic solution, H2O as a hydrolyzing agent, and NH4OH as the
catalyst, according to the method presented in reference [59].

The hydrothermal synthesis started with the Mg(NO3)2 × 6H2O. The precipitating
agent, NaOH, was dissolved in equal volume mixtures of water–ethanol, with the ratio of
precursor/NaOH being 2/5, which was added to magnesium salt. The reaction system
was kept under stirring until a white precipitate appeared, and then it was transferred to
a hydrothermal cell heated at 130 ◦C, where it was kept for 14 h. After cooling at room
temperature, the powder was separated by filtration, washed with distilled water, and
dried, and then it thermally treated as mentioned in reference [59].

The microwave-assisted sol–gel method used Mg(CH3COO)2 × 4H2O in a 0.3 M
aqueous solution and ammonia as a catalyst. The mixture was kept under microwaves for
10 min (2.45 GHz and 1 kW). The precipitated powder was treated as mentioned above,
and then it was thermally treated as follows: 450 ◦C, 1 h plateau, and 1 ◦C/min.

4.2. Powders Characterization

The X-ray diffraction (XRD) patterns were recorded using a Rigaku Ultima IV X-ray
diffractometer (Tokyo, Japan). The equipment was set in a parallel beam geometry with
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cross beam optics (CBO) and operated at 40 kV and 30 mA using CuKα radiation. The data
were collected over the 2θ range at 10–85◦ at a scanning rate of 2 ◦/min. Rigaku’s PDXL
v1.8 software, connected to the ICDD PDF-2 database, was used for phase identification.

SEM, TEM, and HRTEM coupled with SAED and EDX (energy dispersive X-ray
spectroscopy) investigations were performed using a high-resolution FEI QUANTA IN-
SPECT F scanning electron microscope (Thermo Fisher Scientific, Waltham, MA, USA)
with a field emission gun and a TITAN THEMIS ultra-high resolution electron microscope
(Thermo Fisher Scientific, Waltham, MA, USA). For the acquisition of the EDX spectra, the
transmission electron microscope was operated in STEM (scanning transmission electron
microscopy) mode at 300 kV.

The average particle sizes of the BST powder were estimated from the particle size
distributions, which were determined using OriginPro 8.5 software (OriginLab, Northamp-
ton, MA, USA) by taking into account size measurements for ~30 particles, which were
performed by means of the software of the electron microscope (Digital Micrograph 1.8.0)
(Gatan, Sarasota, FL, USA).

The nitrogen physisorption isotherms were measured at −196 ◦C using an ASAP
2020 instrument from Micromeritics (Norcross, GA, USA). Before taking the measurements,
the samples were outgassed under a vacuum at 250 ◦C for 4 h. The specific surface areas
of the materials were assessed by the Brunauer–Emmet–Teller (BET) method, while the
total pore volumes were calculated from the amounts adsorbed at relative pressures of 0.99.
Pore size distributions were estimated using the density functional theory (DFT) method
provided by the software of the ASAP 2020 instrument.

The morphologies of the MgO nanopowders were observed by field emission scanning
electron microscopy (SEM) using a Quanta 3D FEG Dual Beam (Eindhoven, The Netherlands).

The UV–Visible absorption spectra of the MgO samples were recorded using a JASCO
V570 spectrophotometer (Tokyo, Japan).

An FLSP 920 spectrofluorometer (Edinburgh Instruments, Livingston, UK) was used
for recording the photoluminescence spectra (PL) of the magnesium oxide samples. The
excitations at wavelengths of 385 nm were achieved with the help of an Xe lamp. The PL
spectra were recorded at room temperature between 400 and 750 nm.

The photocatalytic reactions were carried out in a closed room at 30 ◦C.A total of 5 mg
of MgO photocatalyst was added to a 10 mL solution of methyl orange dye (1 × 10–5 M).
The mixture was firstly stirred in the dark for 30 min to allow the dye molecules to adsorb
on the magnesium oxide surface. Then, irradiation at λ = 254 nm using a UV–VL-215c
lamp was started, and it continued for 5 h. After 1, 3, and 5 h of irradiation, the photocat-
alyst was then separated from the suspension using a Millipore syringe filter (0.45 µm).
The filtered solution was spectrophotometrically analyzed using the same JASCO V570
spectrophotometer to evaluate the dye degradation progress. The degradation efficiency
was calculated as Deff = (A0 − At)/A0 × 100, where A0 is the absorbance of the initial MO
solution and At is the absorbance at a particular interval of time.

To investigate the main active species responsible for the MO degradation, scavenger
experiments were undertaken. In this regard, p-benzoquinone (p-BQ) was used as a
quencher for the superoxide radicals (·O2

−), ethanol was used for the hydroxyl radicals
(·OH), silver nitrate was used for the electrons, and potassium iodide was used for the
holes. The scavenger’s concentrations were 0.1 mM, and the reaction conditions were the
same as in the photocatalytic experiments.
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