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Abstract: Vat photopolymerization typically prints highly crosslinked networks. Printing hydrogels,
which are also networks but with a high swelling capacity in water and therefore with low crosslinking
density, is a challenge for this technique. However, it may be of interest in medicine and in other
areas, since it would allow for the preparation of this type of 3D-shaped material. In this work,
an approach for printing hydrogels via vat photopolymerization that uses a mixture of stable and
hydrolysable crosslinkers has been evaluated so that an initial highly crosslinked network can be
printed, although after hydrolysis it becomes a network with low crosslinking. This approach has
been studied with PEO/PEG-related formulations, that is, with a PEG-dimethacrylate as a stable
crosslinker, a PEO-related derivative carrying β-aminoesters as a degradable crosslinker, and PEG-
methyl ether acrylate and hydroxyethyl acrylate as monofunctional monomers. A wide family of
formulations has been studied, maintaining the weight percentage of the crosslinkers at 15%. Resins
have been studied in terms of viscosity, and the printing process has been evaluated through the
generation of Jacobs working curves. It has been shown that this approach allows for the printing of
pieces of different shapes and sizes via vat photopolymerization, and that these pieces can re-ajust
their water content in a tailored fashion through treatments in different media (PBS or pH 10 buffer).

Keywords: 3D printing; vat polymerization; hydrogel; re-adjustable swelling; hydrolysable crosslinker;
additive manufacturing; DLP; UV curing

1. Introduction

Vat photopolymerization 3D printing, which historically was the first additive manu-
facturing (AM) technology, has emerged as a revolutionary technique in this field, enabling
the fabrication of intricate structures with high precision and accuracy [1]. Three-dimensional
printing by means of vat photopolymerization commonly employs resins with high con-
tents of di- or multifunctional polymerizable crosslinkers [2,3], thus yielding parts with a
highly crosslinked network structure with dimensional stability and little or no swelling
capacity. However, crosslinked networks capable of swelling in water, that is, hydrogels,
are materials of great interest in biomedicine and in other applications [4–7]. The possibility
of being able to prepare hydrogel-type objects by means of vat photopolymerization is
very attractive for preparing systems with a customized 3D structure and with the high
resolution characteristic of this 3D printing technology [8].

To print hydrogels, the crosslinking density should be designed, in principle, according
to the characteristics of the targeted swelling. According to literature data, selected as an
example, if it is desired to print an acrylate-based hydrogel that mimics soft tissues, that is,
with a certain amount of water (for example, containing double the amount of water of a
polymer), the photocurable formulation must contain around 1 wt. % of a crosslinker such
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as ethylene glycol dimethacrylate [9]. This percentage, which is much lower than those
crosslinking densities obtained using standard resins, may not be compatible with certain
aspects of vat photopolymerization 3D printing because the technique usually requires a
minimum amount of crosslinkers to obtain parts with adequate resolution and desirable
mechanical properties [3,10–12]. On certain occasions, low crosslinking is related to poor
adhesion to the platform.

In order to overcome this issue, one strategy that can allow for the printing of hydrogel-
type networks with the desired swelling capacity using vat photopolymerization 3D print-
ing [13] involves the preparation of formulations containing a mixture of stable and labile
crosslinkers. In this way, the crosslinker content in the resin would be enough for printing
pieces with good definition and mechanical properties, although the printed part could
be subsequently readjusted by selectively breaking the labile crosslinking bridges. As a
result, the final network will have a crosslinking density defined by the amount of stable
crosslinker. If the labile character refers to hydrolytic sensitivity, as is the case in this work,
the printed network will be able to readjust in water, a non-toxic and ubiquitous solvent,
rendering it very attractive for commercial implementation.

In addition, the network readjustment may be of interest for certain applications,
such as filling cavities in regenerative medicine [14], the use of hydrogels as supports
and reservoirs in hydroponics and aquaponics [15], or for pharmaceutical and cosmetic
manufacturing [16,17], which could benefit from a controlled increase in size upon swelling
in water.

