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Abstract: A few drugs need non-aqueous gels for release in the specific region of the intestine. The
present work focuses on preparing N,N-Dimethyl acrylamide-Diallyl Maleate (DMAA-DAM) gel
in Dimethyl sulfoxide (DMSO) solvent by applying different doses of gamma radiation and then
characterization. The blend solution of 10%: 10%—DMAA: DAM was prepared in DMSO and
irradiated at 2, 5, 10, 20, and 30 kGy doses from the Co-60 gamma source. After extraction, it was
observed that all of the radiation doses yielded more than 95% gel content. The best gel content was
found for 10 kGy dose, which was 97%. The equilibrium swelling was optimized 1800% of the dried
gel for 5 kGy dose. Gel formation was confirmed by analyzing characteristic functional groups and
the environment of protons in the gel structure by using FTIR and NMR spectroscopy. The thermal
stability was tested using DSC and TGA which showed the glass transition temperature at 86.55 ◦C
and the degradation started at 320 ◦C. The XRD pattern analysis revealed the semi-crystalline nature
of the gel. Therefore, DMAA-DAM gels can be a good candidate for use in different fields of study,
especially in drug delivery.

Keywords: non-aqueous; gel; gamma radiation; DMAA; DAM

1. Introduction

Gels are semi-solid or semi-liquid polymeric materials consisting of long-chain molecules
cross-linked with one another. There are two types of gel: (i) chemical gel and (ii) physical
gel [1]. If the gel can retain a large amount of water without dissolving in it, then it is called
hydrogel [2]. Due to their diverse properties, gels are widely used in metal adsorption [3],
agriculture [4], electronics [5], biomedical engineering [6], and drug delivery [7]. Usually,
co-polymeric hydrogels are prepared in aqueous solution by applying gamma radiation.
Water molecules participate directly in the polymerization mechanism of hydrogels through
the formation of hydrogen and hydroxyl free radicals. The hydroxyl free radicals strike
and subtract the proton from the reactant monomers to produce their free radicals. Then,
the free radicals propagate and terminate the copolymerization reactions to produce the
gel products [8]. But, irradiating monomers in a non-aqueous solution may not follow the
same reaction mechanism which created the interest to work on ‘gamma radiation induced
gels in non-aqueous media’. In many cases, non-aqueous hydrophilic and hydrophobic
gels are required for the delivery of a few specific drugs [9]. Because of hydrolysis, drugs
that are poorly soluble/insolubility in water are not suitable/stable in aqueous media
to release in the intestine. So, non-aqueous gels are required to mitigate the situation
through the preparation of different solvents rather than water. Anthony Tablet and Chun
Wang studied and broadly explained the advantages, limitations, and future prospects
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of non-aqueous gel/supra-molecules in the field of drug delivery [10]. Yong Zhang et al.
prepared non-aqueous gel via the solvent evaporation method and used it in transdermal
drug delivery, where they found a steady release at an expected rate [11]. Monomers should
also be eligible for the formation of gel upon gamma radiation exertion in a non-aqueous
medium. DMAA is a nonionic monomer that easily undergoes all sorts of polymerization
such as chemical and irradiation techniques. Its hydrogel shows amelioration in swelling in
different environments, thermal and mechanical stability, and self-healing properties which
promote its applicability in toxic metal adsorption, dye removal, and biomedical engineer-
ing [12,13]. Owing to their stimuli-responsive nature, DMAA gels are being used to deliver
various kinds of drugs into the intestine [14]. To overcome the limitations (lower mechanical
strength [15]) of DMAA gels, another monomer can be incorporated with it. DAM can be an
efficient candidate for blending with DMAA in non-aqueous media. DAM is a trifunctional
monomer usually used as a cross-linking and branching agent. It has a tendency to form
cyclo-copolymer as the allyl double bond is less reactive than vinyl double bonds [16].
Both DMAA and DAM yield gel in non-aqueous solutions using the solvent like DMF,
CCl4, DMSO, and Benzene, etc. F. Martellini et al. reported on 2-methoxyethylacrylate-N,N
dimethylacrylamide hydrogel prepared by applying gamma-radiation-induced polymer-
ization in dimethylformamide solution [17]. Kunio Urushido explained the intramolecular
cyclization of diallyl maleate and broadly discussed its radical polymerization in benzene
solvent at 60 ◦C in the presence of 2,2-azobisisobutyronitrile [18]. Therefore, DMAA and
DAM may combine to produce a gel. Dimethyl sulfoxide (DMSO) is a water-soluble
organic solvent generally used singly or by mixing with other solvents to dissolve so-
lute and proceed with polymerization upon the exertion of gamma irradiation [19]. Due
to the lack of use of initiators and cross-linking agents, among all of the methods, the
gamma radiation technique is the most promising, effective, and prioritized for the prepa-
ration of pure gel. Gamma radiation is a highly energetic (<0.25 Å wavelength, >12 EHz
(1 EHz = 1018 Hz) and >50 keV energy) electromagnetic ray that can initiate copolymer-
ization in both aqueous and non-aqueous solutions [17,20]. However, a detailed study
regarding DMAA-DAM gels in non-aqueous solutions was not yet reported. The aim of
the current work is to prepare a polymeric gel from DMAA-DAM in DMSO solution by ap-
plying different doses of gamma-ray, optimization of radiation dose, and characterization.