When designing the printing of a network precursor of a hydrogel, it must be taken
into account that the size of the fresh printed part is smaller than that of the swollen
networks. If the swelling is isotropic [18,19], the swollen part replicates the shape of the
printed part, and the original dimensions and their increase via swelling can be designed
to obtain a final custom hydrogel.

Our group has recently described a related strategy to prepare sacrificial molds in
water via vat photopolymerization [20]. In that work, resins containing hydrolysable
structures as crosslinkers were prepared and evaluated so that complex molds could be
printed with good resolution. The obtained molds were then successfully evaluated for
the preparation of both thermoplastic screws via plastic melting, mold filling, cooling
and sacrificing the mold in aqueous media, as well as silicone lattices prepared by fill-
ing the mold with precursors, chemical crosslinking, and again sacrificing the mold in
aqueous media.

Based on this previous experience, in this work, different formulations containing
mixtures of stable and hydrolysable crosslinkers have been optimized and evaluated for
3D printing. The resulting printed parts were characterized in terms of the size variation
and water content. Liquid crystal display (LCD) 3D printing has been used in this work.
LCD is today a cost-effective and widely employed technology for 3D printing using
UV-curable photosensitive resins [21,22]. Moreover, the high resolution screens available
today, combined with the possibility to create a complete layer in a short time, have
made this technology one of the fastest and most precise 3D printing alternatives [23].
Although LCD 3D printing has been used in this work, the procedure studied here could
be extended following slight modifications of the photosensitive resin composition to other
vat photopolymerization techniques, such as stereolithography (SLA) and digital light
processing (DLP).

2. Results and Discussion
2.1. Design of the Photopolymerizable Resin and Optimization of the 3D Printing Parameters

Figure 1 schematically shows the strategy used in this work as well as the structures
of the components of the formulation. Three-dimensional printing via vat photopolymer-
ization renders type A networks, which have a crosslinking density defined by the sum
of the stable crosslinker, SCL, and the hydrolysable crosslinker, HCL. This A network,
before any swelling readjusting, is capable of uptaking some amount of water to become a
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type B network. B networks are then capable of readjusting their swelling upon selective
hydrolysis of the hydrolysable crosslinking agents to give rise to C, with network C being
the network with the maximum readjustment in swelling (only the permanent crosslinking
agents ensure the hydrogel’s integrity). Thus, the adjustable network design is based
on the simultaneous use of the SCL and HCL. In this way, the adjustable character of
hydrogels refers to the ability to modulate the degree of swelling, starting from an initial
value (network B in the Figure 1), through the controlled hydrolysis of the HCL bridges.
The final (and maximum) swelling is defined by the residual SCL bridges (after hydrolysis
of all the HCL; network C in the Figure 1).
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Figure 1. Scheme of the strategy used in this work for printing re-adjustable hydrogels via vat
photopolymerization. (A) A 3D printed part obtained directly after printing and post-curing.
(B) Initial swelling in PBS. (C) A 3D printed part upon swelling in basic media due to the HCL
hydrolysis. The jeff tag refers to the spacer of the Jeffamine (R of H2N-R-NH2).

In addition to the crosslinkers, monofunctional monomers responsible for modulating
certain properties of the final hydrogel were added to the formulation. Results from our
previous work were used to select the components and the starting parameters [20]. A
Jeffamine derivative carrying activated β-aminoesters for hydrolysis was chosen as the
HCL, because it has previously shown its effectiveness in the preparation of sacrificial
templates. PEG derivatives (PEGDMA-550 as the crosslinker and PEGMEA-480 as the
monofunctional monomer) as well as their ethoxylated low molecular weight homologue
(HEA) were chosen as structures of the SCL and monofunctional monomers in order to
build PEO-related structures. In this sense, Jeffamine is also a PEO-related structure.

The crosslinking percentage was established as 15 wt. % (total amount of the SCL + HCL),
as this value has been shown before to be the minimum required to print parts with good
resolution and acceptable mechanical properties [20].

Initially, the influence of the monofunctional monomers (HEA and PEGMEA) on the
printing process and the properties of the printed pieces has been addressed. For this
purpose, the HCL/PEGDMA weight percentages were set at 7.5/7.5, and the samples were
prepared by varying the HEA/PEGMEA weight ratio, as shown in Table 1. This series was
labelled as PEGDMA7.5-HEAy, where y is the weight percentage of the HEA.

Table 1. Data concerning the PEGDMA7.5-HEAy series, including the penetration depth (Dp) and
critical exposure (Ec) calculated from the Jacobs working curves.

Sample Label PEGDMA/HCL/HEA/
PEGMEA wt. %

PEGDMA/HCL/HEA/
PEGMEA mol %

Crosslinker mol%
(PEGDMA + HCL)

Viscosity (Pa·s) for a
Shear Rate of 1 s−1

Dp
(µm)

Ec
(mJ·cm−2)

PEGDMA7.5-HEA85 7.5/7.5/85/0 1.8/1.0/97.2/0 2.8 0.012 ± 0.001 311 4.89
PEGDMA7.5-HEA60 7.5/7.5/60/25 2.3/1.2/87.7/8.8 3.5 0.019 ± 0.001 221 4.69
PEGDMA7.5-HEA40 7.5/7.5/40/45 3.0/1.6/75.0/20.4 4.6 0.026 ± 0.001 165 4.35
PEGDMA7.5-HEA20 7.5/7.5/20/65 4.2/2.2/52.4/41.2 6.4 0.034 ± 0.001 105 3.49
PEGDMA7.5-HEA0 7.5/7.5/0/85 6.9/3.6/0/89.5 10.5 0.041 ± 0.001 102 3.82

First of all, in order to evaluate the photopolymerizable resin printability, a rheological
study was carried out to measure the viscosity as a function of the shear rate. All the
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samples have shown Newtonian behavior (see Figure S1 in SI). Although there is a certain
dependence on the composition (the higher the amount of HEA, the lower the viscosity), the
viscosities remain in all cases below 0.050 Pa·s, evidencing their suitability for DLP/LCD
printing, which requires low viscosities [24,25]. The values of the shear rate measured for a
frequency of 1 s−1 have been quoted in Table 1.

In order to select the optimal printing parameters, and more specifically, the exposure
time for a layer of 100 µm, the Jacobs working curves [26–29] (see Figure 2) were determined
as described in the Experimental Section. These lines, which represent the cured depth (Cd)
against the energy that the printer lamp radiates on the surface of the part for different
exposure times, allow for the selection of the most appropriate exposure times for the
layer height selected in the printing parameters. As can be observed in Figure 2, for each
exposure time, the Cd decreases as the amount of HEA decreases. This working line
provides information about the Ec (mJ·cm−2), the starting point for the transition from
liquid to solid, and the Dp (µm), the penetration depth. The parameters calculated from
these curves are presented in Table 1.
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Figure 2. Working curves for the PEGDMA7.5-HEAy series when exposed to 405 nm light
(0.5 mW·cm−2). Data correspond to (from right to left in each group of data) exposure times of
35, 30, 25, 20, 15 and 10 s. Linear regressions are included.

The HEA/PEGMEA weight ratio does not have a great influence on the Ec, although
it does on the Cd. The greater the amount of HEA, the greater the Dp for each exposure
time. Table 1 shows that the variation in the HEA/PEGMEA ratio has a great influence on
the molar crosslinking density: the more HEA, the lower the molar crosslinking density,
which means, in principle, that it will require longer irradiation times (or energy) to reach
a gel structure. In addition, by varying the HEA/PEGMEA ratio, the ratio between the
low molecular weight monomer (HEA) and the macromonomer (PEGMEA) is also being
varied. It has been described that the degree of functionality of the components (mono- vs.
difunctional) and their molecular weight have a profound influence on both the gel point
and the curing depth [30].

Based on the graphs shown in Figure 2, and taking into account that the objective is to
obtain a layer height of 100 microns, 20 s was chosen as the common exposure time for all
the printings. For this exposure time, the different systems result in curing depths close to
the target value.
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To assess the printability and make an initial characterization of the dimensional
readjustment, pieces with dimensions of 2.0 × 2.0 × 0.2 cm3 were printed for the different
formulations. According to previous studies [31], the photoabsorber Sudan I was added at
1.35 wt. %, to limit the UV light penetration. Please note that Sudan I was already used in a
previous study to obtain the Jacobs working curves. The optimized printing parameters
employed to print the parts are summarized in the Experimental Section.