2. Results and Discussion
2.1. Radiation Polymerization of DMAA-DAM Gel

Gamma radiation polymerization was performed in a non-aqueous DMSO solution
by applying radiation doses 2, 5, 10, 15, and 20 kGy, respectively (Figure 1). At the lower
radiation dose (2 kGy), the hydrogel was not found, which may be attributed to insufficient
activation energy to activate the monomers for starting the reaction. Generally, in the
case of an aqueous solution, gamma rays split the water molecules into hydrogen and
hydroxyl free radicals which initiate the reaction. Herein, the mechanism should follow a
different pathway. Since the medium is non-aqueous DMSO solution, the polymerization
mechanism may be attributed to the formation of free radicals upon exerting the gamma
rays onto the solution of monomers. DAM free radicals may go through intra-cyclization
and chain propagation with DMAA free radicals, or smaller monomer DMAA may act
as a linker between DAM homopolymers [16]. Another possibility is the direct chain
propagation and termination between DMAA and DAM free radicals, shown in Scheme 1.
It can be concluded that gamma ray polymerization in a non-aqueous DMSO solution
is a feasible and effective method of producing hydrogels with tunable properties for
various applications.
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Scheme 1. Probable polymerization mechanism of DMAA-DAM gel. 
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Scheme 1. Probable polymerization mechanism of DMAA-DAM gel.
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Figure 1. DMAA-DAM gels after preparation.

2.2. Effect of Radiation Dose on DMAA-DAM Gel Content

The gels were extracted in water to remove the water-soluble DMSO, unreacted
monomers, homopolymers, and other contaminants. Figure 2 presents the gel content of
the DMAA-DAM gel prepared for 5, 10, 20, and 30 kGy radiation doses. The gel content
does not show much difference and lies between 95 and 97% indicating that the range of
doses used here is suitable for the preparation of the gel. Yet, the small variation in gel
content can be attributed to the lower radiation dose activating the maximum amount
of reactors to the transition state, resulting in higher products. In contrast, the higher
radiation doses may degrade a few monomers and subsequently produce a smaller amount
of product. Therefore, the lower dose of 5 or 10 kGy can be optimized for the preparation
of the gel [21].
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Figure 2. Effect of radiation dose on gel content of DMAA-DAM gel.

2.3. Effect of Radiation Dose on the Hydrophilicity/Equilibrium Swelling of Gels

Equilibrium swelling keeps vital rules in the efficiency of drug delivery from gels.
The DMAA-DAM gel possesses the functional group responsible for hydrophilicity. The
equilibrium swelling was performed in a neutral medium (pH~7.0) to investigate the
degree of hydrophilicity. Figure 3 depicts the effect of radiation dose on the gel network
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followed by a maximum amount of water absorption/adsorption (equilibrium swelling)
in the void spaces. It is clear from the graph that the hydrophilicity decreases with the
increasing exerted radiation dose. In the case of a lower dose, most of the monomers
become involved in the gel formation with the lower cross-linking density, resulting in the
larger void space that can hold large amounts of water. On the other hand, at the higher
radiation dose, monomers produce denser cross-linking in the gel network which can
reduces the hydrophilicity and equilibrium swelling [22]. It is noticeable that the DMAA-
DAM gels show lower equilibrium swelling compared to other gels in aqueous media.
The gels may undergo intramolecular hydrogen bonding which shrinks the network and
disables absorption/adsorption sites [23,24]. The swelling may be improved by changing
the swelling media, pH, and temperature [25]. Therefore, for higher swelling, a lower
radiation dose can be optimized. Figure 4 exhibits the states of gels before and after
swelling in neutral pH media, which reflects the stability after swelling.
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2.4. Characterization of Gel Using FTIR Spectroscopy