It is worth mentioning that an increase in the amount of HEA in the photopolymeriz-
able mixture leads to more resistant and less brittle parts. This fact may be associated with
the large variation in the crosslinking molar density, i.e., an increase in the HEA content
involves a reduction in the crosslinking molar density.

2.2. 3D Printed Part Swelling: Toward a Selective Rupture of the Hydrolysable Crosslinking Agents

The pieces were immersed either in PBS or in basic water (2 wt. % of NaOH) and
gravimetrically monitored to determine their water content and calculate the corresponding
swelling according to Equation (1). In PBS, a gradual increase in swelling was observed
until reaching an equilibrium value varying in the 100–170% swelling range, depending on
the composition. This equilibrium value, which is reached between 24 and 96 h (depending
on the system), is plotted in Figure 3. Interestingly, although the crosslinking density
decreases with an increasing HEA content, this does not translate into a correlative increase
in swelling. Swelling increases slightly up to 40 wt. % HEA but then decreases, remaining
in all cases above 100%. To the naked eye, it is observed that very HEA-rich hydrogels
have a transparent outer layer and a colored core, which is probably slightly swollen. This
behavior can be as explained follows. With an increasing HEA content, on the one hand,
there is initially a slight increase in swelling in PBS due to the significant decrease in the
molar percent crosslinking. From 40%, on the other hand, these variations in the degree of
crosslinking are not as high, and swelling decreases due to the greater water absorption
capacity of PEGMA-based systems compared to HEA-based systems for similar degrees of
crosslinking [32–34].
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In a basic medium, much higher and faster swelling is observed than in PBS. In
this case, an increase in the amount of PEGDMA in the photopolymerizable mixture
produces parts with lower swelling capacity. Since β-aminoesters are sensitive to the
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pH, that is, they are hydrolyzed much faster at a basic pH, the behavior of the samples
represented in Figure 3 is compatible with the idea that the samples in PBS correspond
to the type B networks in Figure 1, that is, swollen networks that have not undergone
HCL hydrolysis. On the other hand, the samples in a basic medium correspond to the
type C networks in Figure 1, because HCL hydrolysis gives rise to networks with a lower
degree of crosslinking than type B networks, and therefore, with a greater swelling capacity.
These C-type networks have, in principle, a crosslinking density, after HCL hydrolysis,
defined by the amount of the SCL (see Table 1). This could explain why an increase in the
amount of PEGDMA within the resin can produce parts with less pronounced swelling
after hydrolysis.

Once the PEGDMA7.5-HEAy series was studied, a fixed HEA/PEGMEA weight ratio
was selected (60/25) and the PEGDMA/HCL weight ratio was varied (between 2/13 and
15/0) to analyze the role of the amount of HCL in the initial swelling and to determine
whether the swelling of the partially hydrolyzed part can be modulated. The rationale
behind the selection of the HEA/PEGMEA weight ratio of 60/25 was based on the fact
that HEA-rich systems are less fragile, although this composition still contains a signif-
icant amount of hydrophilic PEGMEA macromonomer. This series has been labelled as
PEGDMAy-HEA60, where y is the weight percentage of the PEGDMA. The characteristics
of the samples studied in this second group are collected in Table 2. It can be seen that the
molar crosslinking density (moles of PEGDMA + moles of HCL) increases with the amount
of PEGDMA.

Table 2. Data concerning the PEGDMAy-HEA60 series, including the penetration depth (Dp) and
critical exposure (Ec) calculated from the Jacobs working curves.

Sample Label PEGDMA/HCL/HEA/
PEGMEA wt. %

PEGDMA/HCL
mol %

Viscosity (Pa·s) for a
Shear Rate of 1 s−1 Dp (µm) Ec (mJ·cm−2)

PEGDMA2-HEA60 2/13/60/25 0.6/2.1 0.024 ± 0.001 221 4.69
PEGDMA5-HEA60 5/10/60/25 1.5/1.6

PEGDMA7.5-HEA60 7.5/7.5/60/25 2.3/1.2 0.019 ± 0.001 176 4.52
PEGDMA10-HEA60 10/5/60/25 3.1/0.8
PEGDMA13-HEA60 13/2/60/25 4.0/0.3
PEGDMA15-HEA60 15/0/60/25 4.6/0 0.012 ± 0.001 133 5.08

A rheological study was carried out again on three representative samples to address
the printability of the prepared resins, as depicted in Table 2 (viscosity values for a shear
rate of 1 s−1). All of them exhibited Newtonian behavior (see Figure S2 in SI) and a slight
dependence on the composition, i.e., an increase in the amount of PEGDMA leads to a
decrease in resin viscosity. However, the viscosities in all cases remain in the range of
0.012–0.024 Pa·s, suitable values for vat photopolymerization 3D printing [24,25].

From the Jacobs working curves (see Figure 4), the Dp and Ec values quoted in
Table 2 were obtained. These results are in good agreement with those obtained with
the PEGDMA7.5-HEAy system, i.e., a higher nominal molar crosslinking density leads to
greater curing depths. Again, a time of 20 s was found to be the most appropriate one to
carry out the printing of all the pieces with common parameters.

Pieces of 2.0 × 2.0 × 0.2 cm3 could be successfully printed using the conditions
described in the Experimental Section. Following the procedure depicted above, these 3D
printed pieces were immersed either in PBS or in basic water (2 wt. % of NaOH), and the
swelling was determined via gravimetry as a function of the time (Figure 5). As occurred
with the PEGDMA7.5-HEAy series, these samples were found to reach equilibrium in PBS
after a few days, with moderate swelling values in the range 100–200%. After 24 h in a basic
medium, the swelling was, however, much higher and appeared to depend on the amount
of PEGDMA. An increase in the amount of PEGDMA within the photopolymerizable resin
resulted in 3D printed parts with lower swelling capacity. Again, the overall behavior
in PBS and 2 wt. % NaOH was compatible with the re-adjustable hypothesis. In PBS,
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the hydrogel would correspond to a type B network (see Figure 1), whereas in the basic
medium, there is already HCL hydrolysis and the networks are initially between B and C
(when the hydrolysis of the HCL is not complete) and finally of type C. The dependence on
the amount of PEGDMA is consistent with this process, because the swelling of the C type
network is defined by the amount of SCL, that is, of PEGDMA. In the case of PBS, when
there are B type networks, the global molar crosslinking density comprising the contribution
of both stable and hydrolysable crosslinkers (SCL + HCL) increases only slightly with an
increasing amount of PEGDMA, which explains the small swelling differences in PBS. The
results of high swelling after treatment with an alkaline medium for networks with less
PEGDMA are consistent with the literature data for similar HEA networks prepared with a
very low crosslinking percentage [35].
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While it appears that after 24 h in basic media the swelling started to stabilize, longer
studies revealed an unexpected behavior. All the samples for both series described above
did not reach the swelling equilibrium in 2 wt. % NaOH (see Figure 6). In most of the cases,
a continuous gradual increase in swelling values was observed.

Aiming to understand this behavior, reference structures were prepared from a for-
mulation in which the HCL was replaced by twice the number of moles of the glycerol
monomethacrylate, GMM (Figure 7). It is worth mentioning that GMM has the same
structure as the HCL units upon hydrolysis in basic media, i.e., in the C network. By using
these reference models, we expected to be able to determine a reference swelling for the
C structure.