Figure 5 represents the FTIR spectra of DMAA and DMAA-DAM gel. In Figure 5a the
peak at 2920 cm−1 for the –C-H stretching of the hydrocarbon chain and at 1610 cm−1 for
the –C=O stretching of the tertiary amide group, 1147 cm−1 and 1034 cm−1 are assigned
to the –C-N stretching of amide. In Figure 5b, the FTIR spectrum of DMAA-DAM gel
showed a peak at 3419 cm−1 for moisture present in the network. All of the characteristic
peaks are present with little changes in the energy due to copolymerization. The peaks at
1726 cm−1 for the –C=O stretching of DAM, 1497 to 1401 cm−1 for the C-N stretching of
gel, 1254 cm−1 for the asymmetric –C-O-C tensile vibration, and 1145 cm−1 and 1095 to
1055 cm−1 are assigned to –C-O-C symmetric tensile vibration [26]. Therefore, the DMAA
and DAM undergo gel formation.
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2.5. The Characterization of Gel Using Proton NMR Spectroscopy

Since the gel is not well miscible with chloroform solvent, the intensity of the NMR
peaks is not satisfactory. In Figure 6, the peaks at 1.58 and 7.26 are for the reference and
solvent. The gel shows peaks at 0.88 and 1.23 for methyl (-CH3-) protons (carbon no. 1, 2,
19, 20). The peak at 2.62 is for –CH- protons (carbon no. 4, 7, 10, 11, 14, 17), and the peak at
3.64 s corresponds to methylene (-CH2-) protons (carbon no. 5, 6, 8, 13, 15) [27].
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2.6. Thermal Analysis Using Differential Scanning Calorimetry (DSC)

Figure 7 demonstrates the graph of temperature against heat flow where the primary
inclination (at 34.65 ◦C) is due to the escaping moisture from the gel. The glass transition
temperature is at 86.55 ◦C, whose endpoint is around 150 ◦C. From the DSC curve, it
can be concluded that the gel does not melt or decompose below 150 ◦C, which implies
that the gel has good thermal stability under atmospheric conditions [28]. The melting
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temperature of the gel is expected to be above 150 ◦C, which can be further confirmed via
thermogravimetric analysis (TGA).
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2.7. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) is a technique that measures the change in the
weight of a sample as it is heated or cooled over a range of temperatures or time intervals.
The TGA curve shows how the weight of the sample varies with temperature or time. The
TGA curve of the gel is shown in Figure 8 and can be divided into four segments that
correspond to different physical and chemical processes occurring in the sample. The first
segment of the TGA curve starts from 25 ◦C and ends at 86 ◦C, where the weight of the gel
decreases by 5%. This segment represents the initial dehydration of the gel, which contains
some water molecules that are released as vapor when heated. The second segment of the
TGA curve starts from 86 ◦C and ends at 157 ◦C, where the weight of the gel decreases
by another 7%. This segment corresponds to the transition of the gel from a rubbery state
to a glassy state, which is also observed in the DSC graph as an endothermic peak. The
glassy state is a rigid and brittle state of the gel that has low molecular mobility. The third
segment of the TGA curve starts from 157 ◦C and ends at 320 ◦C, where the weight of
the gel remains relatively constant at around 85%. This segment indicates that the gel is
stable in its glassy state and does not undergo any significant changes in its structure or
composition. The fourth segment of the TGA curve starts from 320 ◦C and ends at 600 ◦C,
where the weight of the gel decreases drastically by 73%. This segment represents the main
thermal degradation of the gel. The gel melts at around 320 ◦C and then degrades into
smaller carbonaceous products that are vaporized at higher temperatures. Above 500 ◦C,
only about 12% of the original weight of the gel remains, which mainly consists of inorganic
residues that are thermally stable. The TGA curve does not show any significant changes
above this temperature [28]. So, it can be concluded that the TGA graph reflects stability at
normal temperature and pressure.
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2.8. Surface Analysis with SEM-EDS

Scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) is a tech-
nique that combines the imaging of the surface morphology of a sample with the detection
of the elemental composition of the sample [29]. The SEM-EDS analysis requires the sam-
ple to be coated with a conductive material, such as platinum, to prevent charging and
improve image quality. In this study, the SEM-EDS analysis was performed on the dried
DMAA-DAM gel that was prepared by irradiating the DMAA-DAM solution with a 10 kGy
radiation dose. The objective of the SEM-EDS analysis was to examine the surface structure,
texture, and chemistry of the gel for potential applications. The SEM image of the gel is
shown in Figure 9a and reveals the rough and entangled surface of the gel. The roughness
and entanglement of the gel are attributed to the cross-linking and polymerization of the
DMAA-DAM molecules during irradiation, which create a three-dimensional network
of interconnected channels in the gel matrix. The network of the gel is beneficial for ap-
plications that require a high surface area, water absorption, or drug delivery. The EDS
spectrum of the gel is also shown in Figure 9b and displays the peaks corresponding to
the elements present in the gel. The EDS spectrum confirms that the gel consists mainly
of carbon (C), nitrogen (N), and oxygen (O), which are derived from the DMAA-DAM
monomers. The elemental composition and percentage of each element in the gel are listed
in Table 1. The presence of carbon, nitrogen, and oxygen in the gel indicates that the gel
contains amide- and ester-functional groups. The amide- and ester-functional groups are
also confirmed via Fourier transform infrared (FTIR) spectroscopy.