For this purpose, reference systems of the PEGDMA2-HEA60 and PEGDMA5-HEA60
samples were prepared (see the Experimental Section for examples of the system formulation
and reference formulation). These reference networks were immersed in PBS until reaching
equilibrium (using gravimetry), and these swellings in the equilibrium state are plotted in
Figure 6b as dashed horizontal lines. These values are the values that a type C network should
reach after breaking all the HCLs maintaining the 2 and 5 wt. % of PEGDMA. It can be seen
how the PEGDMA2-HEA60 and PEGDMA5-HEA60 networks reach these reference data after
about 50–100 h, although after that they continue to increase continuously.
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The behavior at short times (up to 50 h) is in good agreement with the breakage of the
majority of the HCL links occurring within the first 24 h. However, the fact that equilibrium
is not reached must be explained by some other concomitant degradation process. In this
sense, an NaOH solution may be aggressive enough to also break the acrylic side chain
esters, even though they are not β-activated due to the presence of amines. There are
also literature data evidencing that certain acrylates similar to those used in this work can
be hydrolyzed in alkaline media [36]. To confirm if this process occurs in the proposed
systems, a linear homopolymer of poly-HEA was synthesized, dissolved in D2O with a 2
wt. % NaOH, and monitored via 1H NMR. This analysis showed changes in the spectra
that are compatible with the breakdown of the acrylates (see Figure S3 in SI). The broad
peaks corresponding to the chain protons of pHEA (CH2-CH), initially centered at 2.4, 1.75,
and 1.6 ppm, change shape and shift to broader peaks centered at 2.0 and 1.4 ppm, which
is coincident with the chain displacements of polymethacrylic acid [37]. In addition, the
signals of the side chain (O-CH2-CH2-O in HEA) also undergo changes compatible with
hydrolysis, detecting the peaks corresponding to ethylene glycol at 3.5 ppm. Residual HEA
peaks are observed centered at 4.2 and 4.0 ppms.

As the objective of this work was to demonstrate that it is possible to control the
transition from a type B network to a type C network, the hydrolytic process of the HCL
structures was addressed using less aggressive conditions that selectively allowed for the
hydrolysis of the HCL. Specifically, a pH 10 buffer medium was employed, and the swelling
variation was monitored both at room temperature (r.t., 20 ◦C) and at 60 ◦C to address if
the temperature could play a role in the hydrolysis. For this study, the PEGDMA2-HEA60
sample has been chosen because it is the sample with the greatest readjustment capacity
(remember that this formulation contains the largest amount of HCL, 13 wt. %). Figure 8
shows the variation in swelling of this system when submerged in pH 10 buffer at r.t. and
at 60 ◦C, as well as in intermediate situations where the samples were first heated at 60 ◦C
during either 17 h or 25 h and then transferred to PBS at r.t. The graph includes the data
corresponding to the swelling change in an alkaline medium (2 wt. % NaOH) and in PBS
as a function of the time. At pH 10 and 60 ◦C, a rapid increase in weight was observed
until reaching a limit value close to 700% after about 70 h. The fact that an equilibrium
limit value is reached, and that this value is slightly less than the swelling of the reference
structure (dashed line), confirms that the pH 10 buffered medium is capable of hydrolyzing
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HCL but not the rest of the acrylic esters. At r.t., the swelling change is much slower, which
means that the rate of hydrolysis of the HCL β-aminoesters in the pH 10 buffer can be
controlled by the temperature.
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Figure 8 shows that in PBS the equilibrium swelling value is reached after about
24 h and remains constant for weeks. This would be the swelling of the type B network.
Networks with structures and swellings between network B and network C can be obtained
via immersion in pH 10 for a selected time to allow partial hydrolysis of the β-aminoesters,
followed by the stabilization of the structure via immersion in PBS, as shown in the diagram
of Figure 8. This strategy was carried out via immersion in pH 10 for 17 and 25 h, followed
by stabilization in PBS. These curves are represented in Figure 8 and show that it is possible
to modulate the swelling between the two networks, B and C.

2.3. Proof of Concept of the Methodology: Preparation of 3D Printed Hydrogels with Tunable
Swelling and Complex Structures

Once the re-adjustable behavior was thoroughly analyzed with square-shaped model
parts, the dimensional readjustment in more complex pieces was addressed. Using the
PEGDMA2-HEA60 formulation, spheres (SP) and tubes (T) with the dimensions indicated
in Table 3 were prepared. In addition, a seahorse figure was printed to show this behavior in
a piece with a more complex shape. The bottom image in Table 3 shows the freshly printed
seahorse and when it was swollen after immersion in PBS for 72 h. It can be observed that
the initial proportions are fully maintained, which indicates that the swelling was isotropic.