Table 1. Significant constitutional elements of DMAA-DAM.

Element Weight% Weight% Sigma

Carbon (C) 66.37 0.42

Nitrogen (N) 14.12 0.50

Oxygen (O) 19.51 0.22

Total 100.0 -
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2.9. X-ray Diffraction

The XRD pattern was measured for predicting the crystallinity of the DMAA-DAM
transparent gel prepared by applying a 10 kGy radiation dose, as shown in Figure 10.
Shahid Bashir et al. and Hue Yang et al. investigated the XRD patterns of DMAA and
poly(DMAA) where they did not find crystallinity [30,31]. In the current study, the gel
was formed by crosslinking DMAA and DAM monomers using gamma irradiation. The
transparency of the gel indicates that it has a homogeneous and uniform structure. However,
the XRD pattern reveals some interesting features. The peak at 44.54 is for the metal
plate reference and can be ignored. The gel does not give any sharp peak, indicating the
absence of pure crystallinity in the structure. This means that the gel does not have a long-
range order of atoms or molecules. However, there are two broad peaks at the 10.68 and
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21.84 positions. The semi-crystallinity may be due to the intermolecular and intramolecular
hydrogen bonding [32]. Those two peaks can be attributed to the semi-crystalline gab layer
and crystalline size, respectively. Therefore, the gel can be categorized as semi-crystalline
matter, which has both amorphous and crystalline regions in its structure.
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3. Conclusions

In this work, a non-aqueous mixed solution of N,N-Dimethyla acrymamide-Diallyl
Maleate (DMAA-DAM) was turned into gel by applying gamma radiation ranging from
5 to 30 kGy doses. The gel content analysis results show that all of the radiation doses
produce almost the same gel products, which means that the cross-linking efficiency is not
significantly affected by the dose. The equilibrium swelling decreases with the increase
in the radiation dose and maximum result was found to be 1800% of dried gel prepared
by applying 5 kGy. The copolymerization between two different monomers—DMAA and
DAM—was analyzed and confirmed using FTIR and NMR spectroscopy. Thermal stability
indicates the ability of the gel to withstand high temperatures without decomposition or
degradation. The most essential characteristic of gel–thermal stability was confirmed via
DSC and TGA analysis. The SEM indicated the surface morphology of the gel network
where the drug can be loaded and resealed. The EDS peaks were estimated and provided
the essential constituent elements with their stoichiometric percentages. XRD pattern
confirmed the semi-crystalline nature of the gel. Therefore, it can be concluded that the
DMAA-DAM gel can be used for drug delivery.

4. Materials and Methods
4.1. Materials and Reagents

2,3-dimethyl acrylamide and Diallyl Maleate were purchased from Merch, Germany.
All samples were prepared using ultra-pure water and the temperature was kept at 198 K
for the experiments. Different pH solutions were prepared by using nitric acid (HNO3) and
ammonium hydroxide (NH4OH).

4.2. Apparatus and Instruments for the Characterization of the Gels

Different functional groups of DMAA-DAM gel were confirmed with FTIR spec-
troscopy (Thermo Scientific Nicolet iS50R FT-IR, Seoul, Republic of Korea). The environ-
ment of photons in the chain of the polymer was investigated using nuclear magnetic
resonance (NMR) spectroscopy (JMTC-500/54/JJ, Tokyo, Japan). Thermal analyzes were
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performed by using differential scanning calorimetry (DSC Q100, Eschborn, Germany) and
thermogravimetric analysis (TGA 8000, PerkinElmer, Waltham, MA, USA). The surface
nature of the dried gel was analyzed via scanning electron microscopic (SEM) image and
the constitutional elements were confirmed from energy-dispersive X-ray spectroscopic
(EDS) analysis (JEOL, JSM-7900F, Tokyo, Japan). The crystallinity was checked using XRD
(Smartlab, Rigaku, Tokyo, Japan).

4.3. Preparation of DMAA-DAM Gels with Gamma Radiation

The mixed solution of (10%) DMAA and (10%) DAM was prepared by pouring
two monomers in DMSO solvent kept in 3 necked flasks followed by stirring at room
temperature. Then, the sample solution was taken in 5 glass tubes, purged with nitrogen
gas to remove the air from the system, and sealed for further processing. The sample
tubes were kept in front of the Co-60 gamma source by maintaining a definite time and
distance to adjust the radiation dose listed in Table 2. The radiation dose of this point
source depends on the irradiation time and distance between a sample and the gamma
source [19,33]. This table presents the changes in total effective dose (2 to 30 kGy) with
the varying irradiation time and distance. Transparent gel products were obtained for all
of the radiation doses except 2 kGy. After polymerization, the gel samples were carefully
collected from the gamma source. In this case, the source was stopped properly and the
emission was checked using dosimeter. The gels were allowed to dry inside the glass tube
and were taken out once completely dry and left for further processing.

Table 2. Radiation dose and respective gel products for DMAA (10%) and DAM (10%).

Radiation Dose (kGy) 2 5 10 20 30

Dose rate (Gy/hr) 86 217 437 823 1310

Distance from the
source (cm) 46 27 17 13 8

Irradiation time (hr) 24 24 24 24 24

Gel product No gel Solid gel Solid gel Solid gel Solid gel

4.4. Extraction and Measurement of Gel Content

Despite the hydrogels being prepared in DMSO (water-soluble solvent), they were
extracted in ultra-pure water. For extraction, the weight of dried hydrogel samples was
measured and kept in ultra-pure water at 40 ◦C temperature for about 24 h to allow the
contaminants and unreacted monomers and homopolymers to move out of the gel network.
After complete swelling, the samples were taken out, dried in an oven at a temperature of
50 ◦C to remove water, and weighed. Finally, the gel content was calculated by using the
following equation [34]:

Gel fraction[%] =
W1

W0
× 100 (1)

where W0 and W1 are the dried gel weights before extraction and after extraction, respectively.

4.5. Measurement of Hydrophilicity/Equilibrium Swelling

The equilibrium swelling was also performed in a neutral pH solution (ultra-pure
water) at room temperature. The extracted dried gel samples were soaked in a neutral
solution for 12 h followed by measuring weight until the constant weight reached (up to
14 h). From the dried and swelled weight, the equilibrium swelling was evaluated by using
the following equation [35]:

Water absorption[%] =
Wt − W1

W1
× 100 (2)
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where W1 and Wt are the dried gel weight and the gel weight after swelling in the solution,
respectively. The swelling experiments were performed three times to check the accuracy.

4.6. Characterization of Gel

All of the characterizations were performed for the prepared gel by applying a 10 kGy
gamma radiation dose.

4.6.1. Characterization with FTIR Spectroscopy

Fourier transforms infrared spectroscopic analysis has two types of vibrational
modes—stretching and bending—which happen very quickly (one cycle takes 10–15 s) during
the measurement. The reference KBr was used with the range from 700 cm−1 to 4000 cm−1.

4.6.2. Characterization with Proton NMR Spectroscopy
1H Nuclear magnetic resonance spectroscopic analysis was performed to indicate the

environment of the protons in the DMAA-DAM gel by dissolving it in chloroform solvent.
The chemical shift range was maintained at 0 to 8 ppm.

4.6.3. Thermal Analysis with DSC and TGA

Differential scanning calorimetry of the gel was carried out under a continuous
50 mL/minute N2 flow with a heating rate of 10 ◦C/min and with thermogravimetric
analysis under a 25 mL/minute N2 gas flow with a heating rate of 10 ◦C/min. Thermal
analysis DSC was carried out over a temperature range of 25 ◦C to 300 ◦C to investigate the
initial changes upon heating the gel sample. In this study, the TGA curve of the gel was
obtained by heating the sample from 25 ◦C to 600 ◦C at a constant rate and recording the
weight loss at different temperatures.

4.6.4. Surface Analysis with SEM-EDS

The SEM-EDS analysis requires the sample to be coated with a conductive material,
such as platinum, to prevent charging and improve image quality. In this study, the SEM-
EDS analysis was performed on the dried DMAA-DAM gel with 5 nm platinum coating.

4.6.5. Characterization with X-ray Diffraction

The X-ray diffraction pattern was measured for predicting whether the gel is crystalline
or amorphous. The XRD was run over a range of 5 ◦C to 70 ◦C with a scene rate of 2 ◦C/min,
and a metal reference plate was used.
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