Spheres SP1 and SP2 reached equilibrium swelling values after being immersed in
PBS for 48 h, with values close to 150. In a basic medium, i.e., pH 10 buffer, they showed a
continuous increase in swelling up to approximately 300 h, with the kinetics of the larger
sphere being slower than those of the smaller sphere (see Figure 9a). The tubes displayed
a similar behavior (Figure 9b). It must be taken into account that these pieces, especially
the spheres, have larger dimensions than the pieces studied in Figure 8, which reached
equilibrium within less than 100 h.

In any case, the printed parts in Table 3 show the same re-adjustability as previously
described for the larger parts. In the case of the spheres, this capacity may be of interest in
applications such as hydroponics and aquaponics crops [15], or in regenerative medicine to
fill cavities [14], among others.
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Table 3. Data concerning spheres, tubes and a seahorse printed from the formulation PEGDMA2-HEA60.

Spheres

Fresh printed parts, diameter (cm)

SP1: 0.50 SP2: 0.75
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3. Conclusions

In this work, it has been shown that the strategy of using a mixture of stable (PEGDMA)
and hydrolysable crosslinkers (HCL) allows for printing pieces via vat photopolymerization
with different sizes and shapes, and with initial high crosslinking (PEGDMA and HCL
knots) and then for transforming them into hydrogels via treatment in pH 10 buffer (with
only remaining HCL knots). The swelling in water of the printed part ranges from the
initial swelling (PEGDMA + HCL knots) to the swelling for total hydrolysis (only remaining
PEGDMA knots are present). The intermediate swellings between these two states can
be precisely controlled by adjusting the immersion time and temperature in pH 10 buffer.
These target swellings have been stabilized by immersing the pieces in PBS at r.t.

4. Materials and Methods
4.1. Materials

The poly(ethylene glycol) methyl ether acrylate (PEGMEA480, MW 480), poly(ethylene
glycol) dimethacrylate (PEGDMA550, Mw 550), sodium hydroxide (NaOH), 3-(acryloyloxy)-
2-hydroxypropyl methacrylate, acetic acid, Sudan I, phenylbis(2,4,6-trimethyl benzoyl)
phosphine oxide (BAPO), and phosphate-buffered saline (PBS, pH 7,4) were supplied by
Merck and used as received without further purification.

The Jeffamine ED-600 (supplied by Huntsman) and glycerol monomethacrylate (GMM,
supplied by Polysciences) were used as received.

2-hydroxy ethyl acrylate (HEA, supplied by TCI), azo-bis-isobutirenitrile (AIBN, sup-
plied by Glentham) and dioxane (supplied by Panreac) were used as received.

The HCL was prepared as described previously from 3-(acryloyloxy)-2-hydroxypropyl
methacrylate and Jeffamine using a catalytic quantity of acetic acid [20].



Gels 2023, 9, 600 13 of 16

The synthesis of poly-HEA (pHEA) was carried out by thermal polymerization in
solution. 665 mg of HEA were introduced into a vial, with a stirrer inside, and dissolved
in 10 mL of dioxane. Next, 25 mg of AIBN were added. After that, the solution was left
stirring for about 5–10 min for its complete homogenization and then nitrogen was bubbled
for 5 min. Finally, the polymerization was allowed to proceed overnight in an oven at
60 ◦C. The next day, upon cooling to 5 ◦C separation into two phases was observed, which
allows the dioxane to be easily removed.

4.2. Photopolymerizable Resin Formulations for 3D Printing

For each ink or formulation, a total of 20 g of precursor mixture was prepared. Exam-
ples of each type of system are detailed in Tables 1 and 2. As an example of an ink for the
PEGDMAy-HEA60 system, the formulation PEGDMA5-HEA60 was prepared by mixing
1.0 g of PEGDMA (1.8 mmol), 2.0 g of HCL (1.9 mmol), 5.0 g of PEGMEA (10.4 mmol) and
12.0 g of HEA (103.3 mmol). For this formulation, the reference formulation containing
GMM instead of HCL was prepared by mixing 1.0 g of PEGDMA, 0.6 g of GMM (3.8 mmol),
5.0 g of PEGMEA and 12.0 g of HEA.

In all cases, 2.67 mg of Sudan I (1.35 wt. %) was added and the vessel was covered
with aluminum foil. Then, 0.2 g (1 wt. %) of photoinitiator was added and the mixture was
stirred for 5–10 min until it was completely homogeneous. The resin was then ready to be
tested in the printer.

4.3. Selection of the 3D Printing and Post-Processing Parameters

The resin was added into the tank and the printing parameters chosen were as follows:
layer 100 µm, raft height 1 mm, raft offset 4 mm, layer exposure time 20 s, exposure off
time 5 s, bottom layer exposure time 60 s, bottom layers 5 pcs, platform lower speed
100 mm/m and 5 platform lift speed 100 mm/m. The printer used was the Zortrax Inkspire,
using Z-Suite for Zortrax as the slicer program. After printing, the parts were washed
in isopropanol for 5 min and post-cured for 30 min at room temperature in a UV light
curing chamber.

4.4. Swelling Tests Performed on the 3D Printed Parts

The 3D printed pieces (2.0 × 2.0 × 0.2 cm3) were immersed in 15 mL of the corre-
sponding media (PBS, buffer pH 10 or 2 wt. % NaOH in water) at room temperature or
60 ◦C. The pieces were weighted at different times to follow the swelling process. Swelling
(S) was determined from Equation (1):

S = (wS − wD)/wD (1)

where wS and wD are the weights of the swollen and dry systems, respectively.

4.5. Methods

Rheological characterization of the uncured formulations was carried out at 25 ◦C
using a strain-controlled rheometer (Waters, ARG2, TA Instruments), as detailed in the SI.

To obtain the Jacobs working curves [27,28,38], circular samples (diameter 2 cm) were
cured with the Zortrax Inkspire 3D printer between the tank and a glass, with a constant
intensity of 0.5 mW·cm−2 and varying the exposure times of between 10 and 35 s. Every
sample was performed in duplicate. After the polymerization, the remaining solvent was
extracted, and finally, the film was cleaned with paper. The curing depth (Cd, µm) was
obtained from the thickness of the samples, which was measured with a thickness gauge
(Tactix 251420). The Cd is related to the irradiated light energy on the surface, Emax, by
Equation (2):

Cd = Dpln
(

Emax

Ec

)
(2)
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where Emax (mJ·cm−2) is given by the product of the exposure time and the energy of
the lamp (0.5 mW·cm−2 in the Zortrax Inkspire 3D printer). Ec (mJ·cm−2) is the starting
point for the transition from liquid to solid and Dp (µm) represents the penetration depth.
Bearing in mind the properties of the 3D printed objects, it is necessary to obtain good
adhesion between the layers. To achieve this, the use of layers with sufficient depth is
essential, i.e., Cd > z, in our case Z = 100, because the stiffness of a polymer at the gel point
(or below it) is too low to endure the printing process [28,39,40]. This expression equates to
a linear line on a semilogarithmic plot of Cd on the y-axis versus Emax on the x-axis. The
interception of the Jacobs working curve with the x-axis represents Ec, whereas Dp is the
slope of the linear line.

The hydrolysis of the poly-HEA ester was monitored by 1H NMR. 100 mg of polymer
were dissolved in 0.6 mL of D2O at 2 wt. % of NaOH. This sample was monitored from
time = 0 as indicated in Figure S3 in SI. 1H NMR spectra were recorded at room tem-
perature on a Bruker Avance III HD-400 spectrometer (1H 399.86 MHz) using D2O with
2 wt. % NaOH as solvent. Chemical shifts (d in ppm) are given from internal solvent, D2O,
4.8 ppm.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/gels9080600/s1, Figure S1: Viscosity values as a function of the shear rate
for the PEGDMA7.5-HEAy system; Figure S2: Viscosity values as a function of the shear rate for the
PEGDMAy-HEA60 system; Figure S3: 1H NMR spectra of pHEA in D20 with 2 wt. % of NaOH at
time 0 (a) and 24 h (b).
